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where B = 3/2 (see Appendix A).

The parameter b, indicating the decrease of event number with increasing
magnitude, was at first considered approximately constant in the Earth (Allen ef
al., 1965). More specific studies showed that its value could vary both in space
(Myamura, 1962) and in time (Healy et al. 1968). Several hypothesis were
advanced on the causative physics underlying such distribution, in particular
regarding the value of b. It was proposed that b is controlled by fault heterogeneity
(Mogi, 1962). A series of experiments on rock samples showed that & could also
vary as a function of the imposed stress level (Scholz, 1968). It can be shown that
both interpretations are correct and complementary (Wiss, 1973). Assuming that
the strength G, is a stationary distribution within a rock and that a mean stress
G can be defined, a relationship can be outlined between b and the probability
F(c,, G) that the local stress exceeds strength. For example it was proposed
(Scholz, 1968) that b=v [l - F(o,, )], where v is a constant and F is an
unspecified distribution function. In this paper, we describe a way of altering the
distribution F(c,, 6) by modifying fluid pressure at a rough fault interface, with
the consequent change in b.

We postulate that the heterogeneity in fault strength originates in the
topographical roughness of the frictional surfaces in contact. Such a model was
been proposed as a fault analogy by several authors, who either observed fault
roughness in the field (Schmittbuhl er al., 1993) or investigated its consequences
on friction (Okubo and Dieterich, 1984; Dieterich, 1994), Normal stress
fluctuations caused by roughness reflect ontoe the fault strength distribution; as we
argue further, under such circumstances the fluctuation of fluid pressure may alter
the friction and induce time variations in the strength distribution on the fault.

Recent studies have rekindled interest in time variations of b, in particular its
possible link to stress level variations prior to critical failure in a rock sample
(Sammonds et al., 1992), or prior to the advent of a major earthquake rupture in
the Earth crust (Smith, 1981). Time variation of b and its possible mechanical
causes are the essential focus of our present study. In particular, we explore its
mechanical relation with variations of fluid pressure inside rock pores and fissures.
An example of seismicity change linked to pore pressure variations was
documented near Denver, Colorado, when injections of high pressure fluid in the
ground triggered a relatively abundant seismic activity (Evans, 1966). It was
possible to demonstrate the direct influence of pressure on the number of
carthquakes but also, to a certain extent, its correlation with the b value in the
frequency-magnitude distribution (Healy ef al., 1968). It has been argued (Wyss,
1973) that the 5 change due to pore pressure variations is of the same nature as the
b change observed when different stress levels were applied to rock samples in
laboratory experiments. Indeed, one consequence of high pore pressure is a drop
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in rock strength, which is equivalent to a rise in stress if all other parameters remain
unchanged. However, we show hereafter that a pore pressure variation may have
more complex and subtle effects on fracture than a change in stress.

In this study we explore in detail the mechanics of faults in the presence of

variable pore pressure. We show how the fault properties should be altered in
order to obtain a variation of the earthquake distribution, and, in particular, of the
b value. The model invokes the presence of fluid-filled, weak zones on the fault
that evolve with pore pressure, acting as stress-concentrating flaws inside a fragile
system. This creates a bimodal strength distribution, capable of generating fracture
distributions with variable » values under variable pressure. In order to test
whether the proposed mechanism yields the expected behavior in response to a
pressure variation, we simulate fracture on a discrete lattice with spatially
inhomogeneous properties under various pressure levels. Such a system shows
indeed that the ratio of large to small earthquakes increases when the fluids are
drained from the system. This model is attractive because it is builds on a
minimum number of basic, well-established assumptions about rocks and fracture
mechanics.

We also discuss the relevance of the model with regard to the recent evolution
seismicity observed at Mt. Vesuvius, Southern Italy (Zollo et al., 2002).

2. Robustness of the b exponent

We look for a simple mechanism that may induce a significant mutation in the
frequency-magnitude distribution of fracture events within a region. We assume
that the region, highly permeated with fluids, is undergoing a pore pressure lapse.

The most basic moedel that we consider involves a fixed fault population
(individual faults neither appear nor disappear) with fixed fault sizes. Assume that
a drop in pore pressure increases friction by some average amount y on each fault.
Invoking self-similarity, we can assume that y does not depend on fault size. In
such case, the average stress drop AG on faults of linear size L will increase to
YAG . A fault typically generating an event of moment M, will hence release a new
moment M, that we obtain by integration of the average stress drop over the fault
area:

M,=L*A5 - M, =vI}AG , 2)
following the definition in Appendix A (note that we dropped a dimensionless

geometrical factor of the order of | in the expression of the moment, for sake of
simplicity).
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Abstract — Seismic faults may be described as rough failure surfaces pressed
together in frictional contact. Most normal load is supported by the protruding
asperities, while anti-asperities form areas of loose contact with low frictional
strength; such low strength areas act as seeds for nucleation of fracture. As pore
pressure increases, the seeds grow in size and number, allowing fracture to be
triggered at much weaker tectonic loads; however, fracture has less probability of
involving large areas, owing to the low average stress level. This mechanism is
illustrated by a rather simple fracture simulation, where it is seen that smaller events
are favored at high pore pressure, in such way that the b-value of the magnitude-
frequency distribution increases. As an example, we cite the seismicity of Mt.
Vesuvius, where a recent drop in temperature and pressure was accompanied by a
significant decrease in the seismicity b-value.

keywords: Earthquake distribution, fault mechanics, self-affine surface, cellular
automaton model, pore pressure, volcanic seismology

1. Introduction

The number of earthquakes N of magnitude M or greater follow the well-
known empirical Gutenberg-Richter frequency-magnitude distribution, stating that
in a given sample of events, log N = a—b M. This distribution has been abundantly
commented in the literature since it was first postulated (Gutenbergand Richter,
1949). The above distribution is equivalent to a power-law expressing the N in terms
of the moment M,

N (M,) o= M]"® (1)
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However, since the factor of moment increase is constant throughout the
magnitudes, the exponent b in the power law describing the cumulative frequency-
moment distribution remains unchanged:

N M)y =AM =A (M), (3)

The same observations applies if we assume that each fault, initially limited
to dimension L, extends to cover a dimension L' on average 7y times larger that the
original one, invoking some effect of increased stress drop on the probability that
fracture propagates further (Scholz, 1968). Again, if we assume that y does not
depend on fault dimension because of self-similarity, we can show that & does not
change:

N (M) =AM =A (M) . 4)

Thus the assumption of fixed fault population is not compatible with changes
of b, even when allowing self-similar size shift among the fault population.

These examples show that the power-law exponent of the distribution is
extremely robust; this feature is well-known in the field of critical phenomena,
where the exponents of self-organized systems are only affected by dramatic
changes in the internal dynamics. Even different processes can share the same
exponents; they are then said to belong to the same universality class (Stanley,
1971). '

A more promising mechanism may take place if we assume that the fault
population is not fixed (i.e., faults are allowed to appear or disappear), or,
alternatively, if we drop the assumption of a self-similar size shift. This imply that
the strength distribution should change in a more fundamental way than a simple
rescaling. For example, weak patches corresponding to several small, active fault
areas may coalesce into larger, stronger faults. Such a mutation may take place
when the geometry of a highly heterogeneous system of interacting fractures
evolves under the influence of fluids. Another possible consequence of high fluid
pressure, over a fault with strong stress fluctuations, is to reduce friction to zero
in some patches, thus creating “flaws™ in the form of fluid filled pockets.
Intuitively, the increasing size and the number of such flaws with pressure will tend
to increase the number of small-size fractures that are triggered at the borders of
these flaws. There is no simple analytical solution to such problem, but one
classical tool for investigation of such a system is the simulation of a discrete
system of many interacting elements (Gabriclov et al., 1994),
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3. Faulting of rough surfaces under high pore pressure: model and
basic assumptions

Next we discuss a few basic assumptions that are built into our fracture
model. Measures of the surface roughness on actual fracture surface, among which
surfacing fault scarps, consistently yield a self-affine distribution with a roughness
(or Hurst exponent) of about £ = 0.85; this means that the surface is asymptotically
flat at large scale, but quite rough at the small scale. If k(x, v) deseribes the height
of a self-affine surface with Hurst exponent {, rescaling of the two coordinates
x — Ax and y — Ay requires a rescaling of height # — h A% (Feder, 1988). The
normal stress across a fault surface is linked to the topography of the two surfaces
pressed together. As shown by (Hansen e? al., 2000), when the surface is self-affine
with a Hurst exponent £, the resulting normal stress will also be self-affine, but
with an exponent { — 1. This is equivalent to a power spectrum distribution,
characterizing the elevation in the surface topography, in TI(k) = k"% if k is the
wavenumber (Schmittbuhl ef al., 1993). Finally, we may assume that the power
spectrum of normal stress is in TI(k) = k7.

Furthermore, we assume that yield stress is proportional to the effective
normal stress. This can written in the form of a Coulomb law for yield stress,
0,=0[0,],;, where ¢ is a dimensionless coefficient of the order of 0.6. The
effective normal stress is defined as [0,],, = O, — P, i.e., by subtraction of fluid
pressure P. At all sites where P > g, fluid pressure forces the fault borders to open,
so that friction is permanently zero and we consider such an area as an open, fluid-
filled crack; this assumption is frequently used as a criterion for estimating stress
in boreholes by forcing fracture with pressurized mud injection, as described in
(Rummel, 1987). At the remaining lattice sites, failure occurs whenever the stress
reaches the yield value o, defined above. Henceforth we shall use the terms
strength, yield stress or ¢, interchangeably.

We have both transient failure, propagating to the solid lattice sites and
permanent, fluid filled areas, that act as nucleating points for fracture. Stress is
redistributed according to the following conservation rule. For fixed loading
conditions at infinity, the net stress flux across our fault surface is a constant (we
solve a static problem, so that the system is always at equilibrium). Net stress
changes only take place when loading conditions are altered (e.g., stress is slowly
increased between fracture events thus simulating the effect of tectonic loading).
Thus the shear stress that is not supported inside fluid filled cracks or fractured
areas, is redistributed in the unbroken regions. Classical solutions for cracks
embedded in an elastic continuum suggest that stress is not redistributed evenly,
but is typically concentrated close to the crack, dropping very rapidly away from
its border (as /" if r is the distance from the crack tip). Thus we may simplify the




402 S.B. Nielsen, A. Zollo, W. Marzocchi

computation by redistributing the stress from a collapsed area only on the first row
of cells around the border —typically, a redistribution of load at the crack tip such
as that found in Burridge-Knopoff discrete lattice models (Burridge and Knopotf,
1967), or in cellular automata simulating earthquakes as proposed by (Bak and
Tang, 1989); however, the interaction rules described below are specific to our
model (Fig. 1). We adopt a simplified scalar analogy of the elastic continuum,
assuming that there is a single significant stress term ¢ on the fault. We limit the
computation to 2D (the fault surface itself). If at some time ¢ a crack forms, or
grows, due to the collapse of N adjacent cells, the integral of stress drop results in
a net force

2 G(rz,r)dxz (5

n=lN

where dx’ is the area of an individual cell and # the cell index. Assuming that such
force is redistributed evenly among N, cells bordering the crack, each of them
undergoes a stress increase

Ac=(1/N,) D onndy’ (6)

n=l.N

As long as new elements fail at the borders of the crack, the fracture event
continues and stress is redistributed (Fig. | shows an example of fracture on the
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Figure 1. Bxample of fracture process on the discrete lattice model. (A) Permanently
fractured, fluid filled area. (B) After the system is loaded, the hatched area represents those
bordering elements upon which stress from inside the fluid filled crack is evenly
redistributed. (C) Elements that have reached failure after loading are represented in dark
grey. After each element fails, the load is redistributed and it is checked whether more
elements have reached the yield limit. After no more elements fail, the moment is computed
by summing the stress released from all the failed elements. The hatched area represents
the elements where all the load from fracture is finally redistributed. Eventually, all failed
elements heal except for the fluid filled crack and stage (A) is resumed.
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discrete lattice). When failure stops propagating, all sites heal and recover their
solid friction, except the fluid filled patches. The moment of the fracture event is
computed as the sum of stress drop across the failed area, times an arbitrary elastic
stiffness (Appendix A). The system is then loaded again by adding stress until new
fractures are initiated. This cycle is iterated several hundred times and we are left
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Figure 2. Distribution of yield stress and resulting fluid pockets for two different pressure
levels. First, a random field with a power-law spectrum was generated, representing the
normal stress distribution on the fault. Then a constant fluid pressure P was subtracted from
thle field, in order to obtain the effective normal stress and strength &, through a Coulomb
friction law (see text for details). The resulting field is represented for (A) P = 0.15 G, and
(B) P =0.30 6,, where &, indicates the median value of the normal stress field (thejgray
scale goes from zero values in white to peak values in black). Finally, those patches where
the P exceeds normal stress were defined as open, fluid filled pockets identified by the
black spots in (C) and (D) for low and high pressure levels, respectively. This is only one
example among several faults generated with random strength distributions.
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with a small stack of moment magnitudes. The whole process can then be repeated
' for new random distributions of strength; finally, events from all simulations can
be merged into a single catalog.

Various random strength distributions with a spectrum in k' were generated
on discrete lattices of 128 x 128 elements, with cutoffs at large and small
wavenumbers (0.05 < k < 0.2) in order to avoid roughness on a scale smaller that
about 5 lattice sites and to account for bridge closure under normal load above a
critical crack size (Scholz, 1988). Fracture was simulated for two different levels
of pressure, i.e., P=0.15G,and P = 0.3 &, where the bar indicates the median
value (see example of distributions in Fig. 2). By varying the fluid pressure level,
we affect the size and the number of the fluid filled areas, and we also affect the
overall effective stress distribution (Fig. 3). In order to achieve a statistical
significance in the results, the simulations were repeated on lattices with new
random distributions, until a satisfactory density of events and convergence of the
cumulated results was observed. The cumulative distribution obtained (number of
events versus moment) shows a significant decrease in slope associated with the
drop in fluid pressure (Fig. 4), in agreement with field observations (Evans, 1966).

The responsible mechanism can be qualitatively explained as follows. At high
pore pressure, the fluid pockets are ubiquitous, large and the frictional strength is
generally low. Many fracture events are initiated at the edges of the fluid pockets
where stress is concentrated, even when the overall load on the system is low.
However those fractures often fail to propagate to large areas, because the stress
is generally low away from the localized concentrations. On the contrary, when the
pressure drops fluid pockets shrink or disappear and the frictional strength rises.

section across the fault
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Figure 3. Normal stress (thin curve), pore pressure (dashed line) and resulting strength g,
(bold curve). This represents a section of Fig. 2 across the fault.
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Figure 4. Cumulative distribution of moments obtained by simulating fracture on a set of
fa}llts }vith random strength distributions. Small, solid squares represent events on faults
with high pressure (P =0.305 ), while large open squares those on faults with low pressure
(J‘D =0.155,). Moment is defined as the integral of stress drop across the area failed in a
single event. Tapering of the curves at low moment is due to the presence of a smallest scale
u_ltoff, i.e., the size of an elementary cell of the discrete lattice. Note that in the medium-
h!g'h moment range, the curves both follow a log-linear trend, but the slope is significantly
gllf'ferent. Since both distributions were generated on the same fault sets, the only difference
is in the pore pressure which alters the strength distribution.

Under such conditions, the load necessary to trigger failure is larger. Once fracture
starts, it generally encounters regions under high stress which promote rupture
propagation to large areas.

4. Interpreting the recent seismicity of Mt. Vesuvius, Italy

‘ In the case of Mt. Vesuvius, it has been reported (Zollo et al., 2000} that the
seismicity over the past three decades was the object of a significant increase of
the ratio between large and small earthquakes. Almost in parallel, the temperature
measured at the fumerolles has decreased of about 500°C since the last active
eruption has terminated in 1944 (Chiodini ef al., in press.). Our working hypothesis
is that the cooling of the hydraulic system permeating the region, has induced a
substantial drop or increase in fluid pressure, thus affecting the friction and the
seismicity of the area.

Hence there are two independent observations that we try to relate to the
evolution of seismicity, namely, the end of the last active eruptive phase in 1944
and a substantial drop in the temperature measured at the fumerolles at the top of
Mit. Vesuvius since the fifties (Chiodini et al., in press.).
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It has been pointed out that the value of b — typically fluctuating about
1.3 +0.5 - seems to be determined by the particular geological condition of the
region (e.g., the tectonic or volcanic activity, the imminence of an eruptive phase,
a particular 2 regime or the presence of fluids permeating the crust). In synthesis
to the geological and laboratory experiments, it can be argued that the observed b
value is low under conditions of low temperatures, relatively high loads, and in
non-volcanie, seismically active regions. On the other hand, it is typically high
under low loads, high temperatures and in active volcanic regions (Mogi, 1962).

The hydraulics of Mount Vesuvius are obviously characterized by an open
system with strong convection and renewal of the fluid mass (other fluids than the
magma itself), necessary for the rapid cooling observed, as shown by the
ubiquitous presence of fumerolles, ground-water filtration and typical geological
markers of volcanic gas expulsion like sulphur crystals.

The functional relation of pressure and temperature in such system is not
trivial, since neither the fluid mass nor the confining volume are fixed. However
it is a plausible conjecture that a dramatic drop in temperature, inducing the
condensation of any vapor phase in the hydrostatic conditions of the topmost
Earth’s kilometers, should be accompanied by a substantial drop in pressure. Note
that in the observed transition from about 600°C to 80°C, the system dtops below
the triple point in the phase diagram of water.

While we interpret the observed evolution at Mt. Vesuvius in terms of our
model of inhomogeneous fault under variable pore pressure, some alternative
interpretations have been discussed elsewhere (Zollo ef al., 2000). Among others,
it was proposed that the seismicity change could be induced by recent magma
intrusion, but the authors discarded the hypothesis as inconsistent with the total
absence of the typical activity associated tovolcanic events, on otie hand, and with
the observation of temperatute drop, on the othet. :

5. Acknowledgments

We ucknowledge Leon Knopoff and Lucilla de Archangelis for several
inspiring discussions. S.N. acknowledges Enzo Boschi, Paolo Gasparini and INGV
for support during this study.
References

Aki, K., Scallng law of seismic spectrum, J. Geophys, Res., 72, 1217-1231, 1967,
Allen, C. R, P. StAmand, C. F. Richter, and J. M, Nordquist, Relationship between

Pore pressure, earthquake distribution and the cooling of a volcano 407

seismicity and geologic structure in the Southern California region, Bull. Seismol,
Soc. Am., 55, 753, 1965.

Burridge, R. and L. Knopoff, Model and theoretical seismicity, Bull, Seismol. Soc. Am., 57,
341-371, 1967.

Bak, P. and C. Tang, Earthquakes as self-organized critical phenomenon, J. Geophys. Res.,
94(B11), 15,635-15,637, 1989.

Chiodini, G., L. Marini, and M, Russo, Geochemical evidence for the existence of high-
temperature hydrothermal brines at vesuvio volcano (italy), Geochim. Cosmeochim,
Acta, 2001, In press.

Dieterich, J. H., A constitutive law for rate of earthquake production and its application to
earthquake clustering, J. Geophys. Res., 99, 2601-2618, 1994,

Evans, M. D., Man made earthquakes in denver, Geotimes, 10, 11-18, 1966.

Feder, L., Fractals, Plenum Press, 1988,

Gabrielov, A., W. I. Newman, and L. Knopoft, Lattice models of failure: Sensitivity to the
local dynamics, Phys. Rev. E, 50(1), 188-197, 1994.

Gutenberg, B. and C. F. Richter, Seismicity of the Earth, Princeton Univ. Press, 1949,

Healy, J. H., W. W. Rubey, D. T. Griggs, and C. B. Raleigh, The Denver earthquakes,
Science, 161, 1301-1310, 1968.

Hansen, A., J. Schmittbuhl, G. G. Batrouni, and F. A. De Oliveira, Normal stress
distribution of rough surfaces in contact, Geophys. Res. Lett,, 27(22), 3639-3642,
2000,

Miyamura, S., The magnitude-frequency relation of earthquakes and its bearing on
geotectonics, Proc. Japan Acad., 38, 27, 1962,

Mogi, K., Magnitude frequency relation for elastic shocks accompanying fracture of
various materials and some related problems in earthquakes, Bull. Earthguake Res.
Inst., 40, 831-853, 1962.

Okubo, P. G. and J. Dieterich, Effects of physical fault properties on frictional instabilities
produced on simulated faults, J. Geophys. Res., 89, 5817-5827, 1984,

Rummel, F, Fracture mechanics approach to hydraulic fracturing stress measurements, In
Atkinson, B., editor, Fracture Mechanics of Rock, pages 217-240. Academic Press,
Leondon, 1987.

Scholz, C., The frequency-magnitude relation of microfracturing in rock and its relation to
earthquakes, Bull. Seismol. Soc, Am., 58(1), 399-415, 1968.

Scholz, C. H., The critical slip distance for seismic faulting, Nature, 336, 761-763, 1988.

Schmittbuhl, J., 8. Gentier, and S. Roux, Field measurements of the roughness of fault
surfaces, Geophys. Res. Lett., 20, 639-641, 1993,

Smith, W. D., The b-value as an earthquake precursor, Nature, 289, 136-139, 1981,

Sammonds, P. R., B G. Meredith, and I. G. Main, Role of pore fluids in the generation of
seismic precursors to shear fracture, Nature, 359, 228-230, 1992.

Stanley, H. E., Introduction to Phase Transitions and Critical Phenomena, Oxford
University Press, New York, 1971, International Series of Monographs on Physics.




408 S.B. Nielsen, A. Zollo, W. Marzocchi

Wyss, M., Towards a physical understanding of the earthquake frequency distribution,
Geophys. J. R. Astron. Soc., 31, 341-59, 1973,

Zollo, A., W. Marzocchi, P. Capuano, A. Lomax, and G. Iannaccone, Space and time
behaviour of seismic activity at mt. vesuvius volcano, southern italy, Bull. Seismol.
Soc. Am., 92, 2, 625-640, 2002.

Appendix A: Moment definition
The seismic moment is a measure of earthquake size; it is defined as the

integral of the dislocation that occurred on the fault area during the earthquake,
times the shear stiffness p of the medium:

M, = },l”r Au(x)dxdy (7)

where Au is the final dislocation and x a point of the fault surface I'. Assuming
average values of dislocation Az and siress drop AG, and a linear dimension L of
the fault, we have A5 = CuAR/L, where C is a dimensionless geometrical factor
of the order of 1 that depends on the fault shape (in our simulation we assume that
C = 1 for all fractures). The above definition of moment expressed in terms of
average stress yields:

M,=CL* A5 (8)

The magnitude M is another familiar measure of earthquake size; it can be
defined in a number of ways, making it a more arbitrary quantity. Following Aki
(1967), we shall assume in our discussion that magnitude and moment are related
by: p M =log M, — o.. Combining such relation with the frequency-magnitude law
log N = a — b M, we obtain the moment distribution (Eq. 1). Note that o and [} can
be estimated either theoretically or empirically; typical values are of the order of
o= 17 and B = 3/2.




