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Abstract 
 

The MW 7.1, 28 December 1908, Messina Straits earthquake has been the deadliest earthquake in 
recent European history and also one of the first to be investigated with modern instrumental data. 
Throughout a full century, in parallel with the evolution of seismology as a research discipline, scientists 
from all over the world confronted the complexity and elusiveness of its source and the diversity of its 
effects on buildings and on the environment. 
Investigations of the 1908 earthquake went through three distinct phases. In the first phase (1909-late 
1970s) all available observations were used to derive the main source parameters with simplified 
methods, starting with determinations of the epicenter from free-falling bodies. In the second phase (early 
1980s) all data were reconsidered with modern methods involving extensive computer modeling, which 
described the seismic source based largely on the distribution of elevation changes due to the earthquake. 
In the third phase (since 2000), state-of-the-art seismological approaches (such as waveform modeling, 
joint inversion of seismological and geodetic data, dating of paleotsunami deposit) are being used to shed 
light on the more debated aspects of the event, such as the exact origin of the tsunami.  
This paper summarizes the full evolutionary path of these investigations, pointing out misconceptions, 
major achievements and turning points, and discusses the established vs. the debated facts in the 
understanding of the earthquake causative source. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
_________________________________________________ 
Submitted to Seismological Research Letters, second revised version, 8 October 2008 



1. Introduction 

 

Early in the morning on 28 December 1908, just a few days after Christmas, a severe earthquake 

struck the Messina Straits, a rather narrow sound that separates Sicily from Calabria, in southern 

Italy (Figure 1). The shaking was distinctly felt in Albania, Montenegro and the Greek Ionian 

islands, about 400 km to the east and northeast of the Straits; in Malta, about 250 km to the south; 

and as far as Ustica Island, about 220 km to the west. The earthquake was catastrophic in the 

epicentral area and was immediately followed by fires and by a large tsunami. Messina (Sicily) and 

Reggio Calabria (Calabria), two significant cities located less than 10 km apart on the two facing 

shores of the Straits, were almost completely destroyed and buildings were severely damaged over 

an area in excess of 6,000 km2. A significant fraction of the population, numbering 140,000 at 

Messina and 45,000 at Reggio Calabria, was reported dead. Assessing the total number of victims 

has been problematic, as fatality estimates range from 60,000 to over 100,000, yet 1908 was 

undeniably the deadliest European earthquake ever and one of the deadliest worldwide. Guidoboni 

et al. [2007] contend that 80,000 people were killed by the earthquake, including as many as 2,000 

who died as a result of the tsunami. Waves up to 12 meters struck the shorelines south of Messina 

and south of Reggio Calabria, completing the destruction and displacing the rubble from collapsed 

buildings. All communications in the affected area were disrupted, and rescue operations had to rely 

on access from the sea. Units of the Russian and English navies, already in the area, were the first to 

offer immediate relief. In particular, medical officers of the Baltic Guard-Marine brought the first 

medical aid to the earthquake victims, and Russian researchers were the first to offer psychiatric 

assistance.  



Damage in Messina and Reggio Calabria was exacerbated by the poor quality of construction 

and building materials, as well as by the occurrence of significant earthquakes during the preceding 

15 years. Especially in southern Calabria, the population and their dwellings had been shattered in 

1894, 1905 and 1907 during earthquakes that were all larger than Me>6 (Me is an equivalent 

magnitude obtained from intensity data [Boschi et al., 1995]; Figure 1). The Messina Straits locate 

in the middle of the Calabrian Arc, one of the most seismically active areas of the Italian region and 

of the entire Mediterranean basin. The Straits area itself had been struck several times in the past, 

though not with the same violence as in 1908. The historical record [Guidoboni et al., 2007] reports 

at least three earthquakes with Me>5.5, respectively on 31 August 853 (I0 IX-X), 25 February 1509 

(I0 VIII), and 6 February 1783 (I0 VIII-IX). The last event took place at the northern end of the 

Straits and was part of a 2-month sequence of five major earthquakes that struck a 100 km-long 

stretch of southern and central Calabria. All these earthquakes had I0 between VIII-IX and XI and 

produced extensive damage both in southern Calabria and northeastern Sicily, and particularly in 

Messina. The historical records also report more elusive but presumably significant earthquakes in 

91 B.C. (I0 IX-X) and 361 A.D. (I0 X). 

After a few decades of great progress in the development of seismological instruments [Dewey 

and Byerly, 1969], the beginning of the twentieth century witnessed a dramatic increase in the 

number of seismic instruments installed worldwide, some of which had the latest designs and were 

rather reliable in their performance. For instance, many Wiechert seismographs were in use around 

the world in the early 1900's, providing good quality recordings that can still be analyzed with 

modern techniques. Some of these instruments are still operational (e.g., Göttingen, Sweden [Ritter, 

2002]). Besides, due to the simple optical principles underlying the measuring techniques, ground-

surface leveling instruments available at the time were nearly as reliable as recent ones. 



Despite the fast progress in the number and technological characteristics of the available 

instruments, however, the cause and mechanism of earthquakes were largely unknown. The 

existence of a close link between faulting and earthquakes had started to be accepted in the second 

half of the nineteenth century following observations that earthquake patterns can be related to 

geographical and geological features [Hoernes, 1878] and observations of coseismic surface breaks 

matching the topography [Gilbert, 1884]. These pioneering ideas gained momentum following the 

major San Francisco earthquake of 18 April 1906. The first report on this earthquake, prepared by a 

commission chaired by Lawson [1908], put together a large set of observations, including surveys 

on the damage distribution and surface ruptures, seismic recordings from worldwide stations, and 

geological analyses on the crustal structure of the epicentral region. Taking advantage of these 

observations, Reid [1910] developed the theory of elastic rebound, which was published in the 

second volume of the Commission report. This effort provided the first unifying picture of the 

physical process associated with rupture in the Earth's crust. 

In such a rapidly changing scientific framework of earthquake theory, many scientists from all 

over the world went to the Messina Straits area immediately after the 1908 earthquake event and 

investigated the effects of the ground shaking on buildings and on the natural environment. The 

origin of the 1908 earthquake itself was largely debated by contemporary scholars: a violent 

volcanic explosion in the Straits was a popular hypothesis, implying that the great advances in the 

understanding of the seismic source prompted by investigations of the San Francisco earthquake 

had evidently not yet become common ground for all seismologists. Such delayed acceptance of the 

nature of earthquake source physics and the limited computational resources of the time did not 

allow a thorough analysis and the development of a comprehensive model of the earthquake. 

Nevertheless, the observations and measurements by the early investigators of the 1908 earthquake 



and tsunami formed the basis for a century of analyses and ultimately allowed later scientists to 

achieve the present knowledge on the earthquake tectonic setting, the geometry, mode and style of 

its causative rupture, the genesis of the tsunami and the causes of the uneven damage distribution. 

 

 

2. Observations and early studies: at the dawn of quantitative seismology 

 

The great quantity of observations accumulated by the investigators of the time included 

extensive field reports on the effects of the earthquake, photographs of damaged buildings, witness 

accounts of the tsunami wave and of various phenomena associated with the earthquake (rumble, 

luminescence, etc.), and of course instrumental data (Table 1). No surface break that could be 

directly related with the earthquake fault was reported, but several secondary surface effects were 

observed both in Sicily and Calabria. Variations in the water level in pools and wells, ground 

fractures and many landslides and rockfalls were reported over a large area encompassing the 

intensity X and XI areas. Significant subsidence occurred on both sides of the Straits but 

particularly along the Calabrian shoreline, where the coast retreated by as much as 70 m. Following 

is a summary of the observations collected by the early investigators and circulated to the entire 

scientific community. Although most of the observations were of a qualitative nature, many were 

obtained from state-of-the-art instrumentation and were, in a sense, much “ahead of their time”. 

 

 

2.1. Macroseismic observations 

 



The reports by Mercalli [1909] and Omori [1909] were among the first published on the Messina 

Straits earthquake. Both described the highly catastrophic consequences of the earthquake and 

hypothesized that the number of victims was close to 100,000, specifying that the unusual level of 

destruction was mainly due to the poor quality of the construction, especially in the two main cities 

destroyed in the earthquake. According to Baratta [1910], the severity of the shock induced 

Mercalli to add the XI degree to his own intensity scale, but he also reduced the estimated loss of 

lives to around 80,000.  

At the time of the earthquake many researchers were elaborating intensity scales and methods for 

deriving earthquake source information from felt report data. Using a method that was developed by 

Mallet [1862] and that was popular during the second half of the nineteenth century, Omori [1909] 

attempted to evaluate what he called the location of the “maximum earthquake motion” from near-

field observations of over-turned free-fall bodies, and assumed this to be coincident with the 

epicenter (Figure 1). Besides Mercalli [1909] and Omori [1909], many scientists published 

extensive macroseismic studies on the 1908 earthquake. De Stefani [1909a], Martinelli [1909], 

Oddone [1909], Perret [1909] and several others studied the earthquake effects and some of them 

produced isoseismal maps, but the most complete field survey is that due to Baratta [1910]. He 

collected a considerable amount of very detailed macroseismic data, pointing out the presence of 

several anomalies in the distribution of the intensity in zones that had already suffered strong 

damage in the 1783, 1894 and 1905 earthquakes. Baratta [1910] related this observation to the 

presence of areas of “seismic instability”, implicitly suggesting the existence of site amplification 

effects. Using Mallet’s approach with a larger number of observations, he determined a main center 

corresponding to Omori's epicenter and a second one slightly north of it (Figure 1). Determining 

the epicenter from the arrival times of seismic waves was already common practice, but due to the 



difficulties in the determining the correct timing of seismic phases and to the large uncertainties in 

regional wave propagation models, no attempt was made to this end: the results obtained by Omori 

and Baratta were considered reliable enough and indicative of the main seismic center. In fact, none 

of the numerous scientists who studied the 1908 earthquake in the years immediately following the 

event published an epicentral estimate obtained from the analysis of seismic waves. As for the 

hypocentral depth, a good estimate was derived by Oddone [1909] from the intensity distribution, 

using the relation between source depth and intensity attenuation published by Von Kovesligethy 

[1906]; 9 km for the hypocentral depth and 0.02 km-1 for the intensity attenuation factor. 

 

 

2.2. Tsunami observations 

 

In addition to the earthquake felt reports, Baratta [1910] also listed a number of observations on 

the height of the tsunami wave from eyewitness accounts. Platania [1909] focused on these 

accounts, making geodetic measurements of the level reached by the tsunami waves and estimating 

their period and direction of approach. Overall, including the studies of both Platania [1909] and 

Baratta [1910], more than 130 localities were surveyed. The mean run-up height, measured along a 

300 km-long segment of the eastern Sicily coast, was about 5 m, while the strongest effects 

occurred on a 80 km-long stretch from Galati Marina to Aci Trezza, with waves between 5 and 12 

m in height (Figure 2). In the same paper Platania [1909] reported mareograms from different 

stations (Figure 3). The tsunami was recorded by the mareograph of Malta (about 250 km south of 

the epicenter) where the waves arrived about one hour after the earthquake and reached peak-to-

peak amplitude as large as 90 cm with a period of about 20 minutes. North of the Messina Straits, 



the tsunami was recorded by the mareographs located in the harbors of Naples, Ischia and 

Civitavecchia. The mareograph of Palermo was not functioning at the time of the earthquake. Back 

in operation around noon of the same day, it immediately started recording sea levels oscillations 

slightly smaller than 20 cm with a period of about 10 minutes. Platania [1909] attempted a physical 

interpretation of the tsunami wave velocity in connection with changes of sea floor depth. The basic 

theory of sea wave propagation and the gross bathymetry of the Straits area were already known, 

but the lack of computational facilities and the poor knowledge of the earthquake source physics did 

not allow any further analysis of the tsunami. 

 

 

2.3. Instrumental observations: geodetic 

 

Antonio Loperfido [1909], an officer with the Italian Istituto Geografico Militare, remeasured 

two leveling lines fortuitously surveyed shortly before the earthquake, obtaining elevation changes 

at 114 benchmarks. Most of them (82) were located on the Calabrian shore and only a few (32) 

were on the Sicilian side of the Straits, between Messina and the crest of the Monti Peloritani 

(Figure 4). The density of the benchmarks and the accuracy of the measuring procedures were 

comparable to present day, but a fraction of the benchmarks subsided as a consequence of local 

settling of loose deposits, as remarked by Loperfido [1909] himself and by De Stefani [1909b]. 

Nevertheless the pattern of elevation changes appeared rather smooth and internally coherent, as 

expected for the surface signature of slip on a large normal fault, peaking at 54 cm in Reggio 

Calabria and nearly 70 cm in Messina. 

 



 

2.4. Instrumental observations: seismological 

 

Shortly after the earthquake many investigators published analyses based on a few or even on 

individual seismograms (e.g., Agamennone [1909]; Comas Sola [1909]; Galitzin [1909]; Malladra 

[1909]; see Figure 5). The analyses described particular aspects of the recordings but were 

generally not focused on the study of the earthquake source. The analysis of the first pulse at close 

stations carried out by Omori [1909] was one of the few attempts to get insight into the source 

characteristics. He concluded that the direction of the first displacement excluded a volcanic 

explosion as a possible cause of the earthquake. 

The most complete compilation of seismological instrumental information was published by 

Rizzo [1910], who retrieved data from his fellow seismologists from all over the world. In addition 

to the reproduction of several original seismograms, Rizzo [1910] published parametric data for 

many stations that had recorded the earthquake, including their exact geographic coordinates, the 

earthquake arrival time and the amplitude of the different phases. He indicated 04:20:27 as the 

arrival time of the first pulse at the Messina station and assumed this as the origin time of the 

earthquake, but no associated error was indicated. Overall Rizzo listed 110 stations at regional and 

teleseismic distance. Unfortunately, not too much could be done at the time with this rich crop of 

data except for estimates of the origin time and of an unreliably large hypocentral depth.  

 

 

3. New analyses: the instrumental era 

 



Significant advances in Earth sciences were achieved during the decades immediately following 

the 1908 earthquake. Many seismologists published studies on the structure of the Earth's interior 

from the analysis of seismic data (e.g., Mohorovičić [1910]; Gutenberg [1912]; Jeffreys [1926] 

Lehmann [1936]) and the physical measure of the strength of radiated seismic waves (e.g., Richter 

[1935]; Gutenberg [1945a, 1945b]). 

The early 1960's marked the beginning of a period of great progress for the Earth sciences and 

for seismology in particular. The deployment of worldwide instrumental networks gave a great 

boost to the development of seismological theory, modeling, and data analysis. New concepts for 

describing the seismic source, such as the seismic moment, double-couple, and fault plane solution, 

were quickly becoming part of the routine earthquake analysis. 

Many past earthquakes were reconsidered in the light of the newly acquired knowledge. Being 

the largest earthquake ever recorded in Europe, and one the strongest worldwide, the 1908 event 

was of particular interest for seismologists. Moreover, at the beginning of the 1970s the Italian 

government decided to launch a project for a bridge crossing the Messina Straits that would 

permanently bind Sicily to the mainland. The technical solution that was later selected for this task 

is a 3 km-long, single span bridge. Although the project is still at a rather initial stage, building the 

longest single-span bridge in the world in a highly active area such as the Messina Straits requires 

accurate control and confident knowledge of the design earthquake, starting a new era of 

monitoring and analysis of the region’s seismicity. At the beginning of a new phase of 

investigations of the 1908 earthquake prompted by the new engineering project, the intensity pattern 

and a rough location of the event were its sole known source characteristics. The intensity reports 

were reanalyzed with updated evaluation and field drawing criteria (e.g., Bottari et al. [1986]), but 



the crucial contributions to the understanding of this earthquake came from the processing of the 

large crop of instrumental data (Table 1). 

 

 

3.1. Seismographic data 

 

The first modern studies based on the instrumental data concerned the evaluation of the 

magnitude of the 1908 earthquake. Gutenberg and Richter [1954] included 1908 in their catalog of 

global seismicity, assigning it a magnitude ML=7½, the largest magnitude ever assigned to this 

event. As reported in Table 2, several other investigators determined its magnitude, sometimes 

from single or a few seismograms, using different magnitude scales (ML, mB, MS, MW). These 

investigators generally obtained similar values, mostly between 6.9 and 7.2. By allowing a direct 

comparison with other great earthquakes, this objective measure of the earthquake strength made it 

clear that its severity went beyond what was expected based on its magnitude. This evidence was 

consistent with, and somehow confirmed, Mercalli‘s [1909] and Omori‘s [1909] intuition about the 

role of poor building construction practice in increasing the effects of the earthquake. 

A thorough analysis of the available instrumental data was accomplished by Schick [1977]. 

Based on P wave arrival times at a couple of close stations, he located the initiation of the rupture in 

the middle of the Messina Straits, a few kilometers south of the “seismic centers“ indicated by 

Omori [1910] and Baratta [1910], and concluded that from there the rupture had propagated to the 

north. Extending the initial work of Riuscetti and Schick [1974], he also evaluated the body wave 

and surface wave magnitudes on original seismograms from amplitude data of at least 10 stations 



given by Rizzo [1910]. Except for 3 stations in Japan, his results were quite stable, mostly ranging 

between 6.9 and 7.1, giving on average mB=7.0 and MS=7.1. 

Riuscetti and Schick [1974] and Schick [1977] also attempted an assessment of M0. The concept 

of seismic moment had been introduced shortly before [Aki, 1966], but at that time the relatively 

poor knowledge of the Earth structure and the limited modeling and analysis tools did not allow it 

to be determined with confidence. By making several assumptions these two studies determined M0 

from body or surface waves. The authors used a single seismogram in both cases, obtaining 5×1018 

and 5×1017 N m for body and surface waves, respectively. These figures were significantly different 

from each other and overall just too small when compared to the magnitude estimates. According to 

Schick [1977], this discrepancy was to be ascribed to a much lower crustal rigidity µ than expected 

in the source area. 

Using polarities of 11 first arrivals, Riuscetti and Schick [1974] derived the first fault plane 

solution for the 1908 event. Their nodal planes were oriented roughly parallel to the Sicilian coast 

(N20ºE) and dipped 70° toward the WNW and 20° toward the ESE, accommodating approximately 

E-W extension. “There is not much doubt that the Messina earthquake was accompanied by normal 

faulting” was their conclusion. This result was then confirmed by all successive studies, even those 

with an increased number of polarities, with the sole variations of a small component of lateral slip 

and changes (minor but tectonically significant) in the strike of the nodal planes (see Figure 6 and 

Table 2). The only significant exception to the interpretation of 1908 being a normal faulting 

earthquake was that of Brogan et al. [1975], who envisioned a possible origin of the 1908 

earthquake as a compressional event that originated in the frame of the subduction of the Calabrian 

Arc. We remark that, up to this point, all investigation based on the instrumental seismological 



record concerned only first arrivals (arrival time and polarity) and P-wave amplitudes for magnitude 

evaluation; no analysis of the complete waveforms was attempted. 

 

 

3.2. Geodetic data 

 

The application of the dislocation theory to the study of the earthquake source significantly 

increased during the late 1950's-early 1960's, making the modeling of geodetic data a viable method 

for gaining information on faulting processes (e.g., Maruyama [1964]). A full exploitation of 

leveling data, however, could be achieved only when modern computing tools became widely 

available. Almost 70 years after the Messina Straits earthquake, its source was investigated using 

the elevation changes meticulously collected by Loperfido [1909]. Again, Schick [1977] pioneered 

the application of the new ideas to the 1908 event, even though his geodetic analysis was limited to 

a qualitative comparison of the data with a number of curves computed for generic 45°-dipping 

normal faults. The original leveling data showed significant subsidence on both sides of the 

Messina Straits and mild uplift of the adjacent ranges. This pattern was incompatible with any of 

the used theoretical curves, particularly for a source located in the middle of the Straits. This 

inconsistency drove Schick [1977] to the conclusion that the earthquake was generated by a 

unilateral sinking force superposed on a single couple dislocation, with the latter corresponding to 

the west dipping plane of the focal mechanism of Riuscetti and Schick [1974] and Schick [1977] 

(Figure 6; model A in Figure 7). Based on a similar qualitative approach, Caputo [1980] proposed 

a mechanism with a similar strike and a 50°-60° west-dipping plane. 



Mulargia and Boschi [1983] made a significant progress in analyzing the geodetic data by 

computing the displacement field of model faults for the specific earthquake. They searched for the 

best fitting focal mechanism and fault parameters by matching the theoretical and real elevation 

changes in a trial-and-error scheme. The characteristics of the method required the separate 

modeling of 3 distinct subsets of the leveling data and the assumption of constant slip on the fault. 

The data were fit reasonably well by a 1.5 m dislocation of a graben-like structure formed by two 

parallel and quasi-antithetic faults: an east-dipping, low-angle fault located near the northern end of 

the Straits, and a smaller, west-dipping, subvertical fault located more to the south, on the Calabrian 

side of the Straits (Figures 6, 7 model B). The nodal planes of their focal mechanism were very 

similar to those proposed by Riuscetti and Schick [1974] and Schick [1977].  

With the fast increment in the computing skills and the larger availability of computers, the 

solution of the inverse problem became reality, and the elevation changes collected by Loperfido 

[1909] demonstrated all their potential. Capuano et al. [1988] first applied an inversion algorithm to 

these data searching for the best fitting dislocation model. Their model fault consisted of several 

uniform slip rectangular segments compatible with a focal mechanism derived from 23 first motion 

polarities. Unlike the fault plane solution proposed by Riuscetti and Schick [1974], their mechanism 

(Figure 6) displayed a significant lateral component which, coupled with the results of the analysis 

of elevation changes, resulted in a ∼25° difference in the strike of the fault, oriented N10W°. 

Though not large, this discrepancy is tectonically significant in the context of the Messina Straits. 

The results of Capuano et al. [1988] are characterized by a larger dislocation patch in the southern 

portion of the rupture and by a 56.7 km-long fault with the northern end well beyond the end of the 

Messina Straits proper (D in Figure 7). They remarked that the fit of four benchmarks located in the 

Messina harbor forced the fault to shift westward by as much as 10 km. The reliability of these 



benchmarks, displaying significant subsidence (up to about 70 cm) in a very limited area, has been 

debated since the time of the earthquake. Loperfido [1909], as well as De Stefani [1909b], 

contended that local collapse phenomena occurred along the line. 

Giving credit to these considerations, Boschi et al. [1989] discarded the Messina harbor 

benchmarks and analyzed a dataset dominated by observations from the Calabrian side of the 

Straits. They also contended that the Messina harbor benchmarks would have a very limited 

resolving power and would essentially be blind to slip on the deeper portion of the fault. They 

inverted the geodetic data for the focal mechanism first by imposing uniform dislocation and found 

that the data are well satisfied by a low angle, east dipping fault was very similar to that proposed 

by Schick [1977] and to the northern fault of Mulargia and Boschi [1983] (Figure 6; model E in 

Figure 7); then derived a slip distribution characterized by two main slip patches, with the largest 

displacement of about 3 m nearly coincident with larger slip patch of Capuano et al. [1988]. 

Shortly after De Natale and Pingue [1991] presented the results of a further inversion for 

variable slip. Their solution was based on the model fault proposed by Capuano et al. [1988] and 

included all the controversial Messina harbor benchmarks (model F in Figure 7). Apart from the 

fault strike, the main difference between their solution and that presented by Boschi et al. [1989] 

was the obvious presence of a pronounced slip maximum beneath the Messina harbor. The results 

obtained for the seismic moment by these different groups were very consistent, stressing the 

robustness of models based on elevation changes: 6.2×1019 N m for Capuano et al. [1988]; 3.7×1019 

N m for Boschi et al. [1989]; 3.5×1019 N m for De Natale and Pingue [1991]. 

The proposed models still showed some scatter, for example concerning the exact orientation of 

the fault and its length, partly originating from the data themselves (e.g., unreliability of the 

Messina benchmarks) and partly from modeling options. Nevertheless, the picture was slowly 



coming into focus, and the variability between different solutions (see Table 2 and models B, D, E, 

F in Figure 7) turned out to be only slightly larger than that expected for much more recent large 

earthquakes. 

 

 

3.3. Early analyses of the tsunami 

 

The investigations of the tsunami that followed the 1908 earthquake hold an important place in 

the long list of the papers that reconsidered this earthquake in the light of modern methods of 

analysis. The introduction of scales for measuring the magnitude of a tsunami and its relation with 

the associated earthquake (e.g., Iida [1963]; Kajiura [1981]) favored the comparison of the 1908 

Messina Straits event with other known tsunamigenic earthquakes. Caputo [1980] and Tinti and 

Giuliani [1983] were the first to review the instrumental recordings and the maximum run-up data 

reported by Platania [1909]. Both these studies critically analyzed the high ratio between the 

maximum wave height and the earthquake magnitude, stressing the role of the bathymetry of the 

Messina Straits in generating unusually high sea waves. 

All in all, the approach taken by these workers was still rather simplistic, as sophisticated 

tsunami models required a detailed knowledge of the bathymetry of the region under investigation 

(e.g., with a spatial resolution of 100 m or better) and significant computational facilities: 

unfortunately, both these conditions were definitely at a premature stage at the beginning of the 

1980s. 

 

 



4. The recent reappraisal: exploiting the technical development 

 

The 1990s marked great scientific and technological progresses in seismology worldwide. The 

evolution of instrumentation was rapidly followed by the development of improved data processing 

techniques. New findings on the structure of the inner Earth and the seismic source produced new 

ideas and opened new fields of investigation. Studies of the links between crustal tectonics and 

faulting, of the interaction between tectonic stress and preexisting faults, on the relations between 

small and large magnitude events became crucial topics in earthquake science. During the same 

decade the public concern about natural hazards greatly increased, and the demand for risk 

mitigation pushed the scientific community to address focused studies. The investigation of old 

earthquakes became crucial in a country like Italy, where thousands of small earthquakes are 

recorded yearly but slip rates are relatively low and large earthquakes occur every 1,000-3,000 

years [Basili et al., 2008; Galli et al., 2008]; a fortunate condition but also one that makes the 

identification of major earthquake sources especially difficult. The study of the main seismogenic 

sources may certainly benefit from the analysis of instrumental earthquakes with modern techniques 

(e.g., joint or double-differences location), but the full understanding of their geometry and 

recurrence characteristics relies on the investigation of past large earthquakes such as 1908. 

The scientific - but also social and political - interest for the 1908 earthquake was further 

increased by the apparently imminent construction of the bridge across the Straits. After several 

decades of relatively slow progress and elaboration, powerful computers and new tools analysis of 

and processing - for example optical scanning and digitizing of old seismograms - were now 

making it possible to deal with historical instrumental data using modern techniques (Table 1). 

Meanwhile, forward and inverse modeling of seismometric, geodetic, and mareometric data also 



greatly developed and became routine since the mid 1990s. Studies such that of Piatanesi et al. 

[1999] would have been much more difficult and time-consuming just a few years back for standard 

computing facilities. These investigators performed a finite-elements simulation of the 1908 

tsunami, and used a mesh consisting of more than 16,000 elements, to compute synthetic 

mareograms for two different source mechanisms, those of Capuano et al. [1988] and Boschi et al. 

[1989] (models D and E in Figure 7, respectively). However, due to computational limitations, their 

analysis was limited to a comparison of the polarity of the first impacting wave and the pattern of 

the run-up heights. Piatanesi et al. [1999] concluded that, in comparison with the Capuano et al. 

[1988] model, the source proposed by Boschi et al. [1989] gives a better – but still rather poor - fit 

to the data. 

Tinti et al. [1999] tried to improve the match between observed run-up values and computed 

maximum tsunami levels by allowing heterogeneous slip on the fault. Their conclusion was that a 

better agreement resulted with most slip being released in the southern part of the fault. However, it 

is worth noting that all the seismic sources tested by Piatanesi et al. [1999] and Tinti et al. [1999] 

are unable to explain the overall observed height of the tsunami; both of these papers 

underestimated the maximum wave heights by a factor of 4-5 with respect to the actual run-ups, 

leaving the determination of the tsunamigenic source an unsolved problem.  

Pino et al. [2000] analyzed the digitized waveforms of the original historical seismograms. This 

has been a relatively simple task following the inception of SISMOS [Michelini et al., 2005a] and 

Euroseismos [Ferrari and Pino, 2003], two projects aimed at collecting and digitizing historical 

seismograms and at developing new strategies for their analysis. By inverting P waveforms, Pino et 

al. [2000] derived source time functions and obtained an estimate of the seismic moment of 

5.38×1019 N m, corresponding to a moment magnitude MW=7.1 (Figure 8a). From direct modeling 



of SH waveforms (Figure 8b) they also inferred that the earthquake was generated by unilateral 

rupture with northward directivity over a 43 km-long fault, and turned the derived source time 

function into a slip distribution assuming an average rupture velocity of 2 km/s. Overall, their 

conclusions were in good agreement with previous geodetic results, with the only exception that 

they found no evidence for the significant dislocation beneath the Messina harbor reported by De 

Natale and Pingue [1991], pointing to a limited reliability of the Messina harbor benchmarks 

(Figure 9). The correspondence between the slip distribution independently derived from 

seismological and geodetic data was considered by Pino et al. [2000] as a definite support for the 

assumed rupture velocity. Unfortunately, all analyzed seismograms were written by stations located 

in northern Europe; the large azimuthal gap made it impossible to discriminate unambiguously 

between the focal mechanisms of Capuano et al. [1988] and Boschi et al. [1989] based on 

waveform modeling alone. 

Amoruso et al. [2002] performed a joint inversion of the geodetic data and of the P-wave first 

motion polarities. Their results for the focal mechanism were very similar to those of Capuano et al. 

[1988] and De Natale and Pingue [1991], but they obtained significant dislocation over a nearly 

100 km-long fault (Figure 9). Their model fault extends beyond the northern end of the Straits and 

south of the previously estimated epicenter; both areas that are poorly illuminated by the available 

elevation changes (model G in Figure 7).  

Finally, Michelini et al. [2005b] attempted a relocation of the earthquake epicenter based on 

NonLinLoc (NLL) [Lomax, 2005], a code performing a probabilistic location using an importance-

sampling method based on an efficient global cascading grid-search. The result is independent of 

the origin time estimate and insensitive to the presence of outliers. These features make NLL 

particularly suitable for the location of historical earthquakes. The epicenter of Michelini et al. 



[2005b] substantially confirmed the previous locations and, combined with the unilateral nature of 

the rupture, ruled out the possibility of significant dislocation south of the epicenter. 

 

 

5. Discussion: a century of investigations 

 

During the past 100 years, tens of scientists have contributed to develop a complete description 

of the 1908 Messina Straits earthquake as if it were a much more recent event. This was made 

possible by the progressive advancement in the understanding of the seismic source, but also by the 

invaluable sets of data collected by the pioneers of seismology at the time of the earthquake. Table 

1 summarizes the main milestones in the progress of the investigations. 

 

 

5.1. Summary of the source model 

 

The combination of the conclusions from the geodetic and seismological analyses, along with 

hints from the regional tectonic setting, constrains well the geometry and extent of the fault and its 

rupture style. The 1908 earthquake was caused by dominantly normal slip on an approximately 

NNE-SSW trending plane dipping to the east, extending from about 3 to 12 km depth and for a 

length of 40-45 km from the epicenter in the south to the northern end of the Straits. 

The rupture initiated at 37.96° N, 15.71° E and propagated unilaterally northward at about 2 

km/s. The slip pattern exhibits three main patches of dislocation, with a maximum of 3-4 m slightly 

south of the city of Reggio Calabria and an average of 1.5-2.0 m. The seismic moment associated 



with the event is bracketed by the estimates obtained from geodetic (3.5×1019 N m) and 

seismological data (5.4×1019 N m), corresponding to a moment magnitude in the range MW=7.0-7.1.  

Both the geodetic and seismological estimates of the rupture length carry uncertainties, but 

fortunately they tend to compensate. Due to the geometry of the leveling network in relation to the 

earthquake source, the inversions of the elevation changes are most sensitive to the central portion 

of the fault at depth but leave the mid and shallow portion of the fault largely unresolved. Similarly, 

the actual location of the southern end of the fault is poorly resolved by the leveling network. This 

may have led to a significant underestimation of coseismic slip, and therefore of the seismic 

moment. The seismological estimates of the rupture length, however, suggest that the rupture did 

not exceed 40-45 km (Figure 9) and that the earthquake causative fault lies entirely within the 

Messina Straits proper. Thus, the seismic moment/magnitude range is asymmetric and higher values 

are to be preferred, but the upper bound of the range appears to be rather tightly constrained.  

The exact strike of the fault plane from geodetic evidence is still uncertain, depending on 

whether or not the Messina harbor benchmarks are included in the computations. The results of the 

seismic waveform analysis, however, combined with geologic and tectonic evidence suggest that 

the Messina benchmarks recorded a combination of tectonic and non-tectonic subsidence, and that a 

NNE-striking fault plane satisfies better all available evidence. 

The resulting source model is very similar to that proposed by Boschi et al. [1989] (E in Figure 

7). Figure 10 shows the match between the fault location, size and orientation and the rupture 

directivity on the one hand, and the damage pattern on the other hand. Aside from site effects, this 

source model explains well the differential decay of intensity on the two shores of Straits and the 

much larger damage suffered by Calabrian cities and villages (see also Figure 1b). 

 



 

5.2. Open issues: understanding the source of the tsunami 

 

The image of the 1908 earthquake stemming from a century of investigations is rather coherent 

and only a few significant uncertainties still remain. Perhaps the only really open issue concerns the 

causative source of the strong tsunami. Very recently, two papers reached substantially opposite 

conclusions and further stirred the debate on this issue. Billi et al. [2008] proposed that the origin of 

the tsunami must be related to a large submarine landslide, set in motion by the strong shaking 

and/or the stress transfer induced by the earthquake; conversely, Gerardi et al. [2008] contended 

that the pattern of run-ups along the Calabrian and Sicilian coasts is more compatible with a 

tsunami generated by tectonic dislocation of the sea floor than with a tsunami resulting from a 

submarine landslide. Solving this problem requires even more accurate tsunami calculations than 

those already performed by Piatanesi et al. [1999] and Tinti et al. [1999], including the modeling of 

the inundation phase using very detailed bathymetry and topography. It has been shown that the 

inversion of tide gauge records allows for the determination of some important characteristics of the 

rupture process, for example the slip distribution on the fault plane [e.g. Satake, 1987; Hirata et al., 

2003; Piatanesi and Lorito, 2007; Lorito et al., 2008a]; this technique has been successfully applied 

also to historical events such as the 1906 San Francisco earthquake [Lorito et al., 2008b]. For the 

1908 Messina tsunami there exist tide gauge records for Malta, Napoli, Ischia, Civitavecchia and 

Palermo (Figure 3). These have not yet been used in a quantitative fashion, but could offer new 

important constraints to determine the characteristics of the tsunamigenic source. 

 

 



5.3. The 1908 earthquake: geodynamic framework and recurrence characteristics 

 

The Messina Straits cuts with a NNE-SSW trend the southern Calabrian Arc. This large 

geodynamic feature comprises the surface evidence of the northwestward subduction of the Ionian 

lithosphere, separating the African plate from the thinned back arc Tyrrhenian basin. During the 

Pliocene and Pleistocene, the Calabrian Arc has experienced rapid uplift along a trend parallel to the 

arc axis, leading to the activation of arc-parallel half-graben structures [Ghisetti, 1984; Westaway, 

1993; Bordoni and Valensise, 1998; DISS Working Group, 2007; Basili et al., 2008]. The 

longitudinal fault system is segmented by transversal NW-SE and E-W structures, also detectable in 

the peri-Tyrrhenian basins [Fabbri et al., 1980; Barone et al., 1982]. The Straits itself is one of 

these N-S half-Grabens [Ghisetti, 1992], bent in the E-W direction at its northern end [Selli et al., 

1978]. Reliable GPS measurements suggest large strains (∼100 nanostrain/y) and extension 

perpendicular to the axis of the Messina Straits at a rate ranging from 3.6 mm/y [D'Agostino and 

Selvaggi, 2004] to 2.0 mm/y [Serpelloni et al., 2007], in agreement with the E-W to ESE WNW 

extension shown by the focal mechanisms obtained for the 1908 earthquake. 

Multiple lines of evidence thus suggest that the causative fault of the 1908 earthquake plays a 

major role in the geodynamic evolution of the Calabrian Arc. By comparing the 1908 coseismic 

elevation changes with topographic and geomorphic features, Valensise and Pantosti [1992] 

proposed that repeated 1908-type earthquakes, with similar dislocation along similar fault length, 

have largely shaped up the present structure of the Messina Straits (Figure 11). Moreover, by 

comparing the coseismic elevation changes and the elevation of a well dated geological marker they 

estimated a repeat time of 1908-type earthquakes of 1,000 years (+500, -300) and an average 

extension rate of 1.2 mm/y across the Messina Straits, corresponding to a minimum fault slip rate of 



1.4 mm/y. The seismological evidence for a larger seismic moment than that determined 

geodetically suggests that actual repeat times are close to the upper limit of the above interval, as 

also indicated by historical and archeological evidence [Guidoboni et al. 2000]. According to 

D'Agostino and Selvaggi [2004], however, up to 80% of the 3.6 mm/yr relative motion between the 

Sicilian and Calabrian blocks may be accommodated in the Messina Straits, loading the fault 

responsible for the 1908 earthquake. This would imply somewhat faster extension and 

correspondingly shorter recurrence intervals. But, if both the geological and geodetic estimates are 

accurate, either significant deformation occurs aseismically, or else other – presumably secondary - 

faults are required to accommodate this relative motion. Conversely, the 2.0 mm/y extension rate 

estimated by Serpelloni et al. [2007] requires no extra strain to be accommodated across the Straits 

in addition to that associated with 1908-type earthquakes.  

Whatever the case, the fault responsible for the 1908, 28 December, Messina Straits catastrophic 

earthquake is definitely a major seismogenic structure capable of MW=7.1 events lying beneath a 

densely populated area. The image developed throughout a century of investigations represents 

fundamental knowledge for the prediction of the ground motion in case of repetition of a strong 

earthquake, and becomes of special value in the design of major infrastructures, such as the planned 

permanent crossing of the Straits. 
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Figure captions 
 
Figure 1. a) Location map of the Messina Straits, showing selected historical earthquakes and the 

epicentral locations calculated by Omori [1909] and by Baratta [1910]. b) Intensity pattern of the 
1908 earthquake (from Baratta [1910]). The dashed area suffered the strongest ground shaking. 
Notice the different decay of intensity on either side of the Straits and the strong asymmetry of 
damage toward Calabria. 

 
Figure 2. a) Overview of coastal sites for which a measure of run-up is available (Gerardi et al., 

2008). Red dots indicate coastal sites along the Sicilian coast, negative numbers indicate the 
distance of the sites from the origin point (Punta Faro). Yellow triangles mark coastal sites along 
the Calabrian coast, positive numbers indicate the distance of the sites from the origin point 
(Porto S. Venera). b) Red dots and yellow triangles represent the measured run-up heights along 
the Sicilian and Calabrian coasts, respectively.  

 
Figure 3. a) Location of tide-gauge stations that recorded the tsunami (yellow dots). The red 

transparent ellipse indicates the source area of the earthquake. b) Original tide-gauge records of 
the tsunami, as reported in Platania [1909]. From top to bottom: Palermo, Napoli, Civitavecchia, 
Ischia and Malta. Note that time runs from right to left in the record of Malta.  

 
Figure 4. Overview of the elevation changes measured by Loperfido [1909] following the 1908 

earthquake (in cm). The largest tectonic subsidence was recorded in Reggio Calabria. The 
Messina harbour also experienced subsidence up to 70 cm, but the observed values are suspected 
to reflect at least partially non-tectonic deformation due to settling of coastal deposits. 

 
Figure 5. (left) Example of an original seismogram written by the 1908 earthquake on the 1200 kg 

Wiechert instrument at Plauen (Germany), and (right) the corresponding digitized and corrected 
waveform. The original seismogram shows clearly the effects of the finite length and inclination 
of the arm. 

 
Figure 6. Summary of available fault plane solutions for the 1908 earthquake. If indicated, the 

preferred fault plane is shown by a blue arrow. 
 
Figure 7. Surface projection of the published fault planes for the 1908 earthquake. A red line marks 

the intersection of the fault plane with the surface (cut-off line), and hence shows the direction of 
dip of the fault (but notice that all faults are explictly or implictly assumed to be blind). 

 
Figure 8. a) On the right are illustrated the recorded data (continuous line) for the 1908 earthquake 

and synthetic P wave seismograms obtained by Pino et al. [2000] for different German stations 
(PLN, Plauen; LEI, Lipsia; GTT, Göttingen; POT, Potsdam; the small letter indicates the 
component). Synthetics result from waveform inversion performed for two different structural 
models. The numbers indicate the resulting seismic moment. On the left, the corresponding 
moment rate functions. b) SH wave data (continuous line) and synthetic waveforms computed by 
Pino et al. [2000] for two different apparent source durations, derived from the P wave durations 
illustrated in Figure 10 and corresponding to southward and northward rupture propagation, 
respectively (HAM, Hamburg). From the better waveform correspondence and the consistency 



of the seismic moment with those resulting for P waves, Pino et al. [2000] deduced that rupture 
propagation must have been dominantly northward. 

 
Figure 9. Slip distribution along-strike of the fault resulting from various studies. The diagram 

consistently shows the maximum slip recorded along each section of the fault. The horizontal 
bars below the diagram mark the corresponding fault length and relative position along a N-S 
section. Dashed red lines represent the slip error resulting from the seismic moment uncertainty 
given in Pino et al. [2000]. 

 
Figure 10. Synoptic view of the 1908 earthquake rupture history and of the associated damage. The 

intensity pattern (from Guidoboni et al. [2007]) is shown with a color scale ranging from yellow 
to blue (intensity VI to XI, respectively); the area of strongest shaking is outlined by a 
dotted/dashed line (see also Figure 1). The black box is the surface projection of the model fault 
proposed by Boschi et al. [1989] (E in Figure 7). The star locates the epicenter proposed by 
Michelini et al. [2005b]. The black arrow indicates the rupture directivity proposed by Pino et al. 
[2000]. See text for discussion 

 
Figure 11. Comparison between 1908 observed coseismic subsidence (above) and the elevation of 

the 125 ka terrace inner edge along the Calabria shore of the Messina Straits from Scilla (to the 
north; far left in figure) to Lazzàro (south; far right), suggesting that repeating 1908-type 
earthquakes may reproduce the young landscape of the region (from Valensise and Pantosti 
[1992]). 



Table 1. Overview of the main accomplishments in the investigation of the source of the 1908 
earthquake. 

 
Year Observation/Parameter Value Reference 

Early studies 

1909 Elevation changes measured at 114 benchmarks 
on the two shores of the Straits -0.64 m ÷ + 0.13 m Loperfido (Figure 4) 

1909 Determination of epicentral area from direction of 
over-turned free-fall bodies middle of the Straits Omori (Figure 1a) 

1909 Tsunami run-up height, period, and direction of 
approach measured at over 130 sites up to 12 m Platania (Figure 2) 

1909 First mareogram recordings of a large tsunami in 
the Mediterranean --- Platania (Figure 3) 

1909 Hypocentral depth   9 km Oddone 
1910 Full macroseismic intensity pattern --- Baratta (Figure 1b) 
1954 First instrumental magnitude 7½ Gutenberg and Richter  

Modern studies (1970s-1990s) 

1974 First focal mechanism from first motion polarities strike 15°, dip=20°, 
rake=-90° 

Riuscetti and Schick, Schick (1977) 
(Figure 6) 

1977 First instrumental determination of epicenter 38.08 N  15.50 E Schick 
1977 First quantitative analysis of seismic waveforms --- Schick 

1983 First uniform slip elastic dislocation model of 
earthquake source --- Mulargia and Boschi (Figure 7 B) 

1983 First seismic moment estimate from geodetic data 2.0×1019 N m Mulargia and Boschi  
1983 First analytical model of tsunami source --- Tinti and Giuliani 

1989 First variable slip elastic dislocation model of 
earthquake source --- Boschi et al. (Figure 7 E) 

1992 Recurrence interval from long-term geological 
observations 

1000 (+500, -300) 
years Valensise and Pantosti (Figure 11) 

1992 Long-term slip rate 1.4 mm/y Valensise and Pantosti (Figure 11) 

1995 Magnitude from intensity observations 
(equivalent magnitude Me) 

7.2 Boschi et al. (CFTI catalogue) 

Most recent studies 

1999 First comparison of tsunami patterns based on 
published source models --- Tinti et al. 

2000 First seismic moment M0 (and moment magnitude 
MW) from waveform modeling 5.8×1019 N m (7.1) Pino et al. (Figure 8) 

2000 Source-time function from waveform modeling --- Pino et al. (Figure 9) 
2000 Rupture directivity from south to north Pino et al. (Figure 10) 
2000 Recurrence interval from archeological evidence 1,500 years Guidoboni et al. 
2002 Joint inversion of seismological and geodetic data --- Amoruso et al. (Figure 7 G)  

2004 Extension rate across the Messina Straits  from 
GPS data 3 mm/y D’Agostino and Selvaggi 

2005 Probabilistic epicentral location from first arrivals 37.96 N  15.71 E Michelini et al. (Figure 10) 
 

Table 1 



Table 2. Schematic overview of the main results obtained for the 1908 Messina Straits earthquake 
by several investigators, basd on the analysis of instrumental, seismological and geodetic dataa 
(from Pino et al. [2000], modified and extended). 

 

 
a Seismic moment in parentheses are computed by using the formula derived by Ekström and Dziewonski (1988) for MS to M0 and by Chung and 
Bernreuter (1981) for ML to M0. Except for Schick (1977) and Pino et al. (2000), all of the others are from geodetic data. Both nodal planes are 
reported for seismic data solutions, while single planes are relative to geodetic data. 
b Fault planes 1 and II are relative to a single solution acting in a graben-like structure. 
c Uniform slip inversion (values in parenteses are referred to variable slip inversion) 
d mB at Graz (GRZ), Wien (VIE), and Potsdam (POT), respectively. 
e mB. 
f Macroseismic. 
g mB at Graz (GRZ), Sofia (SOF), and Zi-ka-wei (ZKW), respectively. 
h At Potsdam (POT). 
i At Rocca di Papa (RDP). 
j From body waves at Hohenheim (HOH). 
k From Rayleigh waves at Pulkovo (PUL). 
l G. De Natale, personal communication. 
m Constant slip. They also performed variable slip inversion. 
n Average slip. 
p S=seismometric, G=geodetic, M=macroseismic. 
 

 
Table 2 

Author ML MS M0, N×m Fault plane Fault (l×w), 
m2 Slip, m Data type p 

Gutenberg and Richter (1954) 7½ - (9.4×1019) - - - S 
Kárnik (1969) 7.0 - (2.0×1019) - - - S 
Schick (1977) 

7.1, 
6.8, 
7.1 d 

7.0 (4.4×1019) 15 20 -90  
/ 195 70 -90 30×15 1.50 S 

Schick (1977) - - 5.0×1018 j - - - S 
Schick (1977) - - 5.0×1017 k - - - S 
Caputo (1980) - 7.0 (4.4×1019) - - - S 
Caputo et al. (1981) - - - 17 56 -97  

/ 209 34 -79 - - G 
Abe (1981) 7.5 e - - - - - S 
Abe (1981) - 7.2 (8.7×1019) - - - S 
Gasparini et al. (1982) - -  349 42 -121  

/ 209 55 -65 - - S 
Abe and Noguchi (1983) - 7.0 (4.4×1019) - - - S 
Mulargia and Boschi (I) (1983) b - - 22 35 -90 20×12 1.50 
Mulargia and Boschi (II) (1983) b - - 2.0×1019 202 70 -90 20×16 1.50 G 

Bottari et al. (1986) 7.3 f - (5.1×1019) - - - M 

Capuano et al. (1988) 
6.9, 
7.0, 
7.2 g 

7.1 (6.2×1019) 
same as 

Gasparini et al. 
(1982), from the 

same data 
- - S 

Capuano et al. (1988) - - 4.9×1019 355 38.6 -132.5 56.7×18.5 1.50 G 
Console and Favali (1988) - 6.9 i (3.1×1019) - - - S 
Hurtig and Kowalle (1988) 7.2 h - (3.8×1019) - - - S 
Boschi et al. (1989) - - 3.7×1019 11 29 -90 45×18 1.42 m G 
De Natale and Pingue (1991) - - 3.5×1019 l - 50×20 1.50 n G 
Boschi et al (1995) 7.2 f - - - - - M 
Pino et al. (2000) - - 5.8×1019 - 43.3×20 2.07 S 

Amoruso et al. (2002) c - - 2.4(6.0)×1019 345.5 42.4 -118.3 29.8×19.8 
(100×30) - G 

Guidoboni et al. (2007) 7.1 f - - - - - M 
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