1	Subsurface hydrothermal processes and the bioenergetics of
2	chemolithoautotrophy at the shallow-sea vents off Panarea Island (Italy)
3	
4	Authors
5	Roy E. Price ^{a,b*} , Douglas E. LaRowe ^a , Francesco Italiano ^c , Ivan Savov ^d , Thomas
6	Pichler ^e and Jan P. Amend ^{a,f}
7	
8	^a Dept. of Earth Sciences, University of Southern California, Los Angeles, CA, USA
9	^b current address: SUNY Stony Brook, School of Marine and Atmospheric Sciences, Stony
10	Brook, NY, USA
11	^c National Institute of Geophysics and Volcanology (INGV), Palermo, Italy
12	^d School of Earth and Environment, University of Leeds, Leeds, United Kingdom
13	^e Geochemistry Department, University of Bremen, Germany
14	^f Dept. of Biological Sciences, University of Southern California, Los Angeles, California,
15	USA
16	
17	
18	* corresponding: E-mail: Roy.Price@stonybrook.edu. Ph: 631.632.8700. Fx:
19	631.632.8820
20	
21	
22	
23	

24 Abstract

25 The subsurface evolution of shallow-sea hydrothermal fluids is a function of 26 many factors including fluid-mineral equilibria, phase separation, magmatic inputs, and 27 mineral precipitation, all of which influence discharging fluid chemistry and 28 consequently associated seafloor microbial communities. Shallow-sea vent systems, 29 however, are understudied in this regard. In order to investigate subsurface processes in a 30 shallow-sea hydrothermal vent, and determine how these physical and chemical 31 parameters influence the metabolic potential of the microbial communities, three 32 shallow-sea hydrothermal vents associated with Panarea Island (Italy) were characterized. 33 Vent fluids, pore fluids and gases at the three sites were sampled and analyzed for major 34 and minor elements, redox-sensitive compounds, free gas compositions, and strontium 35 isotopes. The corresponding data were used to 1) describe the subsurface geochemical 36 evolution of the fluids and 2) to evaluate the catabolic potential of 61 inorganic redox 37 reactions for *in situ* microbial communities. Generally, the vent fluids can be hot (up to 38 135 °C), acidic (pH 1.9-5.7), and sulfidic (up to 2.5 mM H₂S). Three distinct types of hydrothermal fluids were identified, each with higher temperatures and lower pH, Mg²⁺ 39 and SO_4^{2-} , relative to seawater. Type 1 was consistently more saline than Type 2, and 40 41 both were more saline than seawater. Type 3 fluids were similar to or slightly depleted in 42 most major ions relative to seawater. End-member calculations of conservative elements 43 indicate that Type 1 and Type 2 fluids are derived from two different sources, most likely 44 1) a deeper, higher salinity reservoir and 2) a shallower, lower salinity reservoir, 45 respectively, in a layered hydrothermal system. The deeper reservoir records some of the 46 highest end-member Cl concentrations to date, and developed as a result of recirculation

47	of brine fluids with long term loss of steam and volatiles due to past phase separation. No
48	strong evidence for ongoing phase separation is observed. Type 3 fluids are suggested to
49	be mostly influenced by degassing of volatiles and subsequently dissolution of CO ₂ , H ₂ S,
50	and other gases into the aqueous phase. Gibbs energies (ΔG_r) of redox reactions that
51	couple potential terminal electron acceptors (O_2 , NO_3^- , Mn^{IV} , Fe^{III} , SO_4^{-2-} , S^0 , CO_2 ,) with
52	potential electron donors (H ₂ , NH ₄ ⁺ , Fe ²⁺ , Mn ²⁺ , H ₂ S, CH ₄) were evaluated at <i>in situ</i>
53	temperatures and compositions for each site and by fluid type. When Gibbs energies of
54	reaction are normalized per kilogram of hydrothermal fluid, sulfur oxidation reactions are
55	the most exergonic, while the oxidation of Fe^{2+} , NH_4^+ , CH_4 , and Mn^{2+} are moderately
56	energy yielding. The energetics calculations indicate that the most robust microbial
57	communities in the Panarea hot springs combine H_2S from deep water-rock-gas
58	interactions with O ₂ that is entrained via seawater mixing to fuel their activities,
59	regardless of site location or fluid type.
60	
61	
62	
63	
64	
65	
66	
67	
68	Key Words: Shallow-sea, hydrothermal, subsurface processes, bioenergetics, microbial
69	metabolism, thermodynamics, biogeochemistry

70 1. Introduction

71 Marine hydrothermal vent fluids are often highly enriched in reducing inorganic 72 chemical species (electron donors) which, when mixed with oxidized seawater, can 73 generate aqueous solutions with multiple redox disequilibria. In deep-sea vent 74 environments, microbial communities take advantage of these energy sources and 75 comprise the base of the food web for some of the most diverse ecosystems on the planet 76 (Felbeck and Somero, 1982; Imhoff and Hügler, 2009; Lutz and Kennish, 1993). 77 However, these hydrothermal mixing regimes are not limited to the deep sea. Shallow-sea 78 vent fluids also mix with seawater to establish redox gradients (Akerman et al., 2011; 79 Amend et al., 2003a; Dando et al., 1999; Fitzsimons et al., 1997; Meyer-Dombard et al., 80 2011; Price and Pichler, 2005). Shallow-sea hydrothermal vents are generally defined as 81 occurring at a water depth < 200 m, a depth which marks the deepest extent of the photic 82 zone and coincides with a large change in the slope of the seawater boiling curve 83 (Tarasov et al., 2005). They are often accompanied by abundant free gas discharges. As a 84 result, shallow-sea hydrothermal systems are often referred to as 'gasohydrothermal' 85 vents, and have been documented on the summits of seamounts, on the flanks of volcanic 86 islands, and in other near-shore environments characterized by high heat flow (Italiano 87 and Nuccio, 1991; Pichler, 2005; Price et al., 2013a; Tarasov et al., 2005). Their easy 88 accessibility, relative to deep-sea hydrothermal systems, makes them excellent natural 89 laboratories to study a wide range of chemical, physical, and biological processes (Pichler 90 et al., 2006).

91 The subsurface geochemical processes controlling the composition of discharging
92 hydrothermal fluids at deep-sea vents are manifold, and have been investigated and

93 reviewed extensively (e.g., see Alt, 1995; Berndt et al., 1988; Bischoff and Rosenbauer, 94 1985; Fournier, 2007; Foustoukos and Seyfried, 2007; German and Von Damm, 2003; 95 Hanningtion et al., 2005; Hedenquist and Lowenstern, 1994; Heinrich et al., 2004; 96 Henley and Ellis, 1983; Seyfried and Mottl, 1982; Tivey, 2007). The final compositions 97 are a function of many factors including fluid-mineral equilibrium, phase separation, 98 magmatic inputs, mineral precipitation, and mixing. While these processes have been 99 well defined for deep-sea systems along mid-ocean ridges, and more recently at back-arc 100 basins (Reeves et al., 2011), much less is known about the subsurface processes taking 101 place at shallow-sea hydrothermal vents. They are most often associated with island arc 102 volcanoes, and thus silicic magmas more similar to back-arc basins rather than mid-ocean 103 ridges. Shallow-sea vents occur within the photic zone, and can have meteorically 104 derived groundwater as a potential source fluid. These characteristics, combined with 105 their occurrence in lower pressure environments, begs the question of what consequences 106 this has for the evolution of fluid chemistry and how this in turn influences the related 107 seafloor microbial communities.

108 The quest for energy is a key function of all living systems (Schroedinger, 1944), 109 and the potential metabolic activities of microorganisms in shallow-sea hydrothermal 110 systems can be determined by calculating the Gibbs energy of reactions between the 111 electron donors and acceptors present in discharging fluids. This type of thermodynamic 112 analysis of potential microbial metabolisms has been successfully conducted in many 113 environments, including several submarine (Amend et al., 2011; Amend and Shock, 114 2001; Hernandez-Sanchez et al., 2014; LaRowe and Amend, 2014; LaRowe et al., 2008; 115 McCollom, 2000; McCollom, 2007; McCollom and Shock, 1997; Shock and Holland,

116 2004; Shock et al., 1995; Teske et al., 2014), and terrestrial hydrothermal systems

117 (Inskeep et al., 2005; Inskeep and McDermott, 2005; Shock et al., 2010; Spear et al.,

118 2005; Vick et al., 2010; Windman, 2010). Unfortunately, energetic profiles of shallow-

sea hydrothermal systems are rare, despite the fact that their diverse geochemistry

120 accounts for a large number of potential catabolic strategies.

121 In this communication, geochemical data are presented for vent and pore fluids 122 collected from 2008 to 2010 from three distinct sites in the shallow-sea hydrothermal 123 system off Panarea Island (Italy). The main purpose of this paper is to describe the 124 variability of vent fluid chemistry between sites, and understand how this variability 125 evolved as a result of subsurface hydrothermal processes. As a secondary but logical 126 extension of this analysis, geochemical data are then used to calculate *in situ* redox 127 reaction energetics in order to link subsurface geochemical processes and the resulting 128 differences in vent chemistry, as understood through our geochemical data, to potential 129 microbial metabolisms.

130

131 **2. Site Characteristics**

132 2.1. Bedrock Lithology

Panarea Island is part of the Aeolian arc, a string of islands and several seamounts just north of Sicily (Italiano & Nuccio, 1991; Fig. 1a and 1b). Panarea and the associated islets were emplaced on ~15–20 km thick continental crust (Neri et al., 2002), and are located between the active volcanoes of Vulcano and Lipari in the southwest and Stromboli in the northwest part of the arc (Fig. 1a). Several investigations have suggested that the western and eastern islands along the arc are structurally and compositionally

139	distinct (Calanchi et al., 2002; De Astis et al., 2000; Peccerillo, 2001; Peccerillo and
140	Panza, 1999). Rocks from the western arc are calc-alkaline and have compositions that
141	suggest a genesis within a MORB-type mantle with modification by fluids and melts
142	released from an oceanic slab (Ellam et al., 1989; Francalanci et al., 1993). However, to
143	the east, Stromboli shows calc-alkaline to potassic-alkaline rocks with lower large ion
144	lithophile element (LILE)/high field strength element (HFSE) ratios along with more
145	radiogenic isotopic Sr composition than rocks from the western arc (Calanchi et al., 2002;
146	De Astis et al., 2000; Ellam et al., 1989). Thus, the source rocks beneath Panarea are a
147	mixture of these two sources, i.e., partially western arc mantle and partially Stromboli
148	mantle (Calanchi et al., 2002), and hydrothermal fluids could be reacting with either or
149	both of these bedrock lithologies.

151 2.2. Hydrothermal Activity and Sampling

Free gas bubbles and aqueous fluids vent at ~20 m below sea level depth near La
Calcara beach (~50 to 200 m offshore; Fig. 1b). More intense hydrothermal activity with
focused and diffuse venting occurs at several sites ~2 km offshore in 18 to 25 m water
depth, inside a submerged caldera (Fig. 1b). In both areas, emissions are marked by white
deposits of colloidal sulfur associated with microbial activity (Gugliandolo et al., 1999;
Italiano and Nuccio, 1991; Maugeri et al., 2009).
Sampling efforts in this study focused on three distinct sites near Panarea Island:

- 159 Hot Lake, Black Point, and La Calcara (see Fig. 1b). Hot Lake, located in the main
- submerged caldera (Latitude 38°38'19.3032", Longitude 15°06'32.7511"), is an oval-
- 161 shaped (~ 4 by 6 m), ~2.5 m deep depression in the seafloor partially filled with thick

162 white mats of elemental sulfur and associated microorganisms (Fig. 2a). Diffuse venting 163 of a warm (up to 80 °C) hydrothermal brine appears to fill the small depression from 164 below, but very little free gas (i.e., as venting gas bubbles) is visible. Black Point, also 165 located within the main caldera (Latitude 38°38'13.9961", Longitude 15°06'18.0177"), is 166 a large (~20 by 25 m) sediment-filled basin with vigorous gas and fluid venting (Fig. 2b), 167 and is named for a ~0.5 m tall smoker-type chimney located within the basin (noted in 168 Fig. 2b). The vent fluids and outer-most mineralized zone of the chimney are enriched in 169 Fe and Mn, consisting of metal sulfides and oxides, including galena, pyrite, marcasite, 170 sphalerite, as well as the barium sulfate mineral barite (Becke et al., 2009). The La 171 Calcara site is an expansive area of sediments several hundred square meters in size 172 characterized by diffuse hydrothermal gas and water venting, located outside the main 173 caldera and just offshore Panarea (Fig. 2c; Latitude 38°38'40.7129", Longitude 174 15°04'32.6926"). Sediment ripples are commonly crested with white mats; orange-red 175 sediments (presumably Fe- and Mn-oxides) occur along the periphery. In some areas at 176 La Calcara, gas venting is very intense, similar to that occurring at Black Point, but fluid 177 flow rates never approach what would be considered a typical "focused" hydrothermal 178 vent (Fig. 2c). Fluids collected from one of these intense gas venting areas at La Calcara 179 are referred to as "gas-rich fluids" (GRF) for the remainder of the manuscript.

180

181 **3. Methods**

182 3.1 Sampling and geochemical analyses

183 Three types of fluids were collected by SCUBA divers: 1) focused vent fluids, VF
184 (only at Black Point), 2) fluids associated with free gas emissions (only at La Calcara;

185	GRF = gas-rich fluids), and 3) pore fluids (from all 3 sites; SPF and RPF, see below). VF
186	and GRF were both collected with $BD^{\ensuremath{\mathbb{B}}}$ sterile 60 mL syringes from the outlet of an
187	inverted funnel placed over the vent after the temperatures of the exiting fluids stabilized.
188	Pore fluids were collected in 2 different ways: syringe pore fluids (SPF) were collected
189	from ~10 cm sediment depth by inserting a small (~1 cm diameter) polycarbonate tube
190	with a pipette tip attached, and slowly drawing fluids into BD [®] sterile 60 mL syringes. To
191	minimize seawater contamination, the first 20 ml of each sample were discarded through
192	a 3-way valve. Rhizon pore fluids (RPF) were obtained from sediment cores collected
193	with polycarbonate tubes and rubber end caps (Seeberg-Elverfeldt et al., 2005).
194	Background seawater was sampled ~1 km from the area of hydrothermal venting.
195	Temperatures were measured in situ with probes in a custom-built underwater
196	housing (Max Planck Institute for Marine Microbiology, Bremen, Germany). Onshore, a
197	WTW pH meter 3210 and a Mic-D electrode with temperature compensation was used to
198	measure the pH of each sample. Aliquots for H_2S concentration measurements were
199	preserved in the field by the addition of 1 ml of a 50 mM zinc acetate solution to 3 ml of
200	sample to precipitate zinc sulfide. The preserved sample aliquots were then frozen. Once
201	back in the laboratory, aliquots were thawed and analyzed for decreased light intensity
202	caused by the ZnS precipitate with a Merck photometer at a wavelength of 670 nm
203	(Cline, 1969; Moest, 1975). Alkalinity titrations were performed following the methods
204	of Grasshoff et al. (1983). Analytical uncertainties were approximately \pm 0.1 °C for
205	temperature, ± 0.1 for pH, and ± 5 % for H ₂ S and alkalinity measurements.
206	Samples for anion (Br, Cl, SO ₄) analyses were filtered in the field (using a 0.2 μ m
207	mesh) and then frozen until measurement by ion chromatography (Dionex IC system

208	housed at the University of Bremen). No salt precipitation was observed after thawing.
209	Samples for elemental analyses (Na, Ca, K, B, Sr, Si, Ba, Mn, and Fe) were filtered in the
210	field (0.2 μ m) and acidified using ultrapure double distilled HNO ₃ to 1 % by volume
211	(note: for all vent samples, Si exists as H ₄ SiO ₄ (Gunnarsson and Arnorsson, 2000), but
212	will be referred to as Si for the remainder of this paper). The preserved sample elemental
213	concentrations were then measured by inductively coupled plasma – optical emission
214	spectrometry (Perkin-Elmer Optima 3300 ICP-OES housed at the University of Bremen).
215	Li, Rb, and Cs were measured by high-resolution double-focusing inductively coupled
216	plasma – mass spectrometry (Thermo Finnigan Element 2 ICP-MS housed at the
217	University of Bremen). The instrument limit of detection (LOD; in \Box g/L unless
218	otherwise noted) for each element analyzed, calculated by multiplying 3 by the standard
219	deviation of a blank sample, was: Na (3), Ca (0.01), K (0.27), B (0.05), Sr (0.19 µg/L), Si
220	(0.42 µg/L), Ba (0.21 µg/L), Mn (0.32 µg/L), Fe (2.4 µg/L), Li (20.7 ng/L), Rb (10.0
221	ng/L), Cs (4.6 ng/L), Cl (0.2), Br (0.1), and SO ₄ (0.2). The analytical uncertainty,
222	determined by averaging the uncertainties of field duplicates, was consistently better than
223	2 % for Na, Ca, K, B, Sr, Si, Ba, and Mn, and better than 3% for Fe. Chloride, Br, and
224	SO ₄ uncertainties were consistently better than 0.5%, while uncertainties for Li, Rb, and
225	Cs were consistently better than 3, 2, and 1 %, respectively. Dilution was necessary in
226	order to account for the high salt content in the fluid samples, and all data are blank and
227	dilution corrected.
220	Concernation and and has first all since a stainlass start from all swith the

Gas sampling was carried out by first placing a stainless steel funnel, with the large opening in the sediments, over an area of gas bubble venting (Müller, 2011). Glass sampling tubes with valves on each end were filled with seawater before the dive, then 231 connected to the top of the funnel. Once the gas had completely replaced the seawater 232 and flushed through for approximately 1 minute, the valves were closed. Samples were 233 then transferred to the National Institute of Geophysics and Volcanology (INGV) for 234 analysis. The dissolved gases were extracted from water samples after the attainment of 235 equilibrium (at constant temperature) between the water sample and a known volume of 236 high purity argon, which was injected inside the sampling bottle (Müller, 2011). Analyses 237 were carried out by a Perkin Elmer 8500 gas chromatograph equipped with a double-238 detector (TCD-FID) using argon as carrier gas.

239 Samples for Sr isotope analysis were selected across the range of temperature and Mg concentrations, and prepared following the method described in Price et al. (2013b). 240 241 Briefly, sample splits (0.2 to 1 mL) were transferred into 15 mL Teflon beakers and dried 242 down on a hotplate at $<\!80$ °C. The solid, pure white residue was then dissolved in a 4 ml 243 mixture of ultrapure double distilled concentrated HF and HNO_3 (proportion of 3:1 by 244 volume). The sealed Teflon beakers were left on a hotplate for 48 h at ~90 $^{\circ}$ C to ensure 245 complete digestion. The samples were dried and subsequently re-dissolved first in 246 ultrapure concentrated HNO_3 and then in ultrapure concentrated HCl acid. Finally, the 247 dried solid residues were re-dissolved in 2.5 M ultrapure HCl, centrifuged, and passed 248 through a cation exchange column to purify the Sr. The same procedure is used for 249 routine rock analysis and ensures that all mineral phases are effectively dissolved, which 250 provides a high degree of confidence that our analyses are representative of the entire 251 sample. The purified Sr splits (14 ml) were dried on a hotplate, re-dissolved in 2 M HCl 252 and then $\sim 1/6$ to $\sim 1/8$ of the sample was loaded onto outgassed W filaments coated in a 253 TaCl₅ solution.

254	Strontium isotope ratios were measured on a Thermo Scientific TRITON-series
255	multi-collector thermal ionization mass spectrometer (MC-TIMS, Univ. Leeds) running
256	in static mode. The 87 Sr/ 86 Sr ratios were normalized to an 86 Sr/ 88 Sr ratio of 0.1194 to
257	account for mass fractionation. The reported ⁸⁷ Sr/ ⁸⁶ Sr values were normalized to NIST
258	SRM-987 standard values of 87 Sr/ 86 Sr = 0.710248 (McArthur et al., 2000). The
259	instrumental errors were always better than 6 x 10^{-6} of the mean of 180 single
260	determinations. The total blank concentrations for Sr were negligible (<100 pg) compared
261	to the Sr concentration of the samples analyzed.
262	The saturation index of anhydrite, $\Omega_{anhydrite}$, was calculated as a function of
263	temperature using
264	
265	$\Omega_{\rm anhydrite} = \rm{IAP}/K_{\rm sp} \tag{1}$
266	
267	where IAP and K_{sp} stand for the ion activity product and saturation product of anhydrite,
268	respectively. Values of IAP are calculated using
269	
270	$IAP = a_{Ca^{2+}} \cdot a_{SO_4^{2-}} $ (2)
270	
211	
272	and the activities of Ca ²⁺ and SO ₄ ²⁻ , $a_{Ca^{2+}}$ and $a_{SO_4^{2-}}$, respectively, are calculated using the
273	concentrations of these species in seawater, 11 mm and 28 mm, and
274	
	$a_i = \gamma_i \left(\frac{C_i}{C^{\Theta}} \right)$
275	(\mathbf{C}_i) (3)

 $a_i = \gamma_i \left(\frac{1}{C_i^{\theta}} \right)$

 γ_i stands for the activity coefficient of the *i*th species and C_i and C_i^{θ} denote the 276 277 concentrations of the *i*th species in seawater and under standard state conditions, 278 respectively. Standard state conditions for aqueous species stipulate that the 279 concentrations of a species is taken to be equal to one molal referenced to infinite 280 dilution. Values of \Box_i were in turn computed as a function of temperature and ionic 281 strength using an extended version of the Debye-Hückel equation (Helgeson, 1969). 282 Values of K_{sp} were calculated as a function of temperature and pressure in the same 283 manner as the other equilibrium constants (see below). 284 End-member concentrations were calculated using the 'zero-Mg' method, which 285 assumes all magnesium has been removed from the hydrothermal reservoir fluids prior to 286 any mixing with seawater. In this case, the end-member compositions were calculated 287 according to the following formula: 288 $X_{hf} = \frac{Xm - Xsw (Mgm/Mgsw)}{1 - (Mgm/Mgsw)}$ 289 (4) 290 where X_{hf} is the calculated end-member concentration, X_m is the measured concentration 291 292 and X_{sw} is the concentration in seawater (Pichler et al., 1999). 293 294 3.2 Bioenergetic computations 295 The amount of Gibbs energy available from a given chemical reaction (ΔG_r) can 296 be calculated using

298
$$\mathsf{D}G_r = -RT\ln\frac{K_r}{Q_r},\tag{5}$$

300 where K_r and Q_r refer to the equilibrium constant and reaction quotient of the reaction, 301 respectively, R represents the gas constant, and T denotes temperature in Kelvin. ΔG_r is 302 then divided by the number of electrons in each metabolic reaction to give moles per 303 electron transferred. Values of K_r were calculated using the revised-HKF equations of 304 state (Helgeson et al., 1981; Shock et al., 1992; Tanger and Helgeson, 1988), the 305 SUPCRT92 software package (Johnson et al., 1992), and thermodynamic data taken from 306 (Schulte et al., 2001; Shock and Helgeson, 1988; Shock and Helgeson, 1990; Shock et al., 307 1989; Sverjensky et al., 1997). Values of Q_r were calculated using 308

$$Q_r = \bigcup_i^n a_i^{n_i}, \tag{6}$$

310

where a_i stands for the activity of the *i*th species and v_i corresponds to the stoichiometric coefficient of the *i*th species in the reaction of interest. Molalities of the *i*th species, m_i , were converted into activities using individual activity coefficients of the *i*th species (γ_i), and (7)

316

317 Values of γ_i were in turn computed as a function of temperature and ionic strength using 318 an extended version of the Debye-Hückel equation (Helgeson, 1969). 319 Values were also normalized to energy per kg of H₂O, E_{H_2O} , and were calculated 320 using (LaRowe and Amend, 2014):

321

322
$$E_{\rm H_{2}O} = \frac{-\Delta G_r}{v_i} * [i]$$
 (8)

323

where ΔG_r refers to the Gibbs energy of reaction per reaction turnover, v_i stands for the stoichiometric coefficient of the *i*th species and [*i*] represents the molal concentration of the *i*th electron donor or acceptor per kg of seawater.

327

328 **4. Results**

329 Field and laboratory geochemical data for three hydrothermal sites at Panarea are 330 presented in Table 1. Data are arranged by site (Hot Lake, Black Point, and La Calcara), 331 then by sample type (RPF, SPF, VF or GRF) within each site grouping, and finally with 332 RPF fluids arranged subsequently by depth. In situ pore fluid temperatures were 333 generally 35 to 80 °C at Hot Lake, 40-100 °C at Black Point, and 45-80 °C at La Calcara 334 (Figs. 3a and 3b). The zone with the most vigorous gas venting measured up to 135 °C at ~10 cm into the sediments at La Calcara. Vent fluids at Black Point also reached 134 °C, 335 336 which is consistent with more than 2 decades of measurements from these sites (Italiano 337 & Nuccio, 1991). The pH of pore fluid at the three sites was commonly circumneutral to 338 slightly acidic (5-7), with a few measurements at Hot Lake and Black point more acidic 339 (~3; Table 1; Figs. 3a and 3c). Pore fluid H₂S concentrations were higher at Hot Lake (up 340 to 2.5 mM) than at Black Point (up to 0.61 mM) and La Calcara (consistently

indistinguishable from the detection limit (0.01 mM); Figs. 3b and 3c). For comparison, ambient seawater temperature was ~20 °C, pH 8.0, and H_2S concentrations were below detection.

344 Overall, major element concentrations (that is, the elements typically found in 345 highest concentrations in seawater) were highly variable. Magnesium concentrations 346 ranged from 35 to 60.4 mM in the vent fluids, while seawater was 58.3 mM (note: salinity of Mediterranean seawater is generally higher (~38‰) than 'typical' seawater 347 348 $(\sim 35\%)$ as a result of evaporation without sufficient rainfall to balance outputs). Sulfate 349 concentrations in vent fluids ranged from 5.4 to 32.1 mM, less than the seawater 350 concentration of 32.9 mM. On a site-by-site comparison, Hot Lake fluids are generally 351 more depleted in Mg and SO_4 , and more enriched in all of the other major and trace 352 elements, compared to the other two sites (Table 1). The other major cations, Na, Ca, K, B, and Sr had mM concentrations ranging from 452 to 740, 9.1 to 390.0, 8.5 to 86.7, 0.3 353 354 to 20.2, and 0.08 to 2.0, respectively. This is compared to seawater values of 547, 11.1, 355 11.0, 0.46, and 0.09 mM, respectively. Bromine and Cl ranged from 0.3 to 2.2 and 510 to 356 1410 mM, which compared to seawater values of 0.94 and 618 mM, respectively. 357 Trace element concentrations were highly variable. Like the major elements 358 (except Mg and SO₄), they typically showed enrichment over seawater values. Silica 359 ranged from 0.01 to 3.5 mM, with seawater concentration of 0.04. Iron, Mn, Ba, Li and 360 Rb were all in the μ M range, with concentrations ranging from below detection to 354, 361 0.1 to 9050, 0.1 to 21.5, 8.3 to 6180, and 1.0 to 275, respectively. Seawater 362 concentrations of Fe and Mn were below detection by our analysis method, and we have 363 reported published values of 0.017 μ M (Achterberg et al., 2001) and 0.0055 μ M (Lan and

364	Alfassi, 1994), respectively. Cesium concentrations showed orders of magnitude
365	variability, ranging from the seawater value of 2.0 to as high as 47090 nM.
366	Strontium isotopic ratios for selected samples ranged 0.709208 to 0.706642.
367	Seawater ⁸⁷ Sr/ ⁸⁶ Sr was 0.709160. Although sparse, the ⁸⁷ Sr/ ⁸⁶ Sr data seem to reflect the
368	special character of Hot Lake fluids, having the least radiogenic value (0.706642).
369	
370	5.0 Discussion
371	The location in a hydrothermal system where hydrothermal processes take place
372	can be divided into three main areas - the recharge, subseafloor reaction, and discharge
373	zones - which in reality cover a continuum of processes occurring in a dynamic system
374	(Alt, 1995). In a simplified model, the major processes affecting hydrothermal vent fluid
375	chemistry take place as follows: Heating up of the cold, entrained seawater which has
376	entered the crust in the recharge zone, and the onset of low temperature water-rock
377	reactions (Berndt and Seyfried, 1993; Berndt et al., 1988). This includes
378	oxidation/alteration of the crust, and fixation of Mg, alkalis and B (Alt, 1995). This
379	process forms smectite at lower temperatures and chlorite at higher temperatures, and can
380	be generally described by the following reaction (Tivey, 2007):
381	
382	$4(\text{NaSi})_{0.5}(\text{CaAl})_{0.5}\text{AlSi}_2\text{O}_8 + 15\text{Mg}^{2+} + 24\text{H}_2\text{O} \Rightarrow$

$$3Mg_5Al_2Si_3O_{10}(OH)_8 + SiO_2 + 2Na^+ + 2Ca^{2+} + 24H^+$$
(9)

385 where $4(NaSi)_{0.5}(CaAl)_{0.5}AlSi_2O_8$ represents anorthite+albite making up the basement 386 rocks, and $3Mg_5Al_2Si_3O_{10}(OH)_8$ is chlorite. Note that abundant Na and Ca is mobilized, 387 along with SiO_2 and concomitant acidification. However, experimental results suggest 388 that uptake of Mg by rock is more or less balanced by mobilization of Ca to the fluids 389 (Bischoff and Rosenbauer, 1989; Mottl, 1983). Most of this Ca will combine with SO₄ 390 and be removed by subsequent precipitation of anhydrite ($CaSO_4$; Alt, 1995). Continued 391 heating in the "subsurface reaction zone" of the hydrothermal system causes high 392 temperature reactions that include mobilization of alkalis, Fe and Mn (Alt, 1995; Alt et 393 al., 1986; German and Von Damm, 2003). Deeper in the system, anorthite is altered to 394 albite, a process called albitization, with Na and Si being added to the crust in exchange 395 for Ca, which is released from the rock into the fluid (Alt, 1995; Berndt, 1987; Berndt et 396 al., 1989; Mottl et al., 1974; Seyfried et al., 1988; Seyfried et al., 1991; Tivey, 2007; 397 Wolery and Sleep, 1976). This reaction can be stated generally as:

398

$$399 \qquad CaAl_2Si_2O_8 + 2Na^+ + 4SiO_{2(aq)} \Rightarrow 2NaAlSi_3O_8 + Ca^{2+}$$
(10)

400

401 Note the removal of Na and addition of Ca during the formation of albite. Near 402 the magma chamber, acidic magmatic fluids and magmatic volatiles (H_2O , CO_2 , SO_2 , 403 H_2S , H_2 , 404 very high temperature reactions of the new fluid with host rocks, including deposition of 405 magma-derived SO₄ as anhydrite, titration of acidity, and further metal mobilization 406 (Craig and Lupton, 1981; Gamo et al., 1997; German and Von Damm, 2003; Hanningtion 407 et al., 2005; Lupton et al., 2008; Reeves et al., 2011). Subsequently, both "supercritical" 408 and "subcritical" phase separation can occur. Above the critical point, "supercritical" 409 phase separation can occur and create a high-salinity vapor (≥ 3.2 wt% NaCl) by

410 condensation of a small amount of liquid (Alt, 1995; Bischoff and Rosenbauer, 1985; 411 Foustoukos and Seyfried, 2007; German and Von Damm, 2003). Recent evidence 412 suggests that supercritical fluids occurring near a magma chamber can 'compact' without 413 crossing the two-phase solvus (i.e., do not boil), thus creating very high salinity fluids 414 crucial for development of high sulfide epithermal mineral deposits (Hedenquist and 415 Lowenstern, 1994; Heinrich et al., 2004). However, *subcritical* phase separation below 416 the critical point of seawater occurs as a result of decompression during upflow, wherever 417 the 2-phase boundary is intercepted, producing ~3.2 wt% NaCl liquid coexisting with a 418 low-salinity vapor (Berndt et al., 2001; Foustoukos and Seyfried, 2007; Seyfried et al., 419 2003). This process is essentially boiling, creating a gas-rich vapor phase and residual 420 brine. Phase segregation, or separation of the low salinity vapor from the high salinity 421 brine, can occur, which plays a crucial role in creating the large range of chlorinities 422 often observed in hydrothermal fluids (Butterfield et al., 1990; Edmonds and Edmonds, 423 1995; German and Von Damm, 2003; Ishibashi, 1995; Tivey, 2007; Von Damm et al., 424 2003). Resulting brine phases are sometimes not able to ascend due to their high density 425 (Alt, 1995), ultimately leading to a 'layered' hydrothermal system ("double-diffusive 426 convection"; Bischoff and Rosenbauer, 1989; Butterfield and Massoth, 1994; Nehlig, 427 1993). In this case, fluids in the lower, denser layer recirculate and become more 428 concentrated, while the upper layer has a 'single-pass' mixing with seawater (Bischoff 429 and Rosenbauer, 1989). Rapid upflow of hydrothermal fluids occurs in the upflow zone, 430 and can create both focused or diffuse discharge (note: 'diffuse' in this sense indicates 431 vent fluids are not sufficiently channeled or focused to reach the seafloor directly while 432 focused fluids indicate direct discharge of fluids from the subsurface reservoir; Alt,

433 1995). Focused flow is often accompanied by formation of epidosite (Alt, 1994; Nehlig, 434 1993). Secondary acidity can be generated by Fe sulfide deposition in both diffuse and 435 focused upflow zones, and quartz precipitation is abundant (Alt, 1995; German and Von 436 Damm, 2003; Hanningtion et al., 2005). During diffusive upflow, more mixing with 437 overlying seawater occurs. Heating of this entrained seawater can cause deposition of 438 admixed seawater SO₄ as anhydrite. If fluids fall below anhydrite stability temperatures, 439 dissolution of previously formed anhydrite deposits can occur (Tivey, 2007). Additional 440 low temperature water/rock reactions, such as boron fixation, may also occur prior to 441 venting at the seafloor (Alt, 1995; Reeves et al., 2010). Mineral precipitation can occur 442 upon cooling and due to redox reactions, which further removes some ions such as Si, Fe, 443 and Mn very near the seafloor.

444 The identification and description of these processes are primarily from deep-sea 445 hydrothermal vents. Much less is known about the subsurface processes taking place at 446 shallow-sea hydrothermal vents. Although many of the processes occurring at deep-sea 447 vents also occur in shallow-sea hydrothermal environments (Price et al., 2012), shallow-448 sea vents are by their very nature discharging at substantially lower pressures than those 449 commonly found in deep-sea environments (Fig. 4). As a result, free gas phases are 450 common in shallow-sea vent systems (Dando et al., 1995). This may lead to enhanced gas 451 exsolution (formation of free gas bubbles or degassing)(e.g., Caracausi et al., 2005; 452 Lupton et al., 2008), and may therefore substantially alter fluid chemistry by mass 453 transfer from gas to aqueous phase (e.g., CO_2 , H_2S scrubbing). Finally, it is important to 454 note that most shallow-sea vent systems, including Panarea, are associated with arc 455 volcanoes. These felsic-hosted magmatic hydrothermal systems contain more degassed

volatiles than their mid-ocean ridge counterparts. This can lead to much more acidic
fluids, and subsequent leaching of Mg from host rocks (Reeves et al., 2011; Yang and
Scott, 1996). These characteristics make shallow-sea hydrothermal venting distinctly
different from their deep sea counterparts. Here we evaluate the potential subsurface
processes taking place at Panarea, leading to an improved model for the evolution of the
hydrothermal fluids. As a reference, we illustrate the main processes outlined above in
Fig. 5.

463

464 5.1 General observations and mixing trends

465 The major element chemistry of vent fluids at Panarea suggests that a variety of 466 subsurface processes may contribute to the geochemistry of each of the investigated sites. 467 The Mg and SO_4 concentration for all samples are shown in Fig. 6a. For reference, 468 horizontal and vertical lines indicate seawater concentrations of SO₄ and Mg, 469 respectively. These data indicate that many, but not all, hydrothermal fluids analyzed 470 during this study are depleted in Mg and SO₄ relative to seawater. Furthermore, the 471 covariation between Mg and other major elements indicates a 'triple trend' mixing 472 pattern (Figs. 6b and 6h). Enrichment of most major cations and anions occurs within (1) 473 the Hot Lake pore fluids, (2) the focused vent fluids from Black Point, and (3) the gas-474 rich fluids from La Calcara, while La Calcara and Black Point pore fluids do not follow 475 this pattern of enrichment (Table 1). Furthermore, mixing between seawater and the Hot 476 Lake fluids is different when compared to Black Point vent fluids and La Calcara gas-rich 477 fluids (Figs. 6b-6h). The regression line connecting the seawater value and Hot Lake 478 fluid data points is much steeper when compared to the other two sites, and as such

suggests the possibility for a much higher salt content as a source fluid. Thus, there must 480 be more than one hydrothermal end-member for the vent fluids, and the pore fluids 481 collected from Black Point and La Calcara, although high temperature and low pH, 482 evolved in a different manner than the other fluids. 483 As defined by the disparate mixing trends, all the fluids measured during the 484 course of this study can be categorized into three major groups. The fluids most enriched 485 in major elements relative to seawater (i.e., the Hot Lake pore fluids), are regularly 486 referred to as 'Type 1' fluids. The vent fluids from Black Point, along with gas-rich fluids 487 from La Calcara, follow similar compositional trends and are therefore labeled as 'Type 488 2' fluids. In contrast, pore fluids from Black Point and La Calcara, which do not 489 generally show enrichments of major cations and anions, will be referred as 'Type 3' 490 fluids. These distinctions allow for the identification of mixing trends with seawater and 491 separate hydrothermal end-members.

492

479

493 5.2 Subsurface evolution of hydrothermal fluids

494 5.2.1. The End-members

495 The subsurface evolution of the hydrothermal fluids at Panarea can be 496 investigated by calculating the end-member hydrothermal reservoir composition(s), 497 which is often carried out assuming a Mg concentration of zero in the hydrothermal end-498 member (the "zero-Mg" extrapolation method; Bischoff and Disckson, 1975; Mottl et al., 499 1974). This assumption is made on the understanding that Mg should be almost entirely 500 removed from the hydrothermal fluids as a result of water-rock interactions above ~150 501 $^{\circ}$ C. Unlike most deep-sea submarine hydrothermal vent fluids, Mg and SO₄ do not

502 extrapolate to zero concentration for the Panarea fluids (see projected intercept on Fig. 503 6a). Vent fluids have sulfate concentrations below what would be expected for simple 504 seawater mixing. This may be due either to sulfate reduction or precipitation of anhydrite 505 below the seafloor (Butterfield and Massoth, 1994). Most fluids extrapolate to $SO_4 = zero$ 506 at \sim 30 mM Mg (Fig. 6a), although two Type 2 vent fluids extrapolate to zero-SO₄ at zero-507 Mg. The negative sulfate intercepts are most likely due to some seawater entrainment into 508 the near-seafloor plumbing system resulting in sulfate removal as anhydrite, while Mg 509 remains in solution and is vented (i.e., seawater entrainment at temperatures high enough 510 for anhydrite to precipitate but not high enough for water-rock interactions to remove all 511 Mg (Butterfield and Massoth, 1994)). Given the abundant anhydrite present within 512 Panarea sediments (see later discussion), this is a likely scenario. This would furthermore 513 explain why only the very high temperature fluids have SO_4 depletion relative to Ca 514 (Table 1). Following this line of thinking, using Mg = 0 is still a valid assumption.

515

516 5.2.2. Subsurface Processes

517 In Table 2, we report the calculated hydrothermal end-members based on Mg = 0518 mM in the deep hydrothermal reservoir fluid. In the case of most pore fluids for Black 519 Point and La Calcara, concentrations are too close to seawater in composition to 520 accurately determine the end-member, and thus mostly only Type 1 and Type 2 fluids are 521 reported. Our calculations confirm that the hydrothermal reservoir fluid feeding Hot Lake 522 has a much higher salt content overall after removing the seawater component (Table 2). 523 For example, Hot Lake Na concentrations ranged from 471-1113 mM (mean 960; n = 524 20), compared to 444-463 (mean 452; n = 3) and 306-317 (mean 312; n = 2) mM for

525	Black Point and La Calcara vent fluids, respectively (Fig. 7a). Calcium concentrations
526	were a mean of 570 mM at Hot Lake, compared to a mean of 150 and 112 mM for Black
527	Point and La Calcara, respectively (Fig. 7b). The higher salt content of the reservoir
528	feeding Hot Lake is also reflected in K, B, Sr, and Br end-member data (Table 2).
529	Chloride concentrations are exceptionally elevated in concentration (Tables 1 and 2; Figs.
530	7a-7b), and chloride end-member concentrations reach a mean value of 2220 mM for Hot
531	Lake fluids, and 847 and 532 for Black Point and La Calcara, respectively. In comparison
532	to other systems (e.g., mid-ocean ridge and back-arcs), the Panarea concentrations are
533	much higher. For example, in Figs. 7a-7b, typical end-member concentrations of Na and
534	Ca in various hydrothermal systems are plotted. Not only do Na values for Hot Lake
535	(Type 1) fluids reach higher values, but Cl concentrations are more than double that
536	typically calculated for any other deep-sea hydrothermal system.
537	As described at the beginning of the discussion and illustrated in Fig. 5, several
538	processes can contribute to these compositions. Experiments have shown that often the
539	observed salinities in hydrothermal vent fluids cannot solely be explained by phase
540	separation (Bischoff and Rosenbauer, 1987), and it was suggested that the observed
541	variations in mid-ocean ridge hydrothermal fluids could only be explained if seafloor
542	geothermal systems consist of two vertically nested convection cells (Bischoff and
543	Rosenbauer, 1989). The lower cell, composed of highly saline brine, circulates at depth
544	within the cracking front and transfers heat and some salt to the overlying seawater
545	(single pass) cell during double-diffusive convection (this is illustrated in detail in Fig.
546	5). If the hypothesis of a double-diffusive deep recirculating brine is true, then one could

547 imagine all elements in this zone could be further enriched through distillation over time.
548 This could explain the 'extreme' concentrations of major elements in Type 1 fluids.

For most mid-ocean ridge fluids, the Na/Cl ratios for vents with elevated 549 550 chlorinity are not scattered but define a reasonably straight line that departs from the 551 seawater evaporation trend with lower Na, and the relative Na deficiency with increasing 552 Cl is made up primarily by increasing Ca (Bischoff and Rosenbauer, 1989). We observe a 553 similar trend for the Panarea data (Table 2 and Figs. 6a-6b). These data indicate two co-554 occurring phenomena: first, Cl enrichment as a result of the concentrating effect of the 555 phase separation (see below) and the formation of a double-diffusive, recirculating brine 556 deep reservoir, and second, Na/Ca variation as a result of water-rock interactions (Fig. 5). 557 Sodium can be removed from the fluids as a result of Na–Ca replacement reactions in 558 plagioclase feldspars, i.e., albitization. On a chloride-normalized basis, Na is decreased in 559 hydrothermal fluids relative to seawater, suggesting Na removal (Table 2). On the other 560 hand, Ca, K, and Sr are higher relative to seawater (again, on a Cl-normalized basis), 561 suggesting enrichment of these elements. Low Na/Cl and high Ca/Cl fluid ratios relative 562 to seawater can be inferred to be caused by albitization (Gallant and Von Damm, 2006). 563 The observed Na/Cl and Ca/Cl ratios in the Panarea fluids follow this trend, although 564 they plot separately from most deep-sea systems, particularly for Type 1 fluids (Fig. 7c). 565 This suggests that significant replacement of Na with Ca is occurring, particularly for 566 Type 1 (Hot Lake) fluids (Figs. 7a-7c). However, because the ratios fall on more or less the same trend as other vents, it is likely that these elements are concomitantly enriched 567 568 in the brine reservoir. Furthermore, the deviation of the data for Panarea (more Ca, less 569 Na), is most similar to that observed for other arc- and back-arc related hydrothermal

570 systems, relative to mid-ocean ridge systems (Figs. 7a-c). Strontium is, like Na and Ca,

571 solubility controlled (Berndt et al., 1988), and the Sr/Cl ratios reflect similar trends in the 572 Type 1 fluids (Fig. 7d). High Ca concentrations and low Sr/Ca also provide evidence for 573 albitization because Sr is partitioned strongly into albite; fluids which have formed Na-574 rich plagioclase should have a lower Sr/Ca ratios (Butterfield and Massoth, 1994).

The co-variation between the Sr concentrations and the ⁸⁷Sr/⁸⁶Sr for selected fluid 575 576 samples from this study and Panarea volcanic rocks (igneous rocks from the surrounding 577 islands; Calanchi et al., 2002), are displayed in Figure 7c. Also included for comparison 578 are values from a locally deposited volcanic ash layer, which can reach up to 9.5 m thick 579 on Panarea Island (Calanchi et al., 2002; Calanchi et al., 1999), and vent precipitates 580 associated with the Black Point chimney edifice (unidentified but possibly 581 "strontiobarite" or related metal sulfides; Becke et al., 2009; Sieland, 2009). As pointed 582 out above, the basement rocks of Panarea are actually somewhat heterogeneous, having 583 transitional compositions between the western and eastern arc (Calanchi et al., 2002). We've highlighted the ⁸⁷Sr/⁸⁶Sr and 1/Sr fields for these rocks, noted as "Stromboli 584 Affinity" and "Western Arc Affinity" in Figure 7e. This suggests that the hydrothermal 585 586 fluids at Panarea are equilibrated more with the rocks of Stromboli affinity. The ash layer 587 is reported to consist of glassy calc-alkaline basalt to basaltic-andesite, plus a thin interbedded trachytic ash with potassic-alkaline character, possibly sourced from nearby 588 589 Stromboli volcano (Calanchi et al., 1999). The ⁸⁷Sr/⁸⁶Sr ratio and Sr concentrations depend on the extent of water/rock 590

interaction as function of temperature and bedrock lithology (Berndt et al., 1988).

Laboratory experiments consisting of diabase and seawater at 375-425°C and 375-400

593 bars produced dissolved Sr/Ca ratios in close agreement with those observed in ridge 594 crest hot springs, while basalt alteration produced ratios that were much lower. This 595 suggests that interaction of hydrothermal fluids with diabase deeper in the hydrothermal 596 system – not basalt in the shallower areas – at high temperatures is a good analog to 597 subsurface processes responsible for production of ridge crest fluids (Berndt et al., 1988). 598 This suggests that most hydrothermal fluids in mid-ocean ridge environments are 599 obtaining their compositions deep in the ridge system. The general trends observed for 600 Panarea fluids suggest a similar trend, and therefore deep-seated reactions may dominate 601 the overall evolution of the fluids.

602

603 5.2.3. Phase separation vs. Degassing

604 Previous investigators have suggested the possibility of phase separation at 605 Panarea (e.g., Sieland, 2009; Tassi et al., 2009). Most of the Type 3 fluids have Cl values 606 less than seawater (Table 1), and a plot of Cl vs. Na suggests that (subcritical) phase 607 separation and phase segregation may have occurred (Fig. 8a). We note in this figure also 608 that the fluids with Na and Cl less that seawater concentrations trend towards a zero 609 concentration, and that above seawater concentrations the decrease in Na is again 610 obvious, suggesting Na removal. Chloride and Br are typically thought to be little 611 affected by water-rock interactions. Figure 8b indicates that these two elements linearly correlate ($r^2 = 0.99$ for all data points), but that concentrations for both can be below 612 613 seawater values, and extend to zero. Bromide, as viewed through the Br/Cl ratio, can be 614 fractionated from chloride whenever halite is formed or dissolves, because bromide is 615 preferentially excluded from the halite structure (the ratio increases during halite

616	precipitation, but decreases halite dissolution; (Oosting and Von Damm, 1996; Von
617	Damm, 2000). Fluids that have precipitated halite will therefore have high Br/Cl ratios,
618	while fluids that have dissolved halite will have low Br/Cl ratios, relative to seawater.
619	Measured values for Cl vs. Br/Cl indeed show significant deviation of the Br/Cl relative
620	to seawater (Fig. 8c). However, organic matter degradation has been shown to increase
621	Br concentrations to as much as 2.9 times seawater value, which can thus change the
622	Br/Cl concentration relative to seawater (Martin et al., 1993). Alteration of volcaniclastic
623	sediments can also alter the Br/Cl ratio (Martin, 1999). End-member Cl vs. Br/Cl ratios
624	suggest that departures from the Br/Cl ratio of seawater can occur for Panarea
625	hydrothermal fluids, although not significantly (Fig. 8d). This occurs for one Hot Lake
626	fluid, and most of the La Calara and Black Point fluids. It is important to note that most
627	Type 3 fluids calculated to negative values for Cl and Br (i.e. Cl and $Br = 0$). For these
628	fluids the Br/Cl ratio would be zero, although for several of the Black Point Type 3
629	fluids, the bromide concentrations ranged from 0.1 to 0.4 mM. The Br/Cl ratio for these
630	fluids would be above that for seawater, suggesting that, although we cannot plot these
631	values, phase separation cannot be discounted.
632	Finally, if phase separation is occurring, the vapor phase should be enriched in

neutral aqueous species reflecting the low-ionic strength of the solution and theassociated salting-out effects in the highly ionic brine phase (Foustoukos and Seyfried,

ussociated satisfy out encets in the inging tome of the phase (i oustoakos and segrifed,

635 2007). In this case, B/Cl ratios will tend to increase with Cl decrease due to the vapor

- 636 enrichment in $B(OH)_{3(aq)}$. If the fluids from Black Point and La Calcara (Type 3) reflect
- 637 the input of a low-salinity vapor phase, then the B/Cl molar ratios in these samples should

be larger than others. We only see evidence for this in one sample (Fig. 8e). Again, thissuggests that phase separation is not a major process in the subsurface at Panarea.

640 However, invoking a lack of phase separation is problematic because it does not 641 help explain the occurrence of the deep recirculating brine (the source of Type 1 fluids). 642 It could be hypothesized that this brine may have been created by phase separation, 643 followed by distillation and a continuing increase in salt content, but the Br/Cl and B/Cl 644 ratios do not support this hypothesis. It is possible that this deep brine was generated by 645 'compaction' of supercritical fluids without crossing the two-phase solvus (i.e., does not 646 boil; Hedenquist and Lowenstern, 1994; Heinrich et al., 2004). This, theoretically, could 647 create the Type 1 fluids without deviations from the Br/Cl and B/Cl ratios. However, 648 without more data we can only speculate at this time.

649 Type 3 fluids are hot and acidic, but have salinities that are near to that observed 650 for seawater. One possible explanation is that seawater is being altered by the abundant 651 free gas present in the system. Dissolved gases (CO_2 , H_2S , etc.) are primarily present in 652 vent fluids from magmatic volatile inputs. These dissolved gases can come out of 653 solution to form free gas bubbles in two ways, both of which occur as a result of 654 depressurization. The processes are: 1) boiling (i.e., sub-critical phase separation), and 2) 655 exsolution, or phase transition from an aqueous to a gas phase (e.g., $CO_{2(aq)} => CO_{2(g)}$). 656 Exsolution is a chemical process that occurs during (subcritical) phase separation 657 (including boiling), while phase separation is caused by changes in physical conditions. 658 Dissolved volatile species (H_2, H_2S) have a strong tendency to partition in the vapor 659 phase during subcritical phase separation, but phase separation need not occur for free 660 volatiles to form. While phase separation will always be accompanied by exsolution if the

661 parent fluid contains dissolved magmatic gases, exsolution does not require phase 662 separation, only depressurization. As we have noted above, shallow-sea vent systems 663 allow for depressurization without phase separation (Fig. 5). Exsolution, with or without 664 phase separation, can result in scrubbing of those gases (e.g., CO₂ to create carbonic acid, SO_2 to create sulfide and sulfuric acid), delivering heat and other dissolved constituents 665 666 which alter the fluid composition. Gas absorption or scrubbing involves the re-667 distribution of solutes between the gas and the liquid phase when the 2 phases come into 668 close contact with each other (Delalande et al., 2011; Kenig and Górak, 2005; Rouwet 669 and Tassi, 2011). However, some steam condensation must be involved to obtain the 670 observed dilutions. Most likely, these processes co-occur. We therefore suggest that this 671 phenomenon plays a key role in influencing the composition of Type 3 fluids. They are 672 sediment pore fluids (i.e., buried and entrained seawater) which have been altered by 673 mass transfer from free gas bubbles derived from depressurization release from the 674 dissolved phase.

675 Although less common in deep-sea hydrothermal systems, free gas bubbles are 676 nearly always present in shallow-sea hydrothermal systems due to lower pressures. Note 677 that the P-T conditions for shallow-sea vents in Fig. 4 suggest this will be controlled 678 primarily by changes in pressure, rather than temperature. The gases in the Panarea hydrothermal system are predominantly CO₂, H₂S, and trace O₂, N₂, CO, and CH₄ 679 680 (Italiano and Nuccio, 1991). This is within typical values for shallow sea vent gases investigated to date (Dando et al., 1995; Italiano and Nuccio, 1991; Pichler et al., 1999). 681 682 Thus, this phenomenon may be ubiquitous in shallow-sea vents, and evolution of Type 3 683 fluids may therefore be common in shallow-sea hydrothermal systems. Continuous gas-

684	liquid exchange in shallow-sea vents can create a new type of hydrothermal fluid, which
685	is hot and acidic due to exchange of heat, CO ₂ and H ₂ S, but which has close to seawater
686	major ion concentrations. Small amounts of water vapor condensation will create slight
687	dilutions in major ion chemistry of the sediment pore fluids. Furthermore, if the heat from
688	these gases bubbling through seawater raise the temperatures to above ~130 $^{\circ}$ C (e.g., as
689	observed for the shallow sediments at La Calcara and Black Point), anhydrite
690	precipitation can occur, removing SO ₄ but not Mg.
691	

692 5.2.4. Secondary Processes

693 We note that some Mg values are higher than seawater, although concentrations 694 are only slightly higher (<2 mM), and only for some of the Type 3 fluids (Fig. 5a). It has 695 been suggested that higher than seawater Mg in hydrothermal fluids may possibly occur 696 as a result of acid leaching of Mg from host rocks in arc/back-arc systems where the pH 697 is exceedingly low (Gamo et al., 1997; Reeves et al., 2011; Resing et al., 2007). We 698 hypothesize that acid alteration is causing the Mg enrichments in Panarea fluids. Argillic 699 alteration occurs in highly acidic, often high sulfide conditions characteristic of near-700 seafloor (or near-surface) hydrothermal environments where oxidation H_2S (or SO_2) 701 produces sulfuric acid (Shanks III, 2012). Magnesium is often depleted in rocks from 702 these zones, while K is enriched (Lowell and Guilbert, 1970; Pirajno, 2009; Shanks III, 703 2012; Tivey, 2007), suggesting the Mg enrichment should occur in resulting fluids. 704 Alunite $(KAl_3(SO_4)_2(OH)_6)$, a common product of argillic alteration, is common in 705 Panarea sediments (Dekov et al., 2013; Prautsch et al., 2013), and during sampling 706 abundant white clay materials were often observed in the lower portions of cores (~10-30

707	cm depth). As high temperature gases (primarily CO_2 and H_2S) move through sediment
708	pore fluids, carbonic and sulfuric acid is produced. Thus, Mg is replaced by K in these
709	shallow rocks and sediments, and Mg enrichment occurs. This furthermore helps explain
710	lower K values in these fluids (Table 1).
711	Anhydrite precipitation may be a major influence on the composition of
712	discharging fluids. Preliminary scanning electron microscopy (SEM) combined with
713	energy dispersive X-ray analyses were carried out on hard precipitates found at the La
714	Calcara gas-rich area. The results, shown in Figure 9a, reveal the first discovery of
715	massive anhydrite deposits at the sediment/seawater interface in a shallow-sea
716	hydrothermal system. Measured Ca vs. SO4 for Type 3 fluids trend from seawater values
717	to zero concentration for each, suggesting complete removal of these elements (Fig. 9b).
718	The first step in the formation of a deep-sea black smoker chimney is precipitation of an
719	anhydrite framework caused by the heating of seawater as hydrothermal fluids first begin
720	to discharge (Haymon, 1983). Anhydrite solubility (Ω), as a function of temperature
721	using seawater as the starting fluid, was calculated by dividing the ion activity product
722	(IAP) by the solubility product (Ksp) for the reaction of Ca^{2+} with SO_4^{2-} to produce
723	CaSO ₄ . Data indicate that above ~100 $^{\circ}$ C (at saturation pressure), anhydrite becomes
724	insoluble (Fig. 9c). Because the hydrothermal vent fluids observed at both Black Point
725	and La Calcara were approximately 135 °C, anhydrite precipitation is expected in the
726	shallow subsurface environments, although Ca appears to still be present in these fluids
727	(Fig. 9b). This scenario could have led to the current "chimney" at Black Point. The high
728	temperature site at La Calcara was not observed prior to 2009, but was present during
729	both the 2009 and 2010 expeditions, suggesting that a chimney-type structure may be

730 forming there. Widespread anhydrite precipitation in the subsurface sediments 731 surrounding the submerged caldera off Panarea was observed during drilling at the site, 732 which revealed abundant massive anhydrite/gypsum as well as native sulfur. These 733 precipitates were interpreted to represent a cap forming at the interface between seawater 734 and geothermal fluids ascending towards the seafloor (Petersen et al., 2007). 735 Minor or trace elements, such as Si, Fe, Mn, Ba, Li, Rb, and Cs are also useful 736 tracers of hydrothermal input because their concentrations are even lower in seawater. 737 Concentrations of these elements compared to that of Mg illustrate the differences

between each site investigated for this study. For example, several of the trace elements

follow similar patterns as observed for K, Na, B, Sr, and Br vs. Mg and SO₄ (specifically,

Mn, Ba, Li, Rb, and Cs are enriched only in Type 1 and 2 but not Type 3 fluids; Figs.

10a-10e). This suggests solubility controls on these elements. Silica is most elevated in

the lowest Mg samples, particularly for Hot Lake (Fig. 10e). Furthermore, Black Point

vent and pore fluid concentrations are elevated in dissolved silica, despite having near

seawater Mg concentrations. Elevated silica concentrations in hydrothermal fluids are

common, as silica is readily leached from the rocks hosting the hydrothermal fluids, and

vill only be removed upon cooling and precipitation (typically as silica sinter). Iron, in

contrast to silica, is relatively low in all Black Point and Hot Lake fluids, while La

748 Calcara Fe concentrations are much more elevated (Fig. 10f). Elevated Fe concentrations

at La Calcara are not unexpected, as precipitates of Fe-(oxy)hydroxides are abundant.

750

751 5.3. Hypothetical Model

752 A model of subsurface processes at Panarea was first proposed by Italiano and 753 Nuccio (1991), and has since been suggested by others (Caracausi et al., 2005; Tassi et 754 al., 2009; Sieland, 2009). Fluids were hypothesized to be derived from a high-Cl 755 reservoir recharged from very deep in the system, and an overlying shallower, medium 756 salinity reservoir (higher salinity relative to seawater but considerably lower salinity 757 compared to the deeper high-Cl portion). We suggest here that the deeper high Cl 758 reservoir could have been created by 1) direct condensation of a supercritical phase, 759 and/or 2) double-layered convection, and the development of a closed, recirculating brine 760 cell. Our data suggest that the Type 1 (Hot Lake) fluids are discharging from the deeper 761 high-Cl reservoir directly to the seafloor. Overlying the deep brine cell, seawater is 762 circulating through in a 'single-pass' system, thus diluting the higher element 763 concentrations found in the deeper reservoir. Type 2 (Black Point vent and La Calcara 764 gas-rich) fluids are being fed by this shallower reservoir. Finally, Type 3 fluids develop as dissolved gases exsolve at depth and rise rapidly to the surface, bringing heat, CO₂ and 765 766 H₂S. This heat and gas is then transferred to sediment pore fluids near the composition of 767 seawater. Each of these processes are illustrated in Fig. 5, which shows the special 768 character of shallow-sea hydrothermal venting.

769

770 *5.4 Catabolic potential*

771 *5.4.1 Overview and Approach*

As illustrated by the trends outlined and discussed in the preceding sections, variability in the geochemistry of discharging fluids exists as a function of the mixing of seawater with different types of hydrothermal end-member fluids. This will ultimately

influence the microbial communities at each specific site through the availability of
potential electron donors derived from each fluid type, and electron acceptors mainly
derived from seawater.

778 In order to evaluate the theoretical spectrum of potential metabolic energies 779 encountered at the Panarea sites, we selected data from two samples from each of the 780 vent sites which represent both a high and moderate temperature for our energetics 781 calculations. These samples also represent variability in fluid types encountered in the 782 system. Temperature, along with Mg concentration, is one of the best ways to track 783 hydrothermal fluid mixing with seawater. In this case, one fluid contained low levels of 784 Mg (35 to 41.5 mM) and therefore represented fluids characterized by a relatively large 785 hydrothermal fluid component (i.e., higher T), and the other was characterized by mid-786 range Mg levels (46.7 to 55.5 mM), more similar to seawater (lower T). The samples 787 selected are highlighted in grey in Table 1, and indicated by a star in Figure 5a. 788 In order to quantify the potential metabolic activity of the hydrothermal system 789 off Panarea Island, the Gibbs energies of the 61 reactions listed in Table 4 were 790 calculated. These reactions contain all of the electron donors and acceptors that were 791 measured during field expeditions during 2008-2010. However, in order to be able to 792 calculate the potential metabolic activity at the site, we also included values not measured 793 in this study (e.g., H_2 , CH_4 , O_2 , CO_2 , CO_3 , NH_4^+), but that have been reported in other 794 studies that were sampled from the same exact sites (Luther and Tsamakis, 1989; Müller, 795 2011; Sieland, 2009; Tassi et al., 2009; and the National Institute of Geophysics and 796 Volcanology, Palermo (INGV)). For example, values for seawater concentration of Mn 797 are from Klinkhammer et al. (1985). The iron concentration in seawater is taken to be the

798	equilibrium value calculated using Geochemist's workbench. In order to accurately
799	calculate the Gibbs energies of these reactions, the <i>in situ</i> activities of the species in them
800	were determined by carrying out speciation calculations at the temperature of interest
801	using the concentration data given in Tables 1 and 3 and Geochemist's Workbench using
802	the thermo.dat dataset. Seawater values for aqueous H_2S are from Luther and Tsamakis
803	(1989). Aqueous seawater values for CH_4 , H_2 , CO , and N_2 are from Charlou et al. (2002).
804	NO_3^- values at Hot Lake and La Calcara is an average of values from Tassi et al. (2009).
805	Because dissolved O_2 at La Calcara was not reported, the equilibrium value for O_2 free
806	gas concentrations were used. NO_2^- at La Calcara is an average of the other sites.
807	Available data for Hot Lake, Black Point, and La Calcara (e.g., HCO ₃ , O ₂ , NO ₃ , NO ₂ ,
808	NH ₄ , Fe, and Mn) are from Sieland (2009), Müller (2011), and Tassi et al. (2009).
809	Ideally, the concentration of all the reactants and products in the metabolic
810	reactions would have been taken from the exact same samples in order to characterize the
811	energetic potential of a particular fluid at a precise moment in time. However, these data
812	were not collected, and excluding reactions containing these species would not accurately
813	represent the metabolic potential of Panarea hydrothermal vents since they are known to
814	exist there. Our first assumption is that some of these species (e.g., free gas phases, CO_2 ,
815	H ₂ S, etc.), do not have significant temporal and/or spatial differences relative to the
816	sampling. These data have been consistently similar, with very little difference in the gas
817	compositions, over the past several decades (Italiano and Nuccio, 1991; Italiano, pers.
818	comm), and we therefore consider this to be a safe assumption. It is clear that some
819	dissolved species (e.g., HCO_3 , NH_4^+ , etc.) will change with mixing ratio between
820	seawater and hydrothermal end member. For these data, we matched the fluid
temperatures and Mg concentrations reported in the literature with the measured

temperature and Mg concentration for the sample chosen for the calculations. Despite

these shortcomings, we consider the data set is adequate enough to allow us to estimate

the potential metabolic activity at each site.

- 825
- 826 5.4.2. Energetics per electron transferred

827 The Gibbs energies of the 61 reactions listed in Table 4 are shown in order of 828 exergonicity in Figures 11a and 11b. Each horizontal bar in these figures represents the 829 calculated range of ΔG_r available from the indicated reaction for the temperature and 830 chemical composition conditions of all six of the sample sites listed in Table 3. The color 831 of the lines in Figures 11a and 11b indicates the type of electron acceptor (oxidant) and 832 donor, respectively, in each reaction (as shown in the legend). The variable lengths of the 833 bars are due to the stoichiometry of the reactions under consideration and the variable temperatures and compositions of the six study sites. As has been shown in similar 834 835 energetic profiles (Amend et al., 2003b; Rogers and Amend, 2005; Rogers and Amend, 2006; Rogers et al., 2007; Shock et al., 2005; Shock et al., 2010), the range of ΔG_r spans 836 from approximately 0 to $-120 \text{ kJ} \text{ (mol e-)}^{-1}$. Disproportionation reactions and those in 837 which S^0 , SO_4^{2-} , CO and CO₂ serve as oxidants are among the least exergonic reactions, 838 typically less exergonic than -20 kJ (mol e-)⁻¹. However, it is worth noting that some of 839 840 the reactions in which O_2 , NO_2^- , NO_3^- , N_2 , Fe(III), and Mn(IV) serve as electron 841 acceptors also fall into the low end of the energy spectrum, despite their reputation for 842 being highly exergonic oxidants (LaRowe and Van Cappellen, 2011). In fact, the 843 energetics of those reactions in which these species are oxidants are found throughout the

range of Gibbs energies shown. Therefore, knowledge of the electron acceptor does not
necessarily indicate the energetics, and thus the likelihood, of a given metabolic strategy
being utilized in a particular setting.

847

848 5.4.3. Energy density

849 The exergonicity of potential catabolic strategies shown in Figures 11a and 11b 850 can give a somewhat misleading impression of which reactions are most energetically 851 relevant to microorganisms in a particular environment. For instance, the three most 852 exergonic reactions shown in Figures 11a and 11b all have nitrite as an oxidant. However, the concentration of nitrite at the six samples sites is micromolal or less (and is 853 854 expected to be so regardless of the data source). A more considered approach is to 855 normalize the potential energy per kilogram of H_2O (e.g., (McCollom, 2000; LaRowe and 856 Amend, 2014). The result of using this method is illustrated in Figures 11c and 11d, 857 where the range of energy available per kilogram of H_2O for the 61 reactions shown in 858 Table 4 at the temperature and chemical composition conditions of all six of the sample 859 sites are plotted. The horizontal bars refer to the energetics of reactions in the same order 860 as those shown in Figures 11a and 11b. It can be clearly seen that the most exergonic 861 reactions reported per mole of electron transferred in Figures 11a and 11b are not the 862 most energy-rich reactions when presented as per kilogram of H_2O . Metabolisms that rely 863 on nitrite as an electron acceptor are not substantial sources of energy. Additionally, 864 some of the least exergonic reactions in Figures 11a and 11b, e.g., those in which Fe(III) 865 and Mn(IV) are the oxidants, provide far more energy per kilogram of H₂O than those that appear to be the most exergonic per mole of electron transferred. The values of $E_{\rm H_{2}O}$ 866

with the lowest energy yield for each reaction were used to generate Figures 11c and 11d, since in most cases either the electron donor or acceptor will be a limiting reactant. In order to carry out these calculations the activities of all reactants and products were held constant, simulating a steady state condition. The energetics of the disproportionation of S^0 (Reaction 37) was not included in this analysis since there is no limiting species other than the presence of S^0 .

873 The amount of energy available varies by several orders of magnitude, as 874 indicated by the length of the bars in Figures 11c and 11d. This is due to the broad range 875 of methane concentrations at the sample sites. It is noteworthy that the amount of energy available from the oxidation of methane by O_2 , NO_3^- , NO_2^- , goethite, pyrolusite, S^0 and 876 SO_4^{2-} , per kg of H₂O, can all generate equivalent amounts of energy, depending on the 877 site. In fact, in terms of oxidants, only SO_4^{2-} , (Reactions 9 and 10) is not capable of 878 879 producing more energy than O_2 through the oxidation of CH_4 . Per kg of H_2O , there is 880 somewhat less energy available from reactions in which H₂ is an electron donor than that for CH₄. Also, there is a narrower range of energies derived from H₂ at the study sites 881 882 than from methane. However, all of the H_2 oxidation reactions (except Reaction 23) can 883 supply as much energy as O_2 (Reaction 12), which is similar to CH_4 . Because the abiotic 884 rate of the knallgas reaction is faster at higher temperatures (Foustoukos et al., 2011), we 885 might expect that in the hottest hydrothermal systems, microorganisms would have to be 886 able to catalyze the knallgas reaction (Reaction 12) faster than it happens abiotically. 887 However, the concentrations of H₂ and O₂ used in this study are measured values of these 888 species in this system and therefore the resulting energetics calculations are a direct 889 reflection of the energetic potential of this system, which is our goal. The knallgas

890 reaction is not anywhere close to being a major supplier of energy when normalized to J /

kg of H_2O , so we have opted to leave out further discussion of the biotic vs. abiotic rates

892 of the knallgas reaction.

893 The most consistently energetic class of reactions per kg of H_2O is those 894 involving the oxidation of H_2S and S^0 , shown in Figures 11c and 11d. That is, Reactions

24-37 supply nearly 1 J / kg H₂O or more at one or more of the sample sites.

Furthermore, Reactions 24-27 and 31-34 supply > 10 J / kg H_2O at one or more of the

sample sites. By presenting the energetics of these reactions per kg of H_2O , it can be seen

that sulfur oxidation (H_2S and S^0) is likely a major source of energy for microorganisms

899 living in the hydrothermal systems at Panarea.

The energetics of Mn^{2+} , NH_4^+ and Fe^{2+} oxidation by various electron acceptors, 900 901 Reactions 38-50, are also shown in Figures 11c and 11d. Ferrous iron oxidation provides 902 a moderate range of energies at the six sample sites, between about 0.01 and 0.5 J / kg 903 H_2O . Interestingly, the oxidation of NH_4^+ by MnO_2 , Reactions 43 and 44, are the most 904 energy yielding reactions considered in this study per kg H₂O, due mostly to the high 905 concentrations of ammonium at some of the sites. For the same reason, the oxidation of Mn^{2+} , Reactions 38-40, could be moderate sources of catabolic potential, although they 906 907 are not as rich in energy.

908Oxidation of CO is generally a highly exergonic reaction per mole of electron909transferred. However, when considered per kg of H2O, it is among the least energy rich910electron donors in Panarea hydrothermal fluids due to its low concentration, regardless of

911 the oxidant (Reactions 51-59, see Figures 11c and 11d).

912	$\mathrm{NH_4^+}$ oxidation provides more energy than $\mathrm{H_2S}$ and $\mathrm{S^0}$ (Figures 11c and 11d) at
913	most sites. The highly exergonic NH_4^+ oxidation reactions are with MnO_2 as the oxidant
914	(Reactions 43 and 44). These reactions are highly exergonic primarily due to the fact
915	that, because MnO_2 is a mineral, it does not have a limiting concentration (i.e., the
916	activity is taken to be 1). However, when the same calculations are conducted for H_2S ,
917	which also has high concentrations, the lower-concentration oxidants become the limiting
918	reactants, resulting in less energy per kg H_2O . Thus, while NH_4^+ oxidation by MnO_2
919	appears to be a dominant metabolism, this is unlikely. This is because this bioenergetic
920	calculation assumes the presence of MnO ₂ , but this mineral is clearly not present in, for
921	example, the Hot Lake fluids. Thus, it is unlikely that Reactions 43 and 44 are a dominant
922	metabolism utilized by the microorganisms at Panarea (i.e., the reactions of Mn-reduction
923	should not occur because of the absence of MnO ₂ minerals).

925 5.4.4 Energetics comparison by fluid type

926 Figure 12 summarizes the energy available from the same groups of reactions 927 containing the same electron donors but has the MnO₂ oxidation reactions removed from the figure. This indicates that reactions containing H_2S and S^0 are most likely to be the 928 dominant metabolisms at each of the sites and fluid types investigated (note: reactions 929 with very little available energy are omitted from this figure). Mn²⁺ oxidation provides 930 931 some energy at each of the sites investigated. CH₄ oxidation could also be a potential 932 source of metabolic energy for the La Calcara gas-rich fluids due to the elevated 933 concentrations of this electron donor at this site (Table 3). Although iron concentrations

934 were elevated at La Calcara relative to the other sites, oxidation of Fe^{2+} does not provide 935 a significant amount of energy (Fig. 12).

While H_2S and S^0 oxidation by O_2 is similar between Hot Lake and La Calcara 936 937 sites (e.g., each produces ~40 J per kg of H₂O), these reactions for Black Point vents 938 yield much more energy. This is due to higher O₂ concentrations in the Black Point 939 fluids, which is likely the result of the hydrology of the shallow subsurface at Black Point 940 (i.e., more seawater entrainment occurs in the shallow seafloor sediments at Black Point, 941 and thus more O_2 exists in these fluids; Italiano and Nuccio, 1991). This may be the key 942 controlling factor when comparing the bioenergetics of this system: seawater entrainment provides more O₂ at Black Point, which causes the electron acceptor to no longer be 943 944 limiting. Thus, as noted, shallow, near seafloor seawater entrainment may be a crucially 945 important phenomenon. Shallow-sea hydrothermal systems, with large fluxes of free gas, 946 may enhance this seawater entrainment (Dando et al., 2000; Haeckel et al., 2007).

947

948 5.5 Comparison of available energy to microbial diversity and other sites

949 Several lines of evidence suggest that sulfur should be the predominant 950 metabolized element in this system. For example, sedimentary sulfur isotope data 951 indicate the presence and activity of different sulfur utilizing bacteria (Peters et al., 2011). 952 Furthermore, chemolithoautotrophic, sulfur-oxidizing rod-shaped bacteria isolated from 953 vent samples are "Thiobacillus-like" (Gugliandolo et al., 1999). Thiobacillus spp. display 954 a wide range of metabolisms primarily associated with oxidation by O₂ of S or Fe 955 (oxidation of H_2S by O_2 is common). Microscopic observation of a subsample from a 956 whitish mat revealed a variety of morphologically distinct filamentous forms resembling

the *Thiothrix* genus, a filamentous sulfur-oxidizing bacteria (Gugliandolo et al., 2006).
Those authors demonstrated that several of these strains deposited sulfur externally, and
produced sulfate in liquid medium.

960 Recent molecular investigations at Hot Lake suggest that microorganisms making 961 up the white filaments at the site are a highly diverse community of bacteria dominated 962 by sequences of Epsilonproteobacteria (Berg, 2011). This is similar to deep-sea vent sites where, due to their ability to carry out different types of metabolism using a variety of 963 964 alternate electron donors (e.g. H₂, formate, elemental sulfur, sulfide, thiosulfate) and 965 acceptors (e.g. sulphite, elemental sulfur, nitrate), Epsilonproteobacteria play an 966 important role in carbon, nitrogen and sulfur cycles. Members of the Thiotrichales order 967 were not detected, which was surprising since they are commonly observed in marine 968 sulfur mats. The archaeal clone library was less diverse: most of the archaeal sequences 969 were related to thermophilic and hyperthermophilic organisms but no Crenarchaeota were 970 found. Overall, the data suggest it is likely that elemental sulfur filaments in the white 971 mats are biologically precipitated as part of a microbially-mediated sulfur cycle. Further 972 evidence for S metabolism at the site is provided by cultured relatives of the detected 973 species, which are mostly able to catalyze sulfur related metabolisms, including sulfide 974 oxidation, sulfur reduction or sulfate reduction (Huang, 2012). Metagenome analysis 975 supports the relevance of sulfur metabolism and of the rTCA cycle for autotropic life at 976 Hot Lake (Huang, 2012). Maugeri et al. (2009), suggested that sulfur-oxidizing bacteria 977 were detected by both culture-dependent and -independent methods at two nearby sites 978 within the Panarea submerged caldera.

979	Thus, microbiological and genomic data support our interpretation that H_2S and S^0
980	oxidation seem to be the dominant metabolisms at each of the Panarea sites. This
981	observation is similar to that for deep-sea vents where, in both the basalt-hosted and
982	felsic rock-hosted systems, sulfide oxidation is the predominant catabolic energy source
983	at all temperatures (and SW:HF ratios) considered (Amend et al., 2011). Differences in
984	temperature do not influence the potential energy much at each site, but rather it is the
985	concentrations of electron donors and/or acceptors, which play a larger role. Amend et
986	al., (2003b) also made a similar observation for hydrothermal vent fluids collected from
987	Volcano Island (Italy).
988	Most of the studies that have quantified the amount of energy available to
989	microorganisms in natural settings only present results in units of energy per mole of
990	substrate or electron transferred. As noted in the Introduction, the range of exergonic
991	energy yields, for inorganic and organic redox reactions alike, fall between
992	approximately 0 to -120 kJ per mole of electrons transferred. However, it is illustrated in
993	Fig. 11 and elsewhere (LaRowe and Amend, 2014; Osburn et al., 2014) that energetic
994	yields normalized per mole of electrons transferred can predict a very different set of
995	reactions that are likely being catalyzed than energetics calculations that take into account
996	the concentrations of limiting reactants as well. In order to put the results of this study
997	into context, the energy density calculations summarized in Fig. 11c and 11d are
998	compared to other published studies that also consider the energetic impact of limiting
999	substrate concentrations.
1000	The number of Joules available to microorganisms per kg of fluid due to the

1001 disequilibrium created by the mixing of hydrothermal fluids and seawater can vary by

1002	many orders of magnitude depending on the mixing ratio and the original compositions
1003	of the end-member fluids. This is clearly illustrated in a recent study in which the
1004	maximum amount of energy available from seawater mixing with fluids coming from 12
1005	different hydrothermal systems has been calculated (Amend et al., 2011). In this study it
1006	is shown that reactions such as H_2S , CH_4 , H_2 and $Fe(II)$ oxidation can provide more than
1007	1000 J/kg H_2O while sulfate reduction, methanogenesis and the anaerobic oxidation of
1008	methane (AOM) can provide hundreds of J / kg H_2O . However, the amount that each
1009	reaction provides varies considerably from one system to the next depending on the types
1010	of rocks that the hydrothermal fluids circulate through. Other studies have shown similar
1011	results. For instance, hydrothermal fluids from ultramafic systems that mix with seawater
1012	can provide up to 3700 J /kg H_2O for H_2 oxidation (McCollom, 2007), but in fluid mixing
1013	from a basalt-hosted mid-ocean ridge system (East Pacific Rise, EPR, 21° N OBS vent)
1014	only ~35 J/kg H_2O (Shock and Holland, 2004). Similarly, the ultramafic mixtures tend to
1015	supply much more energy per kg H_2O than other types of hydrothermal systems for
1016	methane oxidation (2100 J /kg H ₂ O) and Fe(II) oxidation (1300 J /kg H ₂ O) as compared
1017	to EPR fluids, 30-150 J /kg H_2O (McCollom and Shock, 1997). In an analysis of the
1018	energy available in a hydrothermal plume, the energy available from a similar set of
1019	chemolithoautotrophic reactions are more similar to the EPR fluids (McCollom, 2000).
1020	In terms of sulfur-based metabolisms, ultramafic hydrothermal systems can
1021	provide up to 900 J / kg H_2O (S ⁰ oxidation and sulfate reduction) (McCollom, 2007)
1022	whereas the maximum amount of energy from sulfide oxidation at EPR-type systems can
1023	generate up to 3200 J /kg H ₂ O,but sulfate reduction only yields tens of J / kg H ₂ O
1024	(McCollom and Shock, 1997). A more recent assessment of fluids from EPR shows that

elemental sulfur oxidation and H₂S oxidation to sulfate and S⁰ all provide ~ 30 J / kg 1025 H₂O, with S⁰ and sulfate reduction below about 20 J / kg H₂O. The amount of energy 1026 1027 available from S-based reactions at the 6 sites considered in this study are more similar to 1028 these latter values. It should be noted that typically, the most exergonic reactions for a 1029 particular ratio of hydrothermal fluids : seawater are the ones that are reported in the 1030 studies mentioned above. However, under unfavorable mixing ratios, the amount of 1031 energy available from these reactions is orders of magnitude lower than the most optimal 1032 conditions. This is clearly shown in the current study and one carried out by (Houghton 1033 and Seyfried Jr., 2010).

1034

1035 6. Concluding remarks

While subsurface processes associated with deep-sea hydrothermal vent fluids are fairly well understood, shallow-sea venting has received much less attention. It has been suggested that there is a definable link between subsurface hydrothermal processes and the associated microbial communities (Flores et al., 2011; Meyer-Dombard et al., 2011; Nakagawa et al., 2005; Nunoura and Takai, 2009; Price et al., 2013b). Shallow-sea vents provide excellent opportunities to investigate this link.

Evaluation of geochemistry from three shallow-sea vent sites located off shore Panarea Island indicate that, although trends were similar for pH, temperature, Mg, and SO₄, each site displayed distinct differences in major and trace element composition. As such, at least 3 end-member solutions are plausible, each of which mixes with ambient seawater upon discharge. Type 1 fluids, which discharge from "Hot Lake", have the highest salinities, and seem to be direct discharge of the deepest part of the hydrothermal

1048 reservoir underlying the island. Based on Cl/Br ratios, these fluids do not seem to have 1049 undergone phase separation, and are mostly influenced by water-rock reactions. Extreme 1050 salinities may result from long term distillation. Type 2 fluids, which are present as vent 1051 and gas-rich fluids from the Black Point and La Calcara sites, respectively, are lower in 1052 salinity relative to Type 1 fluids, yet higher salinity compared to seawater. These fluids 1053 seem to be derived from a shallower low-salinity reservoir, which may have lower 1054 salinity due to entrainment of seawater. This indicates that the Panarea system maintains 1055 a layered reservoir with double-diffusive circulation. Type 3 fluids, which are represented 1056 by pore fluids from Black Point and La Calcara, develop as a result of gas scrubbing as 1057 exsolved gases percolate through sediment pore fluids.

1058 Thermodynamic calculations indicate that sulfur (H_2S and S^0) oxidation by O_2 1059 should be the dominant metabolic activity at each site and fluid type investigated. 1060 Differences are primarily a function of the abundance of H_2S and S^0 as electron donors, 1061 and the O_2 provided, e.g., in Black Point pore fluids as a result of shallow, near-seafloor 1062 seawater entrainment. CH₄ oxidation is much more prevalent at the La Calcara site, and 1063 Mn^{2+} oxidation is likely at the Black Point site, reflecting elevated concentrations of these 1064 electron donors.

The combined approach of describing both subsurface hydrothermal processes
and thermodynamic calculation of catabolic potential allows us to evaluate the related
importance of both abiotic and biotic influences as agents of global element cycling.
Future research on shallow-sea hydrothermal venting should focus more on the influence
that abundant free gas discharge has on the evolution of hydrothermal vent fluid

- 1070 chemistry, particularly its role in providing electron donors through gas scrubbing, and its 1071 role in providing electron acceptors (O_2) by seawater entrainment.
- 1072
- 1073

1074 Acknowledgements

- 1075 We thank two anonymous reviewers for their excellent insights into the
- 1076 subsurface processes occurring at Panarea. Funding for this research was provided by the
- 1077 MARUM Center for Marine Environmental Sciences. Additional support was provided
- 1078 by NSF-RIDGE grant 0937337 (to JPA) and the NSF-funded Center for Dark Energy
- 1079 Biosphere Investigations (C-DEBI) Postdoctoral Scholar Program (to DEL), and the
- 1080 Hydrothermal Vents Research Group in the MARUM Center for Environmental
- 1081 Sciences. LaRowe and Amend benefitted from financial assistance provided by the
- 1082 Center for Dark Energy Biosphere Investigations (C-DEBI) and the NASA Astrobiology
- 1083 Institute Life Underground (NAI-LU). This is C-DEBI contribution X and NAI-LU
- 1084 contribution Y (to be assigned if accepted for publication). We additionally thank
- 1085 Wolfgang Bach, Anke Meyerdierks, Chia-I Huang, Florence Schubotz, Roger Summons,
- 1086 and Benjamin Brunner for helpful discussions. The manuscript also benefitted from
- 1087 discussions with the Univ. Leeds high-temperature group (and especially Jorgen
- 1088 Rosenqvist and Matthew Pankhurst). Logistical support on Panarea was provided by the
- 1089 Amphibia dive center and the staff at the Hotel Chincota.

References

1091	Achterberg, E. et al., 2001. Determination of iron in seawater. Analytica Chimica Acta,
1092	442: I-14.
1093	Akerman, N., Price, R., Pichler, T., Amend, J.P., 2011. Energy sources for
1094	chemlithotrophs in an arsenic- and iron-rich shallow-sea hydrothermal system.
1095	Geobiology, 9: 436-445.
1096	Alt, J.C., 1994. A sulfur isotopic profile through the Troodos Ophiolite, Cyprus: Primary
1097	composition adn the effects of seawater hydrothermal alteration. Geochimica et
1098	Cosmochimica Acta, 58: 1825-1840.
1099	Alt, J.C., 1995. Seafloor processes in mid-ocean ridge hydrothermal systems. In:
1100	Humphris, S.E., Zierenberg, R.A., Mullineaux, L.S., Thomson, R.E. (Eds.),
1101	Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological
1102	Interactions. American Geophysical Union, Washington, D.C., pp. 85-114.
1103	Alt, J.C., Honnorez, J., Laverne, C., Emmermann, R., 1986. Hydrothermal alteration of a
1104	1 km section through the upper oceanic crust, Deep Sea Drilling Project Hole
1105	504B: Mineralogy, chemistry and evolution of seawater-basalt ineractions.
1106	Journal of Geophysical Research: Solid Earth, 91(B10): 10309-10335.
1107	Amend, J., McCollom, T., Hentscher, M., Bach, W., 2011. Catabolic and anabolic energy
1108	for chemolithoautotrophs in deep-sea hydrothermal systems hosted in different
1109	rock types. Geochimica et Cosmochimica Acta, 75: 5736-5748.
1110	Amend, J.P., Meyer-Dombard, D.R., Sheth, S.N., Zolotova, N., Amend, A.C., 2003a.
1111	Palaeococcus helgesonii sp. nov., a facultatively anaerobic, hyperthermophilic
1112	archaeon from a geothermal well on Vulcano Island, Italy. Archives of
1113	Microbiology, 179: 394-401.
1114	Amend, J.P., Rogers, K.L., Shock, E.L., Gurrieri, S., Inguaggiato, S., 2003b. Energetics
1115	of chemolithoautotrophy in the hydrothermal system of Vulcano Island, southern
1116	Italy. Geobiology, 1: 37-58.
1117	Amend, J.P., Shock, E.L., 2001. Energetics of overall metabolic reactions of thermophilic
1118	and hyperthermophilic Archaea and Bacteria. FEMS Microbiol. Rev., 25(2): 175 -
1119	243.
1120	Becke, R., Merkel, B., Pohl, T., 2009. Mineralogical and geological characteristics of the
1121	shallow-water massive sulfide precipitates of Panarea. Aeolian Islands, Italy. In:
1122	Merkel, B., Schipek, M. (Editors), Research in shallow marine and fresh water
1123	systems, Freiberg Online Geology, TU Bergakademie Freiberg, pp. 94-100.
1124	Berg. L. 2011. Microbial characterization of white mats in a hydrothermally-influenced.
1125	sulfur-rich brine pool. Senior Honors Thesis Thesis. Washington University in St.
1126	Louis. St. Louis.
1127	Berndt M.E. 1987 Experimental and theoretical constraints on the origin of mid-ocean
1127	ridge geothermal fluids. University of Minnesota, Minneapolis, Minnesota
1120	Berndt M E Person M E Sevfried W E 2001 Phase separation and two-phase flow
1130	in seafloor hydrothermal systems 11th Annual V M Goldschmidt Conference
1131	Geochemical Society Hot Springs VA
1132	Berndt M.F. Sevfried W.F. 1993 Calcium and sodium exchange during hydrothermal
1132	alteration of calcic plagioclase at 400 C adn 400 bars. Geochimica et
113/	Cosmochimica Acta 57(18): 1115-1151
1134	Cosmolimica Acta, J/(10). +++J-++J1.

1135	Berndt, M.E., Seyfried, W.E., Beck, J.W., 1988. Hydrothermal alteration processes at
1136	midocean ridges: experimental and theoretical constraints from Ca and Sr
1137	exchange reactions and Sr isotopic ratios. Journal of Geophysical Research,
1138	93(B5): 4573-4583.
1139	Berndt, M.E., Seyfried, W.E., Janecky, D.R., 1989. Plagioclase and epidote buffering of
1140	cation ratios in mid-ocean ridge hydrothermal fluids - experimental results in and
1141	near the supercritical region. Geochimica et Cosmochimica Acta, 53(9): 2283-
1142	2300.
1143	Bischoff, J.L., Disckson, F.W., 1975. Seawater-basalt interaction at 200 °C and 500 bars:
1144	implications for origin of sea-floor heavy-metal deposits and regulation of
1145	seawater chemmistry. Earth and Planetary Science Letters, 25: 385-397.
1146	Bischoff, J.L., Rosenbauer, R.J., 1985. An empirical equation of state for hydrothermal
1147	seawater (3.2 percent NaCl). American Journal of Science, 285: 725-763.
1148	Bischoff, J.L., Rosenbauer, R.J., 1987. Phase separation in seafloor geothermal systems:
1149	An experimental study of the effects on metal transport. American Journal of
1150	Science, 287: 953-978.
1151	Bischoff, J.L., Rosenbauer, R.J., 1989. Salinity variations in submarine hydrothermal
1152	systems by layered double-diffusive convection. Journal of Geology, 97(5): 613-
1153	623.
1154	Butterfield, D.A., Massoth, G.J., 1994. Geochemistry of north Cleft segment vent fluids:
1155	Temporal changes in chlorinity and their possible relation to recent volcanism.
1156	Journal of Geophysical Research, 99(B3): 4951-4968.
1157	Butterfield, D.A., Massoth, G.J., McDuff, R.E., Lupton, J.E., Lilley, M.D., 1990.
1158	Geochemistry of hydrothermal fluids from Axial Seamount hydrothermal vent
1159	field, Juan de Fuca Ridge: subseafloor boiling and subsequent fluid-rock
1160	interaction. Journal of Geophysical Research, 95: 12895-12921.
1161	Calanchi, N. et al., 2002. Petrology and geochemistry of volcanic rocks from the island of
1162	Panarea: implications for mantle evolution beneath the Aeolian island arc
1163	(southern Tyrrhenian sea). Journal of Volcanology and Geothermal Research,
1164	115: 367-395.
1165	Calanchi, N., Tranne, C.A., Lucchini, F., Rossi, P.L., Villa, I.M., 1999. Explanatory notes
1166	to the geologic map (1:10,000) of Panarea and Basiluzzo islands (Aeolian arc.
1167	Italy). Acta Vulcanologica, 11(2): 223-243.
1168	Caracausi, A. et al., 2005. Changes in fluid geochemistry and physico-chemical
1169	conditions of geothermal systems caused by magmatic input: The recent abrupt
1170	outgassing off the island of Panarea (Aeolian Islands, Italy). Geochimica et
1171	Cosmochimica Acta, 69(12): 3045-3059.
1172	Charlou, J., Donval, J., Fouquet, Y., Jean-Baptiste, P., Holm, N., 2002. Geochemistry of
1173	high H2 adn CH4 vent fluids issuing from ultramafic rocks at the Rainbow
1174	hydrothermal field (36°14'N, MAR). Chemical Geology, 191: 345-359.
1175	Cline, J., 1969. Spectrophotometric determination of hydrogen sulfide in natural waters.
1176	Limnology and Oceanography, 14(3): 454-458.
1177	Craig, H., Lupton, J., 1981. Helium-3 and mantle volatiles in the ocean and oceanic crust.
1178	In: Emiliani, C.E. (Ed.), The Sea, v. 7, The Oceanic Lithosphere. Wiley, New
1179	York, pp. 391-428.

1180	Dando, P.R., Aliani, S., others, a., 2000. Hydrothermal studies in the Aegean Sea. Phys.
1181	Chem. Earth, 25: 1-8.
1182	Dando, P.R. et al., 1995. Gas venting rates from the submarine hydrothermal areas
1183	around the island of Milos, Hellenic volcanic arc. Continental Shelf Research,
1184	15(8): 913-929.
1185	Dando, P.R., Stüben, D., Varnavas, S.P., 1999. Hydrothermalism in the Mediterranean
1186	Sea. Progress in Oceanography, 44(1-3): 333-367.
1187	De Astis, G., Peccerillo, A., Kempton, P., La Volpe, L., Wu, T.W., 2000, Transition from
1188	calc-alkaline to potassium-rich magmatism in subduction environments:
1189	geochemical and Sr. Nd. Ph isotopic constraints from the Island of Volcano
1190	(Aeolian arc), Contrib. Miner. Petrol., 139: 684-703.
1191	Dekov, V.M., Kamenov, G.D., Abrasheva, M.D., Capaccioni, B., Munnik, F., 2013.
1192	Mineralogical and geochemical investigation of seafloor massive sulfides from
1193	Panarea Platform (Aeolian Arc. Tyrrhenian Sea) Chemical Geology 335: 136-
1194	148
1195	Delalande M et al. 2011. Fluid geochemistry of natural manifestations from the
1196	Southern Poroto-Rungwe hydrothermal system (Tanzania): Preliminary
1197	conceptual model Journal of Volcanology and Geothermal Research 199. 127-
1198	141
1199	Edmonds H Edmonds IM 1995 A three-component mixing model for ridge-crest
1200	hydrothermal fluids, Farth and Planetary Science Letters 14: 53-67
1201	Ellam R H Hawkesworth C I Menzies M A Rogers N W 1989 The volcanism of
1201	Southern Italy: Role of subduction and relationship between potassic and sodic
1202	alkaline magmatism Journal of Geophysical Research 94: 4589-4601
1203	Felbeck H Somero G N 1982 Primary production in deen-sea hydrothermal vent
1201	organisms: roles of sulfide-oxidizing bacteria. Trends in Biochemical Sciences
1205	7(6) · 201-204
1207	Fitzsimons M F et al. 1997 Submarine hydrothermal brine seeps off Milos Greece.
1208	Observations and geochemistry. Marine Chemistry, 57: 325-340.
1209	Flores, G.E. et al., 2011. Microbial community structure of hydrothermal deposits from
1210	geochemically different vent fields along the Mid-Atlantic Ridge. Environmental
1211	Microbiology, 13(8): 2158-2171.
1212	Fournier, R.O., 2007. Hydrothermal systems and volcano geochemistry. In: D, D. (Ed.),
1213	Volcano Deformation. Praxis Publishing Ltd., Chichester, UK, pp. 323-341.
1214	Foustoukos, D.I., Houghton, J.L., Seyfried, W.E., Sievert, S.M., Cody, G.D., 2011.
1215	Kinetics of H2-O2-H2O redox equilibria and formation of metastable H2O2
1216	under low temperature hydrothermal conditions. Geochimica et Cosmochimica
1217	Acta, 75: 1594-1607.
1218	Foustoukos, D.I., Seyfried, W.E., 2007. Fluid phase separation processes in submarine
1219	hydrothermal systems. Reviews in Mineralogy and Geochemistry, 65: 213-239.
1220	Francalanci, L., Taylor, S.R., McCulloch, M.T., Woodhead, J., 1993. Geochemical and
1221	isotopic variations in the calc-alkaline rocks of the Aeolian Arc (Southern Italy):
1222	constraints on the magma genesis. Contrib. Miner. Petrol., 113: 300-313.
1223	Gallant, R.M., Von Damm, K.L., 2006. Geochemical controls on hydrothermal fluids
1224	from the Kairei and Edmond vent fields, 23° - 25° S. Central Indial Ridge.
1225	Geochemistry, Geophysics, Geosystems, 7(6): 1-24.

1226 Gamo, T. et al., 1997. Acidic and sulfate-rich hydrothermal fluids from the Manus back-1227 arc basin, Papua New Guinea. Geology, 25(2): 139-142. 1228 German, C.R., Von Damm, K.L., 2003. Hydrothermal Processes. In: Holland, H.D., 1229 Turekian, K.K. (Eds.), Treatise on Geochemistry. Elsevier, pp. 145-180. 1230 Grasshoff, K., Ehrhardt, M., Kremling, K., 1983. Methods of seawater analysis. Verlag 1231 Chemie, Weinheim. 1232 Gugliandolo, C., Italiano, F., Maugeri, T.L., 2006. The submarine hydrothermal system 1233 of Panarea (Southern Italy): biogeochemical processes at the thermal fluids-sea 1234 bottom interface. Annals of Geophysics, 49(2/3): 783-792. 1235 Gugliandolo, C. et al., 1999. Submarine hydrothermal vents of the Aeolian Islands: 1236 Relationship between microbial communities and thermal fluids. 1237 Geomicrobiology Journal, 16(1): 105-117. 1238 Gunnarsson, I., Arnorsson, S., 2000. Amorphous silica solubility and the thermodynamic 1239 properties of H₃SiO₄ in the range of 0° to 350° at Psat. Geochimica et Cosmochimica Acta, 64(13): 2295-2307. 1240 1241 Haeckel, M., Boudreau, B.P., Wallmann, K., 2007. Bubble-induced porewater mixing: A 1242 3-D model for deep porewater irrigation. Geochimica et Cosmochimica Acta, 71: 1243 5135-5154. Hanningtion, M., De Ronde, C.E.J., Petersen, S., 2005. Sea-floor tectonics and submarine 1244 1245 hydrothermal systems. Economic Geology, 100th Anniversary Volume: 111-141. 1246 Haymon, R.M., 1983. Growth history of hydrothermal black smoker chimneys. Nature, 1247 301: 695-698. 1248 Hedenquist, J.W., Lowenstern, J.B., 1994. The role of magmas in the formation of 1249 hydrothermal ore deposits. Nature, 370: 519-527. Heinrich, C.A., Driesner, T., Stefánsson, A., Seward, T.M., 2004. Magmatic vapor 1250 1251 contraction and the transport of gold from the porphyry environment to 1252 epithermal ore deposits. Geology, 32(9): 761-764. 1253 Helgeson, H.C., 1969. Thermodynamics of hydrothermal systems at elevated 1254 temperatures and pressures. Amer. J. Sci., 267: 729-804. 1255 Helgeson, H.C., Kirkham, D.H., Flowers, G.C., 1981. Theoretical prediction of 1256 thermodynamic behavior of aqueous electrolytes at high pressures and 1257 temperatures: 4. Calculation of activity coefficients, osmotic coefficients, and 1258 apparent molal and standard and relative partial molal properties to 600° C and 5 1259 kb. Amer. J. Sci., 281(10): 1249 - 1516. Henley, R.W., Ellis, A.J., 1983. Geothermal systems anchient and modern: A 1260 geochemical review. Earth-Science Reviews, 19: 1-50. 1261 Hernandez-Sanchez, M.T. et al., 2014. Further insights into how sediment redox status 1262 1263 controls the preservation and composition of sedimentary organic biomarkers. 1264 Organic Geochemistry, 76: 220-234. Houghton, J.L., Sevfried Jr., W.E., 2010. An experimental and theoretical approach to 1265 determing linkages between geochemical variability and microbial biodiversity in 1266 1267 seafloor hydrothermal chimneys. Geobiology, 8: 457-470. 1268 Huang, C.I., 2012. Molecular Ecology of Free-Living Chemoautotrophic Microbial Communities at a Shallow-sea Hydrothermal Vent, University of Bremen, 1269 1270 Bremen, Germany.

1271	Imhoff, I., Hügler, M., 2009. Life at deep sea hydrothermal vents - Oases under water.
1272	The International Journal of Marine and Coastal Law, 24(2): 201-208.
1273	Inskeep, W. et al., 2005. On the energetics of chemolithotrophy in nonequilibrium
1274	systems: case studies of geothermal springs in Yellowstone National Park.
1275	Geobiology, 3: 297-317.
1276	Inskeep, W.P., McDermott, T.R., 2005. Geomicrobiology of acid-sulfate-chloride
1277	springs in Yellowstone National Park. In: Inskeep, W.P., McDermott, T.R. (Eds.),
1278	Geothermal Biology and Geochemistry in Yellowstone National Park. Thermal
1279	Biology Institute, Montanta State University, pp. 143-162.
1280	Ishibashi, J., 1995. Geochemistry of phase-separated hydrothermal fluids of the North
1281	Fiji Basin, Southwest Pacific. In: Sakai, H., Nozaki, Y. (Eds.), Biogeochemical
1282	Processes and Ocean Flux in the Western Pacific. Terrapub, Tokyo, pp. 453-467.
1283	Italiano, F., Nuccio, F., 1991. Geochemical investigations of submarine volcanic
1284	exhalations to the east of Panarea, Aeolian Islands, Italy. Journal of Volcanology
1285	and Geothermal Research, 46: 125-141.
1286	Johnson, J.W., Oelkers, E.H., Helgeson, H.C., 1992. SUPCRT92 - A software package
1287	for calculating the standard molal thermodynamic properties of minerals, gases,
1288	aqueous species, and reactions from 1 bar to 5000 bar and 0°C to 1000°C.
1289	Comput. Geosci., 18(7): 899 - 947.
1290	Kenig, E., Górak, A., 2005. Reactive Absorption. In: Sundmacher, K., Seidel-
1291	Morgenstern (Eds.), Integrated Chemical Processes: Synthesis, Operation,
1292	Analysis and Control. John Wiley & Sons.
1293	Klinkhammer, G., Rona, P., Greaves, M., Elderfield, H., 1985. Hydrothermal manganese
1294	plumes in the Mid-Atlantic Ridge rift valley. Nature, 314: 727-731.
1295	Lan, CR., Alfassi, Z.B., 1994. Direct determination of manganese in seawater by
1296	electrothermal atomic absorption spectrometry with sodium hydroxide as
1297	chemical modifier for interference removal. Analyst, 119: 1033-1035.
1298	LaRowe, D.E., Amend, J.P., 2014. Energetic constraints on life in marine deep
1299	sediments. In: Kallmeyer, J., Wagner, K. (Eds.), Life in Extreme Environments:
1300	Microbial Life in the Deep Biosphere. De Gruyter, pp. 279-302.
1301	LaRowe, D.E., Dale, A.W., Regnier, P., 2008. A thermodynamic analysis of the
1302	anaerobic oxidation of methane in marine sediments. Geobiology, 6: 436-449.
1303	LaRowe, D.E., Van Cappellen, P., 2011. Degradation of natural organic matter: A
1304	thermodynamic analysis. Geochim. Cosmochim. Acta, 75: 2030-2042.
1305	Lowell, J.D., Guilbert, J.M., 1970. Lateral and vertical alteration-mineralization zoning in
1306	porphyry ore deposits. Economic Geology, 65: 373-408.
1307	Lupton, J. et al., 2008. Venting of a separate CO2-rich gas phase from submarine arc
1308	volcanoes: Examples from the Mariana and Tonga-Kermadec arcs. Journal of
1309	Geophysical Research, 113: 1-21.
1310	Luther, G.W., Tsamakis, E., 1989. Concentration and form of dissolved sulfide in the
1311	oxic water column of the ocean. Marine Chemistry, 27(3-4): 165-177.
1312	Lutz, R.A., Kennish, M., 1993. Ecology of deep-sea hydrothermal vent communities: A
1313	review. Reviews of Geophysics, 31(3): 211-242.
1314	Martin, J.B., 1999. Nonconservative behavior of Br/Cl ratios during alteration of
1315	volcaniclastic sediments. Geochimica et Cosmochimica Acta, 63: 383-391.

1316	Martin, J.B., Gieskes, J.M., Torres, M., Kastner, M., 1993. Bromine and iodine in Peru
1317	margin sediements adn pore fluids: Implications for fluid origins. Geochimica et
1318	Cosmochimica Acta, 57(18): 4377-4389.
1319	Maugeri, T.L. et al., 2009. Bacterial and archaeal populations at two shallow
1320	hydrothermal vents off Panarea Island (Eolian Islands, Italy). Extremophiles, 13:
1321	199-212.
1322	McArthur, J.M., Donovan, D.T., Thirlwall, M.F., Fouke, B.W., Mattey, D., 2000.
1323	Strontium isotope profile of the early Toarcian (Jurassic) oceanic anoxic event,
1324	the duration of ammionite biozones, and belemnite palaeotemperatures. Earth and
1325	Planetary Science Letters, 179: 269-285.
1326	McCollom, T.M., 2000. Geochemical constraints on primary productivity in submarine
1327	hydrothermal vent plumes. Deep-Sea Res. Part I - Oceanogr. Res. Pap., 47(1): 85-
1328	101.
1329	McCollom, T.M., 2007. Geochemical constraints on sources of metabolic energy for
1330	chemolithoautotrophy in ultramafic-hosted deep-sea hydrothermal systems.
1331	Astrobiology, 7: 933-950.
1332	McCollom, T.M., Shock, E.L., 1997. Geochemical constraints on chemolithoautotrophic
1333	metabolism by microorganisms in seafloor hydrothermal systems. Geochim.
1334	Cosmochim, Acta, 61(20): 4375 - 4391.
1335	Meyer-Dombard, D.R., Price, R.E., Pichler, T., Amend, J.P., 2011, Prokaryotic
1336	populations in arsenic-rich shallow-sea hydrothermal sediments of Ambitle
1337	Island, Papua New Guinea, Geomicrobiology Journal (in press).
1338	Moest, R., 1975, Hydrogen sulfide determination by the methylene blue method.
1339	Analytical Chemistry, 47(7): 1204-1205.
1340	Mottl, M.L. 1983. Metabasalts, axial hot springs, and the structure of hydrothermal
1341	systems at mid-ocean ridges. Geological Society of America Bulletin, 94: 161-
1342	180.
1343	Mottl, M.J., Corr, R.F., Holland, H.D., 1974. Chemical exchange between seawater and
1344	mid-ocean ridge basalt during hydrohtemral alteration: an experimental study.
1345	GSA annual meeting.
1346	Müller, C., 2011. Geothermal state of shallow submarine geothermal systems and
1347	isotopic signatures of Panarea, Aeolian Islands (Italy), Technische Universität
1348	Bergakademie Freiberg, Freiberg, Germany, 141 pp.
1349	Nakagawa, S. et al., 2005. Variability in microbial community and venting chemistry in a
1350	sediment-hosted backarc hydrothermal system: Impacts of subseafloor phase-
1351	separation. FEMS Microbiological Ecology, 54: 141-155.
1352	Nehlig, P., 1993. Interactions between magma chambers and hydrothermal systems:
1353	oceanic and ophiolitic constraints. Journal of Geophysical Research, 98(19): 621-
1354	633.
1355	Neri, G., Barberi, G., Orecchio, B., Aloisi, M., 2002. Seismotomography of the crust in
1356	the transition zone between the southern Tyrrhenian and Sicilian tectonic
1357	domains, Geophysical Research Letters, 29(23): 50-1 - 50-4.
1358	Nunoura, T., Takai, K., 2009. Comparison of microbial communities associated with
1359	phase-separation-induced hydrothermal fluids at the Yonaguni Knoll IV
1360	hydrothermal field, the Southern Okinawa Trough, FEMS Microbial Ecology, 67:
1361	351-370.

1362	Oosting, S.E., Von Damm, K.L., 1996. Bromide/chloride fractionation in seafloor
1363	hydrothermal fluids from 9-10°N East Pacific Rise. Earth and Planetary Science
1364	Letters, 144: 133-145.
1365	Osburn, G.R., LaRowe, D.E., Momper, L., Amend, J.P., 2014. Chemolithotrophy in the
1366	continental deep subsurface: Sanford Underground Research Facility (SURF),
1367	USA. Front. Microbiol., 5: Article 610.
1368	Peccerillo, A., 2001. Geochemical similarities between Vesuvius, Phlegraean Fields and
1369	Stromboli volcanoes: petrogenetic, geodynamic and volcanological implications.
1370	Miner. Petrol., 73: 93-105.
13/1	Peccerillo, A., Panza, G., 1999. Upper mantle domains beneath central-southern Italy:
1372	petrological, geochemical and geophysical constraints. Pure Appl. Geophys., 156:
13/3	421-443.
13/4	Peters, M., Strauss, H., Peterson, S., Kummer, NA., Tomazo, C., 2011.
1375	Hydrothermalism in the Tyrrhenian Sea: Inorganic and microbial sulfur cycling as
1376	revealed by geochemical and multiple sulfur isotope data. Chemical Geology,
13//	280: 217-231.
13/8	Petersen, S. et al., 2007. Drilling submarine hydrothermal sites in the Tyrrhenian Sea,
1379	Italy, during Meteor cruise M73/2, University of Hamburg Institute of
1380	Oceanography.
1381	Pichler, T., 2005. Stable and radiogenic isotopes as tracers for the origin, mixing and
1382	subsurface history of fluids in submarine shallow-water hydrothermal systems.
1383	Journal of Volcanology and Geothermal Research, 139: 211-226.
1384	Pichler, T. et al., 2006. A natural laboratory to study arsenic geobiocomplexity. EOS, 87:
1385	221-225.
1386	Pichler, T., Veizer, J., Hall, G.E.M., 1999. The chemical composition of shallow-water
1387	hydrothermal fluids in Tutum Bay, Ambitle Island, Papua New Guinea and their
1388	effect on ambient seawater. Marine Chemistry, 64: 229-252.
1389	Pirajno, F., 2009. Hydrothermal processes and mineral systems, 1. Springer, 1250 pp.
1390	Prautsch, A., Stanulla, R., Pohl, T., Merkel, B., 2013. Geochemical-mineralogical
1391	investigation of degassing structures caused by recent volcanic hydrothermalism -
1392	Case study: La Calcara, Isle of Panarea (Italy). In: Pichler, T., Hausler, S.,
1393	Tsounis, G. (Editors), Research in Shallow Marine and Fresh Water Systems, 3rd
1394	International Workshop. MARUM, Bremen, Germany, pp. 41-44.
1395	Price, R.E. et al., 2013a. Archaeal and bacterial diversity in an arsenic-rich shallow-sea
1396	hydrothermal system undergoing phase separation. Frontiers in Extreme
1397	Microbiology, 4: Article 158.
1398	Price, R.E., Pichler, T., 2005. Distribution, speciation and bioavailability of arsenic in a
1399	shallow-water submarine hydrothermal system, 1 utum Bay, Ambitle Island, PNG.
1400	Chemical Geology, 224: 122-135.
1401	Price, R.E. et al., 2012. Processes influencing extreme As enrichment in shallow-sea
1402	hydrothermal fluids of Milos Island, Greece. Chemical Geology, in press.
1403	Price, R.E. et al., 2013b. Processes influencing extreme As enrichment in shallow-sea
1404	nydrothermal fluids of Milos Island, Greece. Chemical Geology, 348: 15-26.
1405	Reeves, E.P. et al., 2011. Geochemistry of hydrothermal fluids from the PACMANUS,
1406	Northeast Paul and Vienna Woods hydrothermal fields, Manus Basin, Papua New
1407	Guinea. Geocnimica et Cosmochimica Acta, 75(4): 1088-1123.

1408	Resing, J.A. et al., 2007. Venting of acid-sulfate fluids in a high-sulfidation setting at NW
1409	Rota-1 submarine volcano on the Mariana Arc. Economic Geology, 102: 1047-
1410	1061.
1411	Rogers, K.L., Amend, J.P., 2005. Archaeal diversity and geochemical energy yields in a
1412	geothermal well on Vulcano Island, Italy. Geobiology, 3: 319-332.
1413	Rogers, K.L., Amend, J.P., 2006. Energetics of potential heterotrophic metabolisms in the
1414	marine hydrothermal system of Vulcano Island, Italy. Geochim. Cosmochim.
1415	Acta, 70: 610-6200.
1416	Rogers, K.L., Amend, J.P., Gurrieri, S., 2007. Temporal changes in fluid chemistry and
1417	energy profiles in the Vulcano island hydrothermal system. Astrobiology, 7: 905-
1418	932.
1419	Rouwet, D., Tassi, F., 2011. Geochemical monitoring of volcanic lakes. A generalized
1420	box model for active crater lakes. Annals of Geophysics, 54: 161-173.
1421	Schroedinger, E., 1944. What is Life? Cambridge University Press, 194 pp.
1422	Schulte, M.D., Shock, E.L., Wood, R., 2001. The temperature dependence of the
1423	standard-state thermodynamic properties of aqueous nonelectrolytes. Geochim.
1424	Cosmochim. Acta, 65(21): 3919 - 3930.
1425	Seeberg-Elverfeldt, J., Schlüter, M., Feseker, T., Kölling, M., 2005. Rhizon sampling of
1426	pore waters near the sediment/water interface of aquatic systems. Limnology and
1427	Oceanography: Methods, 3: 361-371.
1428	Seyfried, W.E., Berndt, M.E., Seewald, J.S., 1988. Hydrothermal alteration processes at
1429	mid-ocean ridges: Constraints from diabase alteration experiments, hot-spring
1430	fluids, and composition of the oceanic crust. Canadian Mineralogist, 26: 787-804.
1431	Seyfried, W.E., Ding, K., Berndt, M.E., 1991. Phase equilibria constraints on the
1432	chemistry of hot spring fluids at mid-ocean ridges. Geochimica et Cosmochimica
1433	Acta, 55: 3559-3580.
1434	Seyfried, W.E., Mottl, M.J., 1982. Hydrothermal alteration of basalt by seawater under
1435	seawater dominated conditions. Geochimica et Cosmochimica Acta, 46: 985-
1436	1002.
1437	Seyfried, W.E., Seewald, J.S., Berndt, M.E., Ding, K., Foustoukos, D.I., 2003. Chemistry
1438	of hydrothermal vent fluids from the Main Endeavour Field, northern Juan de
1439	Fuca Ridge: Geochemical controls in the aftermath of the June 1999 seismic
1440	events. Journal of Geophysical Research, 108(B9): 2429.
1441	Shanks III, W.C., 2012. Hydrothermal alteration in volcanogenic massive sulfide
1442	occurrence model.
1443	Shock, E.L., Helgeson, H.C., 1988. Calculation of the thermodynamic and transport
1444	properties of aqueous species at high pressures and temperatures - Correlation
1445	algorithms for ionic species and equation of state predictions to 5 kb and 1000°C.
1446	Geochim. Cosmochim. Acta, 52(8): 2009 - 2036.
1447	Shock, E.L., Helgeson, H.C., 1990. Calculation of the thermodynamic and transport
1448	properties of aqueous species at high pressures and temperatures - Standard
1449	partial molal properties of organic species. Geochim. Cosmochim. Acta, 54(4):
1450	915 - 945.
1451	Shock, E.L., Helgeson, H.C., Sverjensky, D., 1989. Calculation of the thermodynamic
1452	and transport properties of aqueous species at high pressures and temperatures -

1453	Standard partial molal properties of inorganic neutral species. Geochim.
1454	Cosmochim. Acta, 53(9): 2157 - 2183.
1455	Shock, E.L., Holland, M., Meyer-Dombard, D., Amend, J.P., 2005. Geochemical sources
1456	of energy for microbial metabolism in hydrothermal ecosystems: Obsidian Pool,
1457	Yellowstone National Park, USA In: Inskeep, W.P., McDermott, T.R. (Eds.),
1458	Geothermal Biology and Geochemistry in Yellowstone National Park Thermal
1459	Biology Institute. Montana State University, pp. 95-112.
1460	Shock, E.L. et al., 2010. Quantifying inorganic sources of geochemical energy in
1461	hydrothermal ecosystems, Yellowstone National Park, USA. Geochimica
1462	Cosmochimica Acta, 74: 4005-4043.
1463	Shock, E.L., Holland, M.E., 2004. Geochemical energy sources that support the
1464	subseafloor biosphere. The subseafloor biosphere at mid-ocean ridges. In:
1465	Wilcock, W.S.D., DeLong, E.F., Kelley, D.S., Baross, J.A., Cary, S.C. (Eds.),
1466	Geophysical Monograph 144. American Geophysical Union, pp. 153–165.
1467	Shock, E.L., McCollom, T.M., Schulte, M.D., 1995. Geochemical constraints on
1468	chemolithoautotrophic reactions in hydrothermal systems. Orig. Life Evol. Bios.,
1469	25(1-3): 141 - 159.
1470	Shock, E.L., Oelkers, E., Johnson, J.W., Sverjensky, D., Helgeson, H.C., 1992.
1471	Calculation of the thermodynamic properties of aqueous species at high pressures
1472	and temperatures - Effective electrostatic radii, dissociation constants adn
1473	standard partial molal properties to 1000C adn 5 kbar. J. Chem. Soc. Faraday
1474	Trans., 88: 803-826.
1475	Sieland, R., 2009. Chemical and isotopic investigations of submarine hydrothermal fluid
1476	discharges from Panarea, Aeolian Islands, Italy, Technische Universität
1477	Bergakademie Freiberg, Freiberg, Germany, 180 pp.
1478	Spear, J.R., Walker, J.J., McCollom, T.M., Pace, N.R., 2005. Hydrogen and bioenergetics
1479	in the Yellowstone geothermal ecosystem. PNAS of the USA, 102(7): 2555-2560.
1480	Sverjensky, D., Shock, E.L., Helgeson, H.C., 1997. Prediction of the thermodynamic
1481	properties of aqueous metal complexes to 1000°C and 5 kb. Geochim.
1482	Cosmochim. Acta, 61(7): 1359 - 1412.
1483	Tanger, J.C., Helgeson, H.C., 1988. Calculation of the thermodynamic and transport
1484	properties of aqueous species at high pressures and temperatures - Revised
1485	equations of state for the standard partial molal properties of ions and electrolytes.
1486	Amer. J. Sci., 288(1): 19 - 98.
1487	Tarasov, V.G., Gebruk, A.V., Mironov, A.N., Moskalev, L.I., 2005. Deep-sea and
1488	shallow-water hydrothermal vent communities: Two different phenomena?
1489	Chemical Geology, 224: 5-39.
1490	Tassi, F. et al., 2009. Low-pH waters discharging from submarine vents at Panarea Island
1491	(Aeolian Islands, southern Italy) after the 2002 gas blast: Origin of hydrothermal
1492	fluids and implications for volcanic surveillance. Applied Geochemistry, 24: 246-
1493	254.
1494	Teske, A.P., Callaghan, A.V., LaRowe, D.E., 2014. Biosphere Frontiers of subsurface life
1495	in the sedimented hydrothermal system of Guaymas Basin. Front. Microbiol., 5:
1496	
1497	Tivey, M.K., 2007. Generation of seafloor hydrothermal vent fluids and associated
1498	mineral deposits. Oceanography, $20(1)$: 50-65.

1499	Vick, T.J., Dodsworth, J.A., Costa, K.C., Shock, E.L., Hedlund, B.P., 2010.
1500	Microbiology and geochemistry of Little Hot Creek, a hot spring environment in
1501	the Long Valley Caldera. Geobiology, 8: 140-154.
1502	Von Damm, K.L., 2000. Chemistry of hydrothermal vent fluids from 9 -10 N, Ease
1503	Pacific Rise; "time zero," the immediate posteruptive period. Journal of
1504	Geophysical Research, 105: 11203-11222.
1505	Von Damm, K.L. et al., 2003. Extraordinary phase separation and segregation in vent
1506	fluids from the southern East Pacific Rise. Earth and Planetary Science Letters,
1507	206: 365-378.
1508	Windman, T., 2010. Organic Compounds in Hydrothermal Systems., Arizona State
1509	University, Tempe, Arizona, USA.
1510	Wolery, T.J., Sleep, N.H., 1976. Hydrothermal circulation and geochemical flux at mid-
1511	ocean ridges. The Journal of Geology, 84(3): 249-275.
1512	Yang, K., Scott, S.D., 1996. Possible contribution of a metal-rich magmatic fluid to a sea-
1513	floor hydrothermal system. Nature, 383(6599): 420-423.
1514	
1515	

1517	Figure Captions:
1518	Fig. 1. (a) Location of the island of Panarea and the submarine hydrothermal vents
1519	selected for this investigation. Sampling sites are indicated in (b) for La Calcara, Hot
1520	Lake and Black Point.
1521	
1522	Fig. 2. (a-left) Underwater photographs of the Hot Lake area. Depression in the
1523	surrounding rocks is approximately 4 m by 6 m, and is filled with hydrothermal brine
1524	(see diver for scale). (a-right) close-up of microbial filaments in Hot Lake. (b-left)
1525	General area around Black Point (see diver for scale) and (b-right) close-up of white
1526	smoker and 'chimney'. (c-left) General area picture of La Calcara (see diver for scale)
1527	and (c-right) close-up of 135 °C gas-rich vents where anhydrite precipitation occurs.
1528	
1529	Fig. 3. Measured field geochemistry data for Panarea fluids, (a) temperature versus pH.
1530	(b) temperature versus H ₂ S, and (c) H ₂ S versus pH. Note that Black Point vent and La
1531	Calcara gas-rich fluids often have the most extreme values, although Hot Lake fluids
1532	have the highest H_2S concentrations. Symbols in 3a are the same for 3b and 3c.
1533	
1534	Fig. 4. Two-phase curve for seawater, including the critical point (c.p.) of seawater (c.p.=
1535	407 °C, 298 bars), and the maximum vent temperatures for hydrothermal systems in
1536	different volcanic and tectonic settings (data from Hannington et al., 2005; curve from
1537	Bischoff and Rosenbauer, 1987; c.p. from Bischoff and Rosenbauer, 1984). Note slope of
1538	curve shallows significantly at >200 m, indicating that changes in pressure will dominate
1539	over changes in temperature. Grey area in upper left designates the pressure and
1540	temperature conditions encountered in shallow-sea hydrothermal vent systems.
1541	
1542	Fig. 5. Hypothetical model of subsurface processes occurring in many hydrothermal
1543	systems. See text for details. (a) Low temperature water-rock reactions, (b) high
1544	temperature water-rock reactions, (c) magmatic volatile inputs, (d) phase separation, (e)
1545	continued water-rock reactions, and (f) degassing of dissolved volatiles. Note: 1) Panarea
1546	Type 1 fluids are directly fed by deep recirculating brine reservoir and form a brine pool
1547	due to extremely high salinity, 2) Type 2 fluids are focused upflow from the shallower
1548	brine which has been diluted by seawater, and 3) Type 3 fluids are derived from volatile
1549	degassing at lower pressures, followed by gas scrubbing to seawater-like pore fluids.
1550	
1551	Fig. 6. (a) Measured concentrations of Mg^{2+} vs. SO_4^{2-} for Panarea fluids, with two
1552	possible projected intercepts. Horizontal and vertical lines in (a) indicate equivalent
1553	seawater concentrations. (b), Mg^{2+} vs. K (c) and Mg^{2+} vs. Na (c) for all hydrothermal
1554	fluids analyzed in this study. Note "triple-trend" mixing, and designation of Type 1, Type
1555	2, and Type 3 fluids in (b) and (c). Starred data points indicate samples used in
1556	bioenergetics calculations, (b) and (c) include data previously collected by the National
1557	Institute of Geophysics and Volcanology (INGV, as noted) and confirms different mixing
1558	trends for Type 1, Type 2, and Type 3 fluids. (d) Mg vs. Ca, (e) Mg vs. Sr, (f) Mg vs. B,
1559	(g) Mg vs. Cl, and (h) Mg vs Br. Triple trends and 3 fluid types are present but not
1560	marked in (d) through (h). Symbols in 6a the same for other plots.
1561	

1563 Fig. 7. End-member plots for Cl vs. Na (a), Cl vs Ca (b) concentrations, and end-member element rations for Na/Cl vs. Ca/Cl (c), and Na/Cl vs. Sr/Cl (d). (e) shows ⁸⁷Sr/⁸⁶Sr 1564 isotopic ratios for selected vent fluids from this study, plotted along with ratios for 1565 1566 surrounding rock samples (Ash layer and * from Calanchi et al. (2002); ** from INGV database). Data trend towards subsurface rocks with a "Stromboli affinity". (note: the 1567 1568 precision and accuracy of the data used for the mixing end-members is much smaller than 1569 the size of the symbols used, and so even the most conservative deviations from the 1570 considered mixing end-member are largely ignorable as they will bear no impact on the 1571 discussion or have minimal, if any, impact on the calculations). Symbols in 7a the same 1572 for 7b-7d. MOR = mid-ocean ridge systems; R-HS = ridge – hot spot intersections; Sed. 1573 = sedimented; IBABs = intraoceanic back-arc basins; IHS = intraplate hot spot; UM = 1574 ultramafic; Arc – BAB = transitional arc and back-arc. Other vent data from Hannington 1575 et al. (2005). 1576 1577 Fig. 8. Data plots used for evaluation of phase separation. Measured Cl vs. Na (a) Cl vs. 1578 Br (b), and Cl vs. Br/Cl (c) for hydrothermal fluids from each location. End-member Cl 1579 vs. Br/Cl (d) and (c) Cl vs. B/Cl (e) for Panarea hydrothermal fluids analyzed in this 1580 study. Symbols in 8a the same for other plots. 1581 1582 Fig. 9. (a) SEM image of hydrothermal precipitates occurring at the sediment / water interface where ~135 °C gas-rich fluids discharge at La Calcara. EDX analysis results, 1583 1584 indicating the precipitates are anhydrite ($CaSO_4$), are shown upper right. (b) Ca vs. SO4 1585 plot indicating removal of these elements in pore fluids, and (c) anhydrite solubility (\Box) , as a function of temperature using seawater as the starting fluid. 1586 1587 1588 Fig. 10. Trace element plots: (a) Mg vs. Mn, (b) Mg vs Ba, (c) Mg vs Li, (d) Mg vs Rb, 1589 (e) Mg vs. Cs, (f) Mg vs Si, and (g) Mg vs. Fe concentrations for the Panarea 1590 hydrothermal fluids. Symbols in 10a the same for other plots. 1591 1592 Fig. 11. Gibbs energies, ΔG_r , of the 61 catabolic reactions listed in Table 1 per mole of electron transferred colored by (a) oxidant and (b) electron donor (ED). (c) and (d) 1593 1594 represent energy per kilogram of H₂O colored by oxidant and electron donor, 1595 respectively. The temperatures and compositions used to calculate these values are those 1596 describing the six samples locations summarized in Table 3. The horizontal bars in each 1597 panel denote the range of Gibbs energies for the indicated reaction for all sample 1598 locations. The colors of the bars refer to the types of electron acceptors and donors in 1599 each of the reactions, respectively. 1600 1601 Fig. 12. Comparison of energy available on a per site basis after removal of Reactions 43 1602 and 44, the oxidation of NH_4^+ by MnO₂. 1603

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 9.(a)

Fig. 11.

Fig. 12.

_	_	-	-		
т	์ ว	h	14		1
	ч	v		-	

Table 1

Site	Year	Sample Type ⁸	Denth	Temp	рH	H ₂ S	Mø	SO4	Na	Ся	K	В	Sr	Br	Cl	Si	Fe (total)	Mn (total)	Вя	Li	Rb	Cs	
,	. cui	Sumple Type	(cm)	°C	p	mM	mM	mM	mM	mM	mM	mМ	mM	mM	mM	mM	μM ^{&}	μM ^{&}	μM	μM	μM	nM	⁸⁷ Sr/ ⁸⁶ Sr
		Seawater	-	~20	8.0	0	58.3	32.9	547	11.1	11.0	0.46	0.09	0.94	618	0.04	0.017	0.0055	0.03	35.1	1.7	2.0	0.709160
	2008	RPF	10				51.7	22.5	585	71.8	33.7	6.1	0.62	1.2	816	0.9	7.1	2270	3.6	2219	104	16790	
	2008	RPF	25	25	5.0	0.05	47.0	15.7	637	126.0	51.7	11.3	1.09	1.5	1010	1.6	5.7	4280	5.3	4363	167	24100	
	2009	RPF-1 RPF-1	6	33	5.8	0.05	51.0 48.8	27.8	584	39.7 72.5	31.0	3.5 6.2	0.55	1.0	800	0.5	37.6	2320	2.0 4.1	2267	54 97	8775	
	2009	RPF-1	10	37	5.7	0.38	46.5	16.0	603	90.5	36.4	7.1	0.76	0.9	594	0.9	18.7	2930	4.7	3110	123	17290	
	2009	RPF-1	14		5.4	0.47	42.4	14.1	677	165.0	63.8	14.4	1.42	1.7	1130	1.8	52.9	5780	10.6	6014	231	31090	
	2009	RPF-1	18		5.0	0.59	38.0	7.7	740	227.0	79.2	20.2	2.00	2.0	1340	2.4	17.2	8050	8.4	5920	244	37570	
	2009	RPF-1	21	39	5.3	0.63	38.7	7.6	737	217.0	76.1	19.4	1.94	1.5	1030	2.2	10.6	7650	5.8	5439	231	36800	
ke	2009	RPF-2	2		5.5	0.12	49.1	24.1	564	63.5	28.3	5.5	0.53	1.2	77/0	0.8	13.3	1990	4.7	1772	87	13460	
τĘ	2009	RPF-2 RPF-2	10	74	5.5	0.83	39.2	9.8	713	192.0	70.5	17.0	1.59	1.8	1220	2.0	39.7	7070	10.5	5377	233	35290	
θH	2009	RPF-2	14	<i>,</i> .	5.4	0.72	39.5	9.7	700	192.0	70.0	17.2	1.67	1.9	1220	2.1	28.0	7050	17.2	6182	244	34980	
	2009	RPF-2	18	76	5.4	0.98	39.5	10.0	709	190.0	70.0	16.9	1.66	1.9	1210	2.1	17.0	6980	17.5	5679	240	35790	
	2009	RPF-2	22		5.0	0.88	39.6	10.0	703	192.0	70.9	17.4	1.68	1.9	1230	2.0	8.5	7060	18.4	6008	249	36840	
	2010	RPF-1	10	55	5.2	0.22	46.7	14.0	645	129.0	46.8	9.4	0.98	1.6	968	1.4	1.9	4040	7.2	2792	122	20120	
	2010	RPF-1 PDF 1	15	55 56	5.2	1.07	46.5	10./	636	128.0	4/.0	9.4	0.97	1.5	967	1.4	1.8	4020	/.5	2816	125	20880	
	2010	SPF	10	80	47	1.00	35.0	5.4	729	290.0	79.8	17.1	1.78	2.1	1350	2.5	0.9	8250	18.3	4821	231	40980	0 706642
	2010	SPF	10	75	4.4	2.52	36.9	5.5	745	390.0	86.7	18.7	1.84	2.2	1410	2.6	0.4	9050	19.4	5957	275	47090	
	2010	SPF	10		4.8	2.21	42.2	12.4	683	192.0	63.2	13.2	1.33	1.8	1170	2.1	2.8	5800	14.2	4095	193	34070	
	2008	RPF	9				57.0	30.0	505	10.7	10.2	0.5	0.10	0.8	583	0.1	7.2		0.5	31	2	64	
	2008	RPF	14	122	2.0	0.15	57.5	30.1	487	11.7	8.8	0.5	0.10	0.8	558	0.6	1.0	2(50	0.5	32	1	65	
	2008	RPF	- 2	132	2.9	0.15 b.d	55.4	31.2	512	10.5	32.0	0.0	0.75	1.1	738	0.3	554 b.d	3030	21.5	1885	93	14560	
	2009	RPF	6		6.0	b.d.	56.0	31.3	514	10.5	10.2	1.2	0.09	0.9	593	0.3	b.d.		0.2	42	2	13	
	2009	RPF	10	95	6.0	b.d.	56.7	31.1	516	10.8	10.2	1.1	0.09	0.9	589	0.2	3.9		0.3	39	2	12	
	2009	RPF	14		5.6	0.05	53.2	29.4	487	10.9	8.9	1.1	0.09	0.9	563	1.1	21.2	76	0.5	67	2	107	
	2009	RPF	16	97	5.6	0.05	53.4	29.3	483	11.1	8.8	1.1	0.09	0.8	555	1.4	10.0	91	0.5	73	2	112	
	2009	VF	-	134	5.3	0.15	49.4	27.5	462	11.1	10.2	0.6	0.09	0.8	529	2.6	0.5	161	1.1	134	5	588	
int	2010	RPF-1 RPF-1	4			0.02	56.0 54.4	31.0 29.6	503	11.0	10.7	0.5	0.10	0.9	566	0.5	1.0	51	0.3	43 64	2	12/	
PO-	2010	RPF-1	8			0.15	55.4	30.5	522	12.9	10.4	0.5	0.10	0.9	581	1.9	14	83	0.4	54	3	149	
lac	2010	RPF-1	12			0.16	54.8	30.0	508	12.9	10.2	0.5	0.10	0.9	568	1.8	0.8	131	0.4	59	3	165	
ш	2010	RPF-1	20			0.03	54.7	29.9	602	13.0	9.6	0.5	0.10	0.9	561	1.9	0.2	138	0.4	64	3	124	
	2010	RPF-2	2	41	5.7	0.11	60.4	32.1	485	13.1	11.3	0.5	0.11	0.9	590	0.9	10.0	62	0.3	45	2	86	
	2010	RPF-2	6		5.3	0.39	56.1	31.4	458	13.0	10.2	0.5	0.10	0.9	570	1.5	5.2	79	0.4	55	2	123	
	2010	RPF-2 RPF-2	10	86	5.4	0.33	56.2	31.8	512	12.5	10.3	0.5	0.10	0.9	580	1.1	6.9 10.6	60 82	1.1	49	2	125	
	2010	RPF-2	14	90	5.6	0.30	55.0	31.3	479	13.2	9.9	0.5	0.10	0.9	568	1.4	7.9	112	1.0	62	3	148	
	2010	SPF	10			0.20	54.7	31.4	514	12.0	11.0	0.5	0.10	0.9	576	1.5	1.4	79	1.2	58	3	239	
	2010	SPF	10			0.61	54.0	30.6	507	11.7	10.9	0.5	0.10	0.9	566	1.9	2.4	70	1.3	61	3	220	0.708836
	2010	VF	-	85	4.5		39.7	22.9	520	32.0	16.4	2.1	0.29	1.1	670	1.0	98.7	1178	7.8	493	30	5289	0.707190
	2010	VF	-				53.4	26.2	538	24.6	15.4	1.5	0.22	1.0	628	0.6	56.8	682	5.6	286	18	2848	
	2008	RPF	5				58.0	30.0	518	10.8	11.0	0.7	0.10	0.8	596	0.0	10.8		0.2	45	2	64 62	
	2008	RPF	25				59.5	31.2	515	11.0	9.0	0.5	0.10	0.8	602	0.1	16.1		0.2	10	1	62	
	2008	RPF	35				59.7	30.5	515	11.0	8.5	0.5	0.10	0.8	593	0.3	4.5		0.3	8	1	62	
	2008	GRF	-				48.7	22.9	438	10.5	10.3	0.7	0.10	0.7	511	0.8	0.8	427	1.5	126	5	772	
	2009	RPF-1	2		5.5		57.1	31.8	511	10.9	9.8	0.8	0.09	0.9	597	0.1	39.8		0.2	36	2	28	
	2009	RPF-1	6		5.6		57.9	32.1	518	11.1	9.5	0.5	0.09	0.9	606	0.0	52.0		0.1	32	1	12	
	2009	RPF-1	10	44	5.6		57.6	31.4	509	11.1	9.4	0.6	0.09	0.9	594	0.0	15.8		0.1	33	1	6	
	2009	RPF-1	14		5.0	0.001	58.0	30.9	512	11.5	9.4	0.4	0.10	0.9	593	0.1	23.8		0.2	29 30	1	4	
	2009	RPF-1	21	47	5.6	0.001	57.7	31.4	513	11.5	9.5	0.6	0.10	0.9	602	0.0	32.4	1	0.2	29	1	3	
	2009	RPF-2	2		6.5		56.2	30.9	515	10.7	10.6	0.8	0.09	0.9	585	0.1			0.2	42	2	5	
ara	2009	RPF-2	6		6.5		56.6	31.0	513	10.8	10.5	0.8	0.09	0.9	590	0.1	2.1		0.2	42	2	5	
alc	2009	RPF-2	10	75	6.1		57.9	31.6	515	11.1	10.6	1.0	0.10	0.9	595	0.1	0.9		0.2	41	2	5	
a C	2009	RPF-2	14	00	5.8	0.001	58.7	31.3	512	11.3	10.2	0.9	0.10	0.9	593	0.1	12.0		0.2	42	2	4	
Т	∠009 2009	RPF-2 RPF-2	18	99	5.4 5.4		58.5 58.5	31.4 31.7	509	11.1	9.6	1.2	0.09	0.9	592 596	0.3	54 / 207	1	0.2	35 18	1	4	
	2009	RPF-3	2		5.5		56.8	31.4	519	10.8	10.2	0.4	0.09	0.9	591	0.2	29.5	1	0.3	36	2	6	
	2009	RPF-3	6		5.2		58.7	31.7	521	11.1	10.2	0.6	0.09	0.9	598	0.5	220		0.3	37	2	6	
	2009	RPF-3	10	50	5.1		57.7	31.8	512	11.0	9.9	0.5	0.09	0.9	598	0.4	201		0.3	39	2	4	
	2009	RPF-3	14		5.1		57.5	31.6	524	10.9	9.7	0.7	0.09	0.9	593	0.4	160	1	0.3	35	1	6	
	2009	RPF-3	18	0	5.0		56.4	31.4	510	10.7	9.4	0.6	0.09	0.9	593	0.4	109		0.3	37	1	5	
	2009 2009	GPF	22	61 125	5.1	0.01	54.0	51.5	534	11.2	9.8	0.7	0.09	0.9	594	0.5	105	10	0.4	34	1	5	0.700209
	2009 2010	SPF	- 10	135	3.2	0.01	54.2 48.7	25.2	452	9.0	9.9	0.5	0.09	0.5	510	0.0	38.4 26.4	19 62	1.1	30 36	2	12	0.709208
	2010	SPF	10	60	5.2	0.09	55.5	29.3	516	10.9	10.8	0.5	0.09	0.9	569	1.4	6.6	7	1.4	47	2	118	0.709157
									100						-00								0.707110
	2010	GRF	-				41.2	17.7	480	40.2	16.6	2.3	0.36	0.9	589	1.0	24.3	2090	6.5	1414	64	12780	0./0/119

¹¹ a.¹ – IOI analyzes
 ¹⁴ b.d. = below detection
 ⁵ SPF = Syringe pore fluids; RPF = Rhizon pore fluids (added number differentiates between multiple cores collected in the same year); VF = vent fluids; and GRF = gas-rich fluids
 ⁸ Seawater Fe concentrations from Achterberg et al., 2001. Seawater Mn concentration from Lan and Alfassi, 1994.

Table 2	
---------	--

The vise Same Pripe So, No No C K R	Table 2. End-mem	ber conce	entrations based	on zero	-Mg, an	d selecte	d eleme	nt ratios	, for Pan	area hyo	irothern	nal sites	investig	ated in this	s study c	ompared to o	ther settin	igs.					
THE DOM DPT DPT <thdpt< th=""> <thdpt< th=""> <thdpt< th=""></thdpt<></thdpt<></thdpt<>	Site	Year	Sample Type	SO ₄	Na mM	Ca mM	K mM	B mM	Sr mM	Br	Cl	Si	Ba	Li	Rb	Cs	Na/Cl	Ca/Cl	K/Cl	B/Cl v103	Sr/Cl v103	Br/Cl v103	Sr/Ca
Prop Dist Dist <thdis< th=""> Dist Dist D</thdis<>		2008	RPF	**	883	547	212	50.3	4.6	3.2	2373	7.4	31.6	19330	902	148300	0.37	0.23	0.09	21.2	1.94	1.36	8.4
Part Part Part Part Part Part Part Part		2008	RPF RPF-1		1013	605 260	221	56.4 26.9	5.3	3.8	2663	7.9	27.2	22370	856 454	124300	0.38	0.23	0.08	21.2	1.99	1.44	8.8
Prof Size All Size		2009	RPF-1		772	388	134	35.7	3.2	2.5	1739	4.3	25.0	13730	584	87490	0.44	0.21	0.08	20.5	1.85	1.46	8.3
PTOM DOM DDM DDM SUP SUP <td></td> <td>2009</td> <td>RPF-1 RPF-1</td> <td></td> <td>824 1026</td> <td>403 575</td> <td>136 205</td> <td>33.3 51.6</td> <td>3.6 4.9</td> <td>0.7</td> <td>2497</td> <td>4.2</td> <td>23.1 38.8</td> <td>15230 21960</td> <td>603 841</td> <td>85390 114000</td> <td>0.41</td> <td>0.23</td> <td>0.08</td> <td>20.7</td> <td>1.96</td> <td>1 4 9</td> <td>8.9 8.5</td>		2009	RPF-1 RPF-1		824 1026	403 575	136 205	33.3 51.6	3.6 4.9	0.7	2497	4.2	23.1 38.8	15230 21960	603 841	85390 114000	0.41	0.23	0.08	20.7	1.96	1 4 9	8.9 8.5
Part Solo BP-1: BP-1 III.0 AI AI AI Col Col <th< td=""><td></td><td>2009</td><td>RPF-1</td><td></td><td>1101</td><td>630</td><td>207</td><td>57.2</td><td>5.6</td><td>4.0</td><td>2684</td><td>6.7</td><td>24.1</td><td>16940</td><td>698</td><td>107900</td><td>0.41</td><td>0.23</td><td>0.08</td><td>21.3</td><td>2.08</td><td>1.48</td><td>8.8</td></th<>		2009	RPF-1		1101	630	207	57.2	5.6	4.0	2684	6.7	24.1	16940	698	107900	0.41	0.23	0.08	21.3	2.08	1.48	8.8
Und biol 2000 BDH-2 10120 568 101 57 107 107 107 000 043 032 030 037 201 158 <t< td=""><td>9</td><td>2009 2009</td><td>RPF-1 RPF-2</td><td></td><td>1113 656</td><td>623 343</td><td>205 121</td><td>56.8 32.4</td><td>5.5 2.7</td><td>2.6 2.6</td><td>1843 1582</td><td>6.5 5.2</td><td>17.2 29.6</td><td>16110 11040</td><td>682 542</td><td>109400 85280</td><td>0.60 0.41</td><td>0.34 0.22</td><td>0.11 0.08</td><td>30.8 20.5</td><td>2.97 1.70</td><td>1.41 1.64</td><td>8.8 7.8</td></t<>	9	2009 2009	RPF-1 RPF-2		1113 656	623 343	205 121	56.8 32.4	5.5 2.7	2.6 2.6	1843 1582	6.5 5.2	17.2 29.6	16110 11040	682 542	109400 85280	0.60 0.41	0.34 0.22	0.11 0.08	30.8 20.5	2.97 1.70	1.41 1.64	8.8 7.8
Part Dots SEP-2 1003 92 93 94 94 94 94 95	t Lak	2009	RPF-2		1020	568	195	51.4	5.0	3.7	2479	6.4	52.7	18640	757	107800	0.41	0.23	0.08	20.7	2.01	1.50	8.8
Part Pictor Director	Hot	2009	RPF-2 RPF-2		1054 1023	564 572	193	50.9 52.4	5.0 5.1	3.9 3.9	2449 2484	6.2 6.3	52.1 53.3	16340 19100	712	107700 108500	0.43	0.23	0.08	20.8	2.04 2.05	1.58	8.9 8.9
Part I 1001 602 1014 4.4 2 2 2010 EPF-1 1001 0.41 10100 0.41 0.23 0.08 101 0.41 0.23 0.08 101 0.41 0.23 0.08 101 105 101 0.41 0.23 0.08 101 0.41 0.23 0.08 101 0.41 101 0.41 101 0.41 101 0.41 101 101 0.41 101 101 0.41 101 <th< td=""><td></td><td>2009</td><td>RPF-2</td><td></td><td>1049</td><td>566</td><td>194</td><td>51.4</td><td>5.1</td><td>3.9</td><td>2458</td><td>6.3</td><td>54.2</td><td>17540</td><td>740</td><td>111000</td><td>0.43</td><td>0.23</td><td>0.08</td><td>20.9</td><td>2.07</td><td>1.59</td><td>9.0</td></th<>		2009	RPF-2		1049	566	194	51.4	5.1	3.9	2458	6.3	54.2	17540	740	111000	0.43	0.23	0.08	20.9	2.07	1.59	9.0
Part of the section of the sectin of the section of the section of the section of the se		2009	RPF-2 RPF-1		1033	575 602	198	55.5 45.4	4.7	4.3	2310	6.5 7.1	36.1	13890	604	101100	0.41	0.23	0.08	19.1	1.96	1.57	8.9 7.7
Part of the set of th		2010	RPF-1 RPF-1		989 991	587 575	189	44.6 44.0	4.6	3.7	2342	6.8 7.4	36.9	13770	613	103100	0.42	0.25	0.08	19.1	1.96	1.58	7.8
Part Part Part Part Part Part Part Part		2010	SPF		1004	709	183	42.1	4.4	3.8	2457	6.2	45.7	12010	574	102500	0.42	0.29	0.07	17.1	1.78	1.56	6.2
BOOK RPF		2010 2010	SPF SPF		1086 1039	1042 665	217 200	50.2 46.6	4.7 4.5	4.4 4.1	2776 2626	7.0 7.6	52.8 51.3	16170 14740	747 696	128300 123300	0.39 0.40	0.38	0.08	18.1 17.7	1.71 1.70	1.58 1.54	4.6 6.7
Part 2008 RPP 44 197 16 14 105 107 101 105 107 101 105 107 101 105 107 101 105 107 101 105 107 101 101 105 106 106 70 106 101		2008	RPF					23	0.5			41	21.1			2787							
Part Date Part Part <th< td=""><td></td><td>2008</td><td>RPF</td><td></td><td></td><td>55</td><td></td><td>3.4</td><td>0.8</td><td></td><td></td><td>41.6</td><td>34.3</td><td></td><td></td><td>4615</td><td></td><td></td><td></td><td></td><td></td><td></td><td>14.9</td></th<>		2008	RPF			55		3.4	0.8			41.6	34.3			4615							14.9
2009 RPF 1 192 0.1 5.6 4.3 210 4 306		2008 2009	VF RPF		444	197	73	16.4 17.3	2.0 0.1	1.4 0.1	1024	10.0 5.5	62.0 3.4	5370	264 4	42030 318	0.43	0.19	0.07	16.1 565.4	1.95 2.93	1.37 4.43	10.1
Base Base P 9 2.9 0.1 0.5 1.5 2.9 0.1 0.5 1.5 2.9 0.1 0.5 1.5 2.9 0.1 0.5 1.5 2.9 0.1 0.5 1.5 2.9 0.31 0.31 0.16 38.2 2.50 8.1 1.8 2009 VF 11 6 1.4 0.1 3.6 6.9 2.00 1.9 31.8 0.31 <th< td=""><td></td><td>2009</td><td>RPF</td><td></td><td></td><td>1</td><td></td><td>19.2</td><td>0.1</td><td></td><td></td><td>5.6</td><td>4.3</td><td>210</td><td>4</td><td>306</td><td></td><td></td><td></td><td></td><td></td><td></td><td>93.7</td></th<>		2009	RPF			1		19.2	0.1			5.6	4.3	210	4	306							93.7
Part Part Part Part Part Part Part Part		2009	RPF			9		23.8 7.8	0.1	0.5		5.5 12.7	9.9 5.4	402	6	348 1203							10.2
2000 rpri 13 0 15 0.3 15 0.49 583 10 0.9 383 0 0.91 0.01 38.2 2.00 84.4 2010 RPF-1 52 31 1.13 0.3 0.31 24.2 7.5 407 20 2955 5 5 33 30.5 6.0 500 16 175 6.0 2010 RPF-1 42 1.1 0.3 0.3 30.5 6.0 500 16 175 6.0 2010 RPF-2 107 186 23.8 18.8 4720 150 600 23.5 48.860		2009	RPF			11	6	8.1	0.1		26	15.7	5.6	487	8	1308		0.21	0.16	20.2	2.50		8.1
2 2010 RPF-1 53 1.1 0.2 0.3 277 5.6 477 12 1063	Ħ	2009	RPF-1			24	3	1.4	0.1		50	13.0	6.9	230	19	3183		0.51	0.10	36.2	2.50		14.4
Part 2010 RPF-1 41 11 0.3 0.3 290 6.2 207 22 2710 2010 RPF-1 41 1.1 0.3 0.3 0.5 6.0 500 16 1978 <	c Poi	2010	RPF-1 RPF-1		52	38		1.1	0.2	0.3		27.7	5.6	467 407	17	1963							6.3
2010 RPF-1 42 1.1 0.3 0.3 30.5 6.0 500 16 1978	3lack	2010	RPF-1		52	41		1.1	0.3	0.3		29.0	6.2	407	20	2710							6.2
Participant Colo RPF-2 Colo	-	2010 2010	RPF-1 RPF-2			42 1177	186	1.1 23.8	0.3	0.3		30.5 472.0	6.0 157.0	500 5690	16 235	1978 48860							6.0 10.0
2010 RPF-2 0.8 5.2 1.6 0.4 31.2 31.2 44.0 19 38.2		2010	RPF-2			61	100	1.5	0.4			39.0	9.8	562	20	3201							5.8
EFF 46 48 12 0.3 0.2 32.9 18.9 609 16 2327 ::::::::::::::::::::::::::::::::::::		2010	RPF-2 RPF-2	0.8		52 61		1.6	0.4			31.5 38.9	31.2 27.0	446 599	24	3582 4069							6.0
2010 3Fr 6.0 10 20 10 <th< td=""><td></td><td>2010</td><td>RPF-2</td><td>4.6</td><td>16</td><td>48</td><td>11</td><td>1.2</td><td>0.3</td><td>0.2</td><td></td><td>32.9</td><td>18.9</td><td>509</td><td>16</td><td>2327</td><td></td><td></td><td></td><td></td><td></td><td></td><td>5.5</td></th<>		2010	RPF-2	4.6	16	48	11	1.2	0.3	0.2		32.9	18.9	509	16	2327							5.5
End 200 VF 1.6 464 77 28 5.6 0.7 1.4 7 80 3.0 24.4 471 91 15570 0.59 0.10 0.04 7.2 0.92 1.85 9.4 2008 RPF 11 47.1 20 33.1 1998 21 12130 3360 0.61 0.23 0.09 17.4 2.23 2.5 9.5 2008 RPF 23.8 5.9 117 99.1 34601 - 2.02 2.02 0.9 0.9 1.65.1 3.1 1998 2.1 4661 - 2.02 2.02 0.9 0.9 1.7 2.02 1.65.1 3.02 - 4.641 - 2.02 2.02 0.9 0.1 3.0 8.3 8.4 1.270 - 5.9 3.02 4.641 - 2.02 2.02 9.0 1.02 1.410 0.0 1.02 1.410 0.0 1.02 1.02		2010	SPF	8.6	10	26 19	10	1.1	0.3	0.3		25.4	19.0	382	23 18	2964							9.8
End Vi HV		2010	VF	1.6	464	77	28	5.6	0.7	1.4	780	3.0	24.4	1471	91 101	16570	0.59	0.10	0.04	7.2	0.92	1.85	9.4
E Diff 1 2.53 2.59 11.7 991 2.33 51.60 2008 RPF 2.38 5.59 70.0 991 34810 34691		2010	RPF		447	172	11	47.1	2.0	1.7	155	0.0	33.1	1998	21	12130	0.01	0.25	0.07	17.4	2.25	2.25	2.5
Perform 208 RPF 23.8 5.9 70.0 99.1 34810 2008 RPF 23.8 5.9 13.0 157.0 34810 520 202. 2008 RPF-1 1 1 70 0.1 3.0 8.3 84 1270 561. 2009 RPF-1 11 63.0 0.1 59 302 81. 2009 RPF-1 128 5.9 99.1 760 464 2009 RPF-1 50 14.1 1.1 0.0 16.5 138 212 2009 RPF-2 1 12.8 5.9 93.1 2491 993 343 212 2009 RPF-2 11 75.9 35.0 91.4 91.9 93 1343 81. 194 2009 RPF-2 11 42.0 0.1 254.9 99.1 93 1343 81. 352 90.1 200 RPF-3 <td< td=""><td></td><td>2008</td><td>RPF</td><td></td><td></td><td></td><td></td><td>23.8</td><td>5.9</td><td></td><td></td><td>11.7</td><td>99.1</td><td>1770</td><td>21</td><td>35160</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		2008	RPF					23.8	5.9			11.7	99.1	1770	21	35160							
Provide 2008 GRF 7 7 1.9 0.2 4.7 9.0 589 2.1 4681 202 2009 RPF-1 1 17.0 0.1 3.0 8.3 84 1270 651 2009 RPF-1 11 12.1 0.1 5.9 302 81.1 2009 RPF-1 128 5.9 90.1 760 464.1 2009 RPF-1 50 14.1 1.0 0.65 138 221.3 2009 RPF-2 1 12.1 0.1 0.4 4.7 232 7 80 21.9 2009 RPF-2 1 12.1 0.1 0.4 4.9 23.1 21.9		2008 2008	RPF RPF					23.8 23.8	5.9 5.9			70.0 134.0	99.1 157.0			34810 34691							
Egg 2009 RPF-1 1 1/0 0.1 3.0 8.3 8.4 1.2/0		2008	GRF			7	7	1.9	0.2			4.7	9.0	589	21	4681							20.2
2009 RPF-1 11 12.1 0.1 5.9 302 81 2009 RPF-1 128 5.9 99.1 760 464 2009 RPF-1 50 14.1 1.1 0.0 16.5 138 2233 2009 RPF-2 9.9 0.1 1.4 4.7 232 7 80 212 2009 RPF-2 1 12.1 0.1 0.4 5.9 275 5 95 1194 2009 RPF-2 11 72.1 0.1 0.4 5.9 275 5 95 110.9 2009 RPF-2 11 42.0 0.1 70.0 15 58 2 161 810 2009 RPF-3 1 4.3 0.1 77.7 16.5 58 2 161 810 2009 RPF-3 1 4.3 0.1 77.7 77 35 226 140.0 150		2009	RPF-1 RPF-1			11		6.3	0.1			3.0	8.3 10.2	84		1270							65.1 8.1
Egg 2009 RFF-1 128 2.93 99.1 700 40.4 2009 RFF-1 50 14.1 1.1 0.0 16.5 138 212 2009 RFF-2 99 0.1 1.4 7.3 5 95 1109 2009 RFF-2 1 12.1 0.1 0.4 5.9 55 95 1109 2009 RFF-2 128 257.0 5.9 35.0 99.1 4291 993 464.4 2009 RFF-2 128 257.0 5.9 35.0 99.1 431 45.1 81.3 2009 RFF-3 11 432.0 0.1 1234 91.1 352 1.3 2009 RFF-3 1 4.3 0.1 277.1 1.0 2509		2009	RPF-1			11		12.1	0.1				5.9			302							8.1
Product 2009 RPF-1 50 14.1 1.1 0.0 16.5 138 21.2 2009 RPF-2 1 12.1 0.1 0.4 4.7 232 7 80 2009 RPF-2 1 12.1 0.1 0.4 5.9 275 5 95 110.9 2009 RPF-2 11 79.2 1.5 10.2 24.8 91.0 16 381 1343 46.4 2009 RPF-2 11 432.0 0.1 23.4 91.1 93 1343 81.1 2009 RPF-3 11 82.1 0.1 24.50 157.0 1201 2509 8.1 2009 RPF-3 11 82.1 0.1 27.7 19.7 35 286 21.1 2009 RPF-3 4.8 0.1 10.2 8.3 2.0 14.4 9.0 4.6 8.1 2009 RPF-3 7 7		2009	RPF-1			69		86.0	2.0			3.9	33.1			294							29.3
Egg QO RPF-2 1 12.1 0.1 0.4 5.9 275 5 95 2009 RPF-2 11 79.2 1.5 10.2 24.8 910 16 381 139.4 2009 RPF-2 12 22 27.5 5 95 5 99.1 4291 993 46.4 2009 RPF-2 11 432.0 0.1 123.4 99.1 4391 933 1343 81.3 2009 RPF-3 69 23.8 0.1 7.0 10.5 58 2 161 81.3 2009 RPF-3 11 82.1 0.1 277.7 19.7 35 286 81.3 91.9		2009	RPF-1 RPF-2			50		14.1	1.1			0.0	16.5 47	232	7	138 80							21.2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ara	2009	RPF-2			1		12.1	0.1			0.4	5.9	275	5	95							110.9
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Calc	2009 2009	RPF-2 RPF-2			11 128		79.2 257.0	1.5 5.9			10.2 35.0	24.8 99.1	910 4291	16	381 993							139.4 46.4
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	La	2009	RPF-2			11		432.0	0.1			152.0	99.1	93		1343							8.1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		2009	RPF-2 RPF-3			69		23.8	0.1			23.4 7.0	99.1 10.5	58	2	352 161							1.3
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		2009	RPF-3			11		82.1	0.1			245.0	157.0	1201		2509							8.1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2009	RPF-3			1		4.5	0.1			27.7	26.5 19.7	3/5		206							05.1
2009 RF 0.3 140.0 0.1 7.3 216.0 101.6 <td></td> <td>2009</td> <td>RPF-3</td> <td></td> <td></td> <td>60</td> <td></td> <td>4.8</td> <td>0.1</td> <td></td> <td></td> <td>10.2</td> <td>8.3</td> <td>84</td> <td></td> <td>88</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1 2</td>		2009	RPF-3			60		4.8	0.1			10.2	8.3	84		88							1 2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2009	GRF			07		140.0	0.1			7.3	15.2		0	144							1.5
2010 GRF 317 110 30 6.7 1.0 0.8 518 3.3 22.1 4736 213 43560 0.61 0.21 0.06 13.0 1.95 1.55 9.2 2010 GRF 306 113 31 6.8 1.0 1.1 547 3.4 27.7 2056 104 22440 0.56 0.21 0.06 13.0 1.95 1.55 9.2 Mid-ocean ridges 0.4 417 35 23 0.1 531 15.1 79.7 668 0.79 0.06 0.04 0.19 3.3 Ridge-hotspot intersections 0.4 417 35 31 21 0.2 605 7.5 34.5 292 0.83 0.07 0.05 0.24 3.5 Sedimented ridges 0.2 458 43 33 0.2 581 11.6 26.0 784 0.79 0.08 0.05 0.67 0.37 5.4 <td></td> <td>2010</td> <td>SPF</td> <td></td> <td>33</td> <td>7</td> <td>3</td> <td>0.7</td> <td>0.0</td> <td>0.1</td> <td></td> <td>4.4 29.0</td> <td>9.0 28.6</td> <td>40 283</td> <td>2</td> <td>216 2424</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>13.0</td>		2010	SPF		33	7	3	0.7	0.0	0.1		4.4 29.0	9.0 28.6	40 283	2	216 2424							13.0
2010 CRF 300 11.5 31 6.8 1.0 1.1 54/ 3.4 27.7 2056 104 22440 0.56 0.21 0.06 12.5 1.88 2.10 9.1 Mid-ocean ridges 0.4 417 35 23 0.1 531 15.1 79.7 668 0.79 0.06 0.44 0.19 3.3 Ridge-hotspot intersections 0.4 435 31 21 0.2 605 7.5 345 292 0.83 0.07 0.05 0.24 3.5 Sedimented ridges 0.2 458 43 33 0.2 581 11.6 260 7.84 0.79 0.08 0.05 0.37 5.4 Intraoceanic back-arc basins 4.6 419 30 34 0.1 534 12.1 34.8 1159 0.80 0.05 0.06 0.18 6.1 Volcanic arcs 16.0 455 47 20 0.2		2010	GRF		317	110	30	6.7	1.0	0.8	518	3.3	22.1	4736	213	43560	0.61	0.21	0.06	13.0	1.95	1.55	9.2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		2010	GRF	<u>.</u>	306	113	31	6.8	1.0	1.1	547	3.4	27.7	2056	104	22440	0.56	0.21	0.06	12.5	1.88	2.10	9.1
Ultramafic hosted 4.3 493 39 21 0.2 605 7.5 34.5 292 0.83 0.06 0.03 0.27 3.9 Sedimented ridges 0.2 458 43 33 0.2 581 11.6 26.0 784 0.79 0.08 0.05 0.37 5.4 Intraocentic back-are basins 4.6 419 30 34 0.1 534 12.1 34.8 1159 0.08 0.05 0.37 5.4 Volcanic arcs 16.0 455 47 20 0.2 587 7.4 100.0 314 0.79 0.05 0.05 0.37 5.4 Transitional arc - back-arc basins 5.3 434 27 49 0.2 587 7.4 100.0 314 0.79 0.07 0.03 0.32 13.7 Intraocenaries 16.0 453 474 20 0.2 552 11.3 47.0 2163 0.79 0.05	Ridge-	hot spot i	ridges ntersections	0.4 0.4	417 355	35 31	23 21		0.1 0.1		531 431	15.1 14.0	79.7 29.8	668 350			0.79 0.83	0.06 0.07	0.04 0.05		0.19 0.24		3.3 3.5
Sequence or logges 0.2 436 53 0.2 361 11.6 26.0 /84 0./9 0.08 0.05 0.37 5.4 Intraccent back-are basins 4.6 419 30 34 0.1 534 12.1 34.8 1159 0.80 0.05 0.06 0.18 6.1 Volcanic ares 16.0 455 47 20 0.2 587 7.4 100.0 314 0.79 0.07 0.03 0.32 13.7 Intractional arc - back-arc basins 5.3 343 27 49 0.2 552 11.3 47.0 2163 0.79 0.05 0.09 0.26 5.7 Intraplate hot spot volcances 26.0 437 11 0.1 515 1.2 39 0.85 0.02 0.02 0.17 7.7	Ŭ	ltramafic	hosted	4.3	493	39	21		0.2		605	7.5	34.5	292			0.83	0.06	0.03		0.27		3.9
Volcanic arcs 16.0 455 47 20 0.2 587 7.4 100.0 314 0.79 0.07 0.03 0.32 13.7 Transitional arc - back-arc basins 5.3 434 27 49 0.2 552 11.3 47.0 2163 0.79 0.05 0.09 0.26 5.7 Intraplate hot spot volcances 26.0 437 11 11 0.1 515 1.2 39 0.85 0.02 0.02 0.17 7.7	Intraoc	eanic bac	k-arc basins	0.2 4.6	458 419	4 <i>3</i> 30	33 34		0.2		581 534	11.6	26.0 34.8	/84 1159			0.79	0.08	0.05		0.37		5.4 6.1
Intraplate hot spot volcances 26.0 437 11 11 0.1 515 1.2 39 0.85 0.02 0.02 0.17 7.7	Transition	Volcanic	arcs ack-arc basing	16.0	455 434	47 27	20 49		0.2		587 552	7.4	100.0 47.0	314 2163			0.79	0.07	0.03		0.32		13.7
A second descent des	Intrapla	ite hot spo	ot volcanoes	26.0	437	11	11		0.1		515	1.2		39			0.85	0.02	0.02		0.17		7.7

** blank cells calculated to negative values

Table 3				
Summary of geochemica	l parameters used for calculating th	e theoretical bioenergetics for infer	rred site and fluid type composition	ns investigated at Panarea.

Sampla/sita	Fluid	Temp	ъЦ	Na^+	K^+	Mg^{2+}	Ca ²⁺	Cl	Br ⁻	SO_4^{2-}	SiO_1	B^{3+}	Sr^{2+}	Mn ²⁺	Fe ²⁺	Ba^{2+}
Sample/site	Туре	°C	pm	mМ	mМ	mM	mМ	mМ	mМ	mМ	mМ	mМ	mM	mM	mM	mМ
Seawater	n.a.	20	8.02	546.9	11.0	58.3	11.1	617.7	0.9	32.9	0.04	0.46	0.10	5.E-06	1.00E-16*	0.034
Hot Lake 1	1	80.1	4.7	729.5	79.8	35.0	290.1	1352.6	2.1	5.4	2.5	17.1	1.78	6.37 ^x	0.0145 ^x	0.018
Hot Lake 2	1	54.7	5.2	645.2	46.8	46.7	128.7	968.3	1.6	14.0	1.4	9.4	0.98	6.14 ^x	0.009 ^x	0.017
Black Point 1	2	135.0	2.9	511.4	32.6	38.1	75.5	758.4	1.1	12.3	3.5	6.0	0.75	4.15 ^x	0.19 ^x	0.022
Black Point 2	3	96.6	5.6	483.4	8.8	53.4	11.1	554.9	0.8	29.3	1.4	1.1	0.09	1.38 ^x	0.035 ^x	0.504
La Calcara 2	2	135.0	5.0	477.6	16.8	41.5	40.6	597.4	1.0	17.8	1.0	2.3	0.36	2.1*	0.024*	0.008
La Calcara 1	3	60.3	5.2	515.7	10.8	55.5	10.9	568.5	0.9	29.3	1.4	0.5	0.09	0.007*	0.007*	0.001
		HCO ₃ -	H_2S	O_2	NO ₃ ⁻	NO_2^-	$\mathrm{NH_4}^+$			$CO_{2(g)}$	$H_2S_{(g)}$	$O_{2(g)}$	$N_{2(g)}$	$CO_{(g)}$	$CH_{4(g)}$	$H_{2(g)}$
		mМ	mM	mМ	mМ	mM	mМ			%	vol %	%	%	ppm	ppm	ppm
Seawater	n.a.	2.3	2 nM	0.24	0.0081	0.0002	0.0005			n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Hot Lake 1	1	$1.04^{\$}$	1.67	0.025 ^x	0.027 ^{&}	$0.0002^{\$}$	3.39 ^{\$}			96.4	2.7	0.02	0.5	4.0	5.0	35.0
Hot Lake 2	1	1.48 ^{\$}	0.22	$0.04^{\$}$	0.027 ^{&}	$0.0002^{\$}$	1.69 ^{\$}			96.4	2.7	0.02	0.5	4.0	5.0	35.0
Black Point Vent 1	2	0.8 ^{&}	0.15	0.194 ^x	0.11*	$0.0005^{\$}$	1.69 ^{\$}			98.7	0.3	0.03	0.4	3.2	817.3	91.3
Black Point Vent 2	3	2.4 ^{\$}	0.05	$0.24^{\$}$	0.034 ^{&}	$0.0005^{\$}$	0.003 ^{\$}			98.7	0.3	0.03	0.4	3.2	817.3	91.3
La Calcara 1	2	n.a.#	n.a.	n.a.	0.027 ^{&}	0.0003	0.18 ^{&}			97.2	0.2	0.08	0.9	3.0	5306.5	694.8
La Calcara 2	3	n.a.	0.086	n.a.	$0.027^{\&}$	0.0003	$0.18^{\&}$			97.2	0.2	0.08	0.9	3.0	5306.5	694.8

notes: Seawater values for aqueous H₂S from Luther and Tsamakis (1989). Aqueous seawater values for CH₄, H₂, CO, and N₂ are from Charlou et al. (2002). Seawater Mn²⁺ from Klinknhammer et

al. (1985). NO₃⁻ values at Hot lake and La Calcara is an average of values from Tassi et al. (2009). Because dissolved O₂ at La Calcara was not reported the equilibrium value for O₂ free gas

concentrations were used. NO₂⁻ at La Calcara is an average of the other sites. #n.a. = not available.

* = equilibrium value calculated using Geochemist's workbench.

\$ = from Sieland, 2009 sample with matching Mg concentration.

x = these data points and all dissolved gas data from Müller, 2011.

& = from Tassi et al., 2009

Sumr	nary of metabolic reactions consider in the present study		
	CH ₄ oxidation	32	$5S^0 + 6NO_3^- + 2H_2O \rightarrow 5SO_4^{2-} + 3N_2 + 4H^+$
1	$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$	33	$4S^{0} + 3NO_{3}^{-} + 7H_{2}O \rightarrow 4SO_{4}^{2-} + 3NH_{4}^{+} + 2H^{+}$
2	$5CH_4 + 8NO_3^- + 8H^+ \rightarrow 5CO_2 + 4N_2 + 14H_2O$	34	$S^{0} + 3NO_{3}^{-} + H_{2}O \rightarrow SO_{4}^{2-} + 3NO_{2}^{-} + 2H^{+}$
3	$CH_4 + NO_3^- + 2H^+ \rightarrow CO_2 + NH_4^+ + H_2O$	35	$S^0 + 2NO_2 \rightarrow SO_4^{2-} + N_2$
4	$CH_4 + 4NO_3^- \rightarrow CO_2 + 4NO_2^- + 2H_2O$	36	$S^0 + NO_2^- + 2H_2O \rightarrow SO_4^{2-} + NH_4^+$
5	$3CH_4 + 8NO_2^- + 8H^+ \rightarrow 3CO_2 + 4N_2 + 10H_2O$	37	$4\mathrm{S}^{0} + 4\mathrm{H}_{2}\mathrm{O} \rightarrow \mathrm{SO}_{4}^{2\text{-}} + 3\mathrm{H}_{2}\mathrm{S} + 2\mathrm{H}^{+}$
6	$3CH_4 + 4NO_2^- + 8H^+ \rightarrow 3CO_2 + 4NH_4^+ + 2H_2O$		Mn ²⁺ oxidation
7	$\mathrm{CH}_4 + \ 4\mathrm{MnO}_2 + 8\mathrm{H}^+ \rightarrow \mathrm{CO}_2 + \ 4\mathrm{Mn}^{2+} + 6\mathrm{H}_2\mathrm{O}$	38	$2Mn^{2+} + O_2 + 2H_2O \rightarrow 2MnO_2 + 4H^+$
8	$CH_4 + 8FeOOH + 16H^+ \rightarrow CO_2 + 8Fe^{2+} + 14H_2O$	39	$5Mn^{2+} + 2NO_3^- + 4H_2O \rightarrow 5MnO_2 + N_2 + 8H^+$
9	$\mathrm{CH}_4 + \mathrm{SO_4^{2-}} + \mathrm{2H^+} \longrightarrow \mathrm{CO}_2 + \mathrm{H}_2\mathrm{S} + \mathrm{2H}_2\mathrm{O}$	40	$3Mn^{2+} + 2NO_2^- + 2H_2O \rightarrow 3MnO_2 + N_2 + 4H^+$
10	$3CH_4 + 4SO_4^{2-} + 8H^+ \rightarrow 3CO_2 + 4S^0 + 10H_2O$		NH4 ⁺ oxidation
11	$\mathrm{CH}_4 + 4\mathrm{S}^0 + 2\mathrm{H}_2\mathrm{O} \rightarrow \mathrm{CO}_2 + 4\mathrm{H}_2\mathrm{S}$	41	$\mathrm{NH_4^+} + 1.5\mathrm{O_2} \rightarrow \mathrm{NO_2^-} + \mathrm{H_2O} + 2\mathrm{H^+}$
	H ₂ oxidation	42	$\mathrm{NH_4}^+ + \mathrm{NO_2}^- \longrightarrow \mathrm{N_2} + 2\mathrm{H_2O}$
12	$H_2 + 1/2O_2 \rightarrow H_2O$	43	$NH_4^+ + 4MnO_2^- + 6H^+ \rightarrow NO_3^- + 4Mn^{2+} + 5H_2O$
13	$5H_2 + 2NO_3^- + 2H^+ \rightarrow N_2 + 6H_2O$	44	$\mathrm{NH_4^+} + 3\mathrm{MnO_2} + 4\mathrm{H^+} \rightarrow \mathrm{NO_2^-} + 3\mathrm{Mn^{2+}} + 4\mathrm{H_2O}$
14	$4H_2 + NO_3^- + 2H^+ \rightarrow NH_4^+ + 3H_2O$		Fe ²⁺ oxidation
15	$H_2 + NO_3^- \rightarrow NO_2^- + H_2O$	45	$4Fe^{2+} + O_2 + 6H_2O \rightarrow 4FeOOH + 8H^+$
16	$3H_2 + 2NO_2^- + 2H^+ \rightarrow N_2 + 4H_2O$	46	$5Fe^{2+} + NO_3^- + 7H_2O \rightarrow 5FeOOH + 0.5N_2 + 9H^+$
17	$3H_2 + NO_2^- + 2H^+ \rightarrow NH_4^+ + 2H_2O$	47	$8Fe^{2+} + NO_3^- + 13H_2O \rightarrow 8FeOOH + NH_4^+ + 14H^+$
18	$3H_2 + N_2 + 2H^+ \rightarrow 2NH_4^+$	48	$2Fe^{2+} + NO_3^- + 3H_2O \rightarrow 2FeOOH + NO_2^- + 4H^+$
19	$H_2 + MnO_2 + 2H^+ \rightarrow Mn^{2+} + 2H_2O$	49	$3Fe^{2+} + NO_2^- + 4H_2O \rightarrow 3FeOOH + 0.5N_2 + 5H^+$
20	$4\mathrm{H}_2 + \mathrm{SO_4}^{2\text{-}} + 2\mathrm{H}^+ \rightarrow \mathrm{H}_2\mathrm{S} + 4\mathrm{H}_2\mathrm{O}$	50	$6Fe^{2+} + NO_2^- + 10H_2O \rightarrow 6FeOOH + NH_4^+ + 10H^+$
21	$H_2 + S^0 \rightarrow H_2S$		CO oxidation/disproportionation
22	$4H_2 + CO_2 \rightarrow CH_4 + 2H_2O$	51	$2CO + O_2 \rightarrow 2CO_2$
23	$3H_2 + CO \rightarrow CH_4 + H_2O$	52	$5\text{CO} + 2\text{NO}_3^- + 2\text{H}^+ \rightarrow 5\text{CO}_2 + \text{N}_2 + \text{H}_2\text{O}$
	H ₂ S oxidation	53	$4\text{CO} + \text{NO}_3^- + \text{H}_2\text{O} + 2\text{H}^+ \rightarrow 4\text{CO}_2 + \text{NH}_4^+$
24	$H_2S + 2O_2 \rightarrow SO_4^{2-} + 2H^+$	54	$\rm CO + \rm NO_3^- \rightarrow \rm CO_2 + \rm NO_2^-$
25	$5H_2S + 8NO_3^- \rightarrow 5SO_4^{-2-} + 4N_2 + 2H^+ + 4H_2O_1^{-2-}$	55	$3\text{CO} + 2\text{NO}_2^- + 2\text{H}^+ \rightarrow 3\text{CO}_2 + \text{N}_2 + \text{H}_2\text{O}$
26	$H_2S + NO_3^- + H_2O \rightarrow SO_4^{-2-} + NH_4^+$	56	$3\text{CO} + \text{NO}_2^- + \text{H}_2\text{O} + 2\text{H}^+ \rightarrow 3\text{CO}_2 + \text{NH}_4^+$
27	$5H_2S + 2NO_3^- + 2H^+ \rightarrow 5S^0 + N_2 + 6H_2O$	57	$\text{CO} + \text{MnO}_2 + 2\text{H}^+ \rightarrow \text{CO}_2 + \text{Mn}^{2+} + \text{H}_2\text{O}$
28	$3H_2S + 8NO_2^- + 2H^+ \rightarrow 3SO_4^{-2-} + 4N_2 + 4H_2O$	58	$4CO + SO_4^{2-} + 2H^+ \rightarrow 4CO_2 + H_2S$
29	$3H_2S + 4NO_2^- + 4H_2O + 2H^+ \rightarrow 3SO_4^{-2-} + 4NH_4^{++}$	59	$4\text{CO} + 2\text{H}_2\text{O} \rightarrow 3\text{CO}_2 + \text{CH}_4$
30	$3H_2S + 2NO_2^- + 2H^+ \rightarrow 3S^0 + N_2 + 4H_2O$		NO ₂ ⁻ oxidation
	S ⁰ oxidation/disproportionation	60	$2NO_2^- + O_2 \rightarrow 2NO_3^-$
31	$S^{0} + 1.5O_{2} + H_{2}O \rightarrow SO_{4}^{2-} + 2H^{+}$	61	$NO_2^- + MnO_2 + 2H^+ \rightarrow NO_3^- + Mn^{2+} + H_2O$

All species are taken to be aqueous except elemental sulfur (S^0) , pyrolusite (MnO_2) and goethite (FeOOH), which are all crystalline phases.