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In case of a seismic event, a fast and draft damage map of the hit urban areas can be very useful, in particular when the epicentral area of the earthquake is located in remote regions, or the main communication systems are damaged. Our aim is to analyse the capability of remote sensing techniques for damage detection in urban areas and to explore the combined use of radar (SAR) and optical satellite data. Two case studies have been proposed: Izmit (Turkey) 1999 and Bam (Iran) 2003. Both areas have been affected by strong earthquakes causing heavy and extended damage in the urban settlements close to the epicentre. We have focused on advantages and limitations of remote sensing techniques to develop a reliable methodology for damage assessment. Automatic procedures for damage assessment have been successfully tested either to perform a pixel by pixel classification and to asses damage within homogeneous extended areas. We have compared change detection capabilities of different features extracted from optical and radar data, and analysed potential of combining measurements at different frequency ranges. Regarding the Izmit case, SAR features alone have reached 70% of correct classification of damaged areas and 5m panchromatic optical images have given 82%; the fusion of SAR and optical data raised up to 89% of correct pixel-to-pixel classification. The same procedures applied to the Bam test case achieved about 61% of correct classification from SAR alone, 70% from optical data, while data fusion reached 76%. The results of the correlation between satellite remote sensing and ground surveys data have been presented. 
A comparison of change remotely sensed detection features averaged within homogeneous blocks of buildings and ground survey data is also presented.
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1. Introduction
During a seismic event a fast and draft damage map of the hit urban areas is very important to manage civil protection interventions. Remote sensing can provide valuable pieces of information in this respect, thanks to its synoptic capability, in particular when the seismic event is located in remote regions, or the main communication systems are damaged. Both optical and radar sensors can be exploited for this application and examples are reported in the literature.
The Synthetic Aperture Radar (SAR) collects high-resolution maps of the radar echo of the Earth surface from satellite (Elachi, 1982). It measures the backscattering coefficient ° of the surface with a pixel size in the order of ten meters. It is also capable to measure the phase of the signal echoed by each pixel. Besides the well established use of Interferometric SAR (InSAR) techniques (Massonnet et al., 1993) and SAR amplitude images (Michel et al., 1999) for co-seismic deformation studies, this work concerns a new and still not deeply analysed application of SAR for detecting earthquake damage. SAR is strongly sensitive to surface changes and the data are almost independent on meteorological conditions and Sun illumination (i.e., night and day, all-weather capabilities). Serious damage and the collapse of buildings modify the observed scenario and its electromagnetic behaviour, thus enabling their detection by means of the comparison of SAR images (both amplitude and phase) before and after the disaster. Conversely, SAR images are characterised by constructive and destructive interference of individual echoes returned from scatterers within each pixel (Ulaby et al., 1982) which corrupts significantly the appearance of the imaged objects (“speckle”). Its effect will be singled out in this work. 

As far as SAR is concerned, changes in detected backscattering and phase have been considered in the literature for damage detection purposes. An index to estimate damage level from SAR data combining image intensity change and the related correlation coefficient has been applied by Japanese teams to some case studies: the Hyogoken-Nanbu earthquake (Aoki et al., 1998; Matsuoka and Yamazaki, 2004), the Izmit and Gujarat seismic events (Matsuoka and Yamazaki, 2002). Hoffmann et al. (2004) defined a damage index based on InSAR complex coherence which takes into account the phase of the echoed signal. Yonezawa and Takeuchi (2001) compared changes in the SAR backscattering intensity and phase with damage observed in the Kobe city. Ito et al., (2000), assessed different SAR change indicators, derived from L-band and C-band sensors, and evaluated the frequency dependent effects of spatial and temporal decorrelations. 
Also optical data can furnish valuable information on settlement conditions after an earthquake. The spatial resolution of satellite optical sensors has rapidly improved in the last few years, reaching less than 1 meter (IKONOS, QuickBird, EROS satellites), thus becoming a reliable tool for detecting changes of individual buildings. However, the information content of high resolution images can be affected by differences in the acquisition time and changes in the sight observation angle. The presence of shadows, variation in Sun illumination and geometric distortions may prevent using automatic damage detection procedures.
Because of the above mentioned difficulties, the visual inspection approach is still the one most used to produce a realistic and reliable inventory of damage (Yano et al., 2004; Yamazaki et al., 2004; Saito et al., 2004). Sakamoto et al., (2004) compared an automatic technique to visual interpretation results using Quickbird data. Matsuoka et al. (2004) proposed to detect damage by analysing edges on high resolution images. A detailed simulation of shadow effects has been done by Turker and San (2004) for airborne optical images only. Reconnaissance groups supported their on site inspection by using high resolution images (US MCEER report). However, a direct comparison between damage level from remote sensing data and in situ observations (i.e. collapse ratio) has not been always attempted in the literature.

Some aspects worth to be better investigated have been faced in this paper. Firstly, as also preliminarily explored in a previous work (Bignami et al., 2004), we have analysed the possible advantages of combining radar and optical satellite data, which has not been deeply investigated yet. Secondly, since different features can be used for detecting changes derived both from optical and radar data, an investigation on their potential, the information content they carry and their possible complementarity has also been addressed. Finally, we have tried to compare the different features as much as possible in terms of accuracy on the final product describing damage type, extension and level as based on the agreement with in situ damage observations. A damage map to be delivered to a possible end-user is for sure the final objective of this kind of research. However, at the present stage the objective of this work is not proposing a full methodology to generate it, but rather to single out those features from SAR and optical data most useful and reliable to achieve such final results. 
2. The study areas and methodologies
2.1 Case studies and  datasets
Two recent destructive earthquakes have been considered for this study: Izmit (Turkey) 1999 and Bam (Iran) 2003. 

On August 17, 1999, the Western portion of Turkey has been struck by a destructive earthquake of moment magnitude (Mw) 7.4. The epicentral area is the urban and industrial region surrounding the Gulf of Izmit (Marmara Sea), about 100 km East of Istanbul. The main event has been located 9 km South-East of the Izmit city, in the North-West sector of the North Anatolian fault system and has been accompanied by about 120 km of surface ruptures proceeding to the West up to the city of Golcuk and offshore in the Marmara Sea (Barka, 1999). A very large area suffered heavy destructions, especially in the cities of Golcuk, Izmit and Adapazari. Important damage and total collapses mainly involved reinforced concrete structures of several facilities, while ancient Muslim houses remained almost undamaged. Large zones of the Marmara Sea shore subsided and the coastal land was inundated. 
As far as radar data are concerned, we have taken advantage from the European Remote Sensing (ERS) tandem mission to acquire interferometric pairs with very short temporal baseline (one day). The higher resolution space-borne optical images available at that time have been selected. Namely, two pairs of tandem ERS satellite data (ERS-1 and ERS-2), acquired on 12-13/08/1999 and 16-17/09/1999 and two panchromatic images collected by the Indian Remote Sensing (IRS) Satellite (8 August 1999 and 27 September 1999) with a spatial resolution of 5.8 m have been used in this study (see Table 1).

The December 26th, 2003, the South-Eastern region of Iran has been hit by a Mw 6.5 earthquake whose epicenter has been located very close to the city of Bam. The event has had a tremendous impact all over the world, because of massive loss of life, injuries and destruction; additionally, the city of Bam, which had been declared UNESCO World Heritage site, has had a relevant historical role. The Bam earthquake has been the worst seismic event in the recent Iranian history. The damage has been concentrated in a relatively small area around Bam (EERI, 2004). The ninety percent of the building stock in the city of Bam has been left more or less heavily damaged or totally collapsed. In particular, the main part of historic and traditional buildings in adobe collapsed. Contemporary houses have demonstrated major resistance, even if many collapses were recorded due to bad construction practices and the presence of weak stories in the buildings.

The satellite dataset available in the Iranian case is composed by three Advanced SAR (ASAR) ENVISAT images from descending orbits and two multispectral images collected by the Advanced Spaceborn Thermal Emission and Reflection Radiometer (ASTER) sensor (February 23th,  2003 and January 2nd, 2004 ), with a spatial spacing of 15 m.

	Case Study
	Sensor type -Satellite 
	Acquisition Date
	Ground Resolution

	Izmit (Turkey)
	Optical
	IRS1-C
	pre-seismic 8/8/1999 post- seismic 27/9/1999
	5.8 m

	
	SAR
	ERS-1
	pre-seismic 12/8/1999 post- seismic 16/9/99
	4 x 20 m

Single Look Complex

	
	
	ERS-2
	pre-seismic 13/8/1999 post- seismic 17/9/1999
	

	Bam (Iran)
	Optical
	TERRA-ASTER
	pre-seismic 2/2/2003 post- seismic 2/1/2004
	15 m

	
	SAR
	ENVISAT-ASAR
	pre-seismic 11/06/2003

pre-seismic 03/12/2003

post- seismic 07/01/2004
	4 x 20 m

Single Look Complex


Table 1: Satellite data used for the two case studies. 

The usefulness of remote sensing for earthquake damage assessment strongly depends on the number of images, their quality, extensiveness (SAR, optical or both) and timeliness (i.e., time delay of the post-seismic images with respect to the destructive event). For the present study the datasets are sufficiently complete, pre- and post seismic data  being available from radar and optical sensors. It allows us to point out the advantages of the combined use of both types of sensors. 

In order to validate the information obtained using remote sensing data, detailed ground based damage maps (i.e. the ground truth) has been used. For the Izmit case a report on the damage occurred in the city of Golcuk has been used in the validation step. It is a map of collapse ratio (percentage of completely collapsed buildings with respect to the total number of buildings within a city block) which has been provided by Prof. Matsuoka. A similar map, produced by Geological Survey of Iran, representing different levels of damage, has also been used for the Bam test case. Both maps are the result of in situ inspection. 
2.2 Methods

A multitemporal/multichannel co-registered dataset has been created, depending on the available data for the different case studies. A description of the methodology is summarised hereafter. 
SAR images have been co-registered by automatically searching control points in the single look complex image (SLC). Image intensity I has been computed, and in order to partially reduce the speckle noise (Li and Goldstein, 1990) a multi-look operation has been performed by averaging 5x1 pixels, leading to a SAR intensity image with 20 m x 20 m of pixel spacing. 
When a pair of SAR images is available, further parameters (InSAR complex coherence and intensity correlation) can be computed. Both parameters can be derived combining the pre-seismic pair, the post-seismic and the co-seismic (i.e. one pre-seismic and one post-seismic image) ones.
The complex coherence of two images is defined as follows:                
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where s1 and s2 are the corresponding complex pixel values, and E(···) indicates the expected value. 
The intensity correlation of the two intensity images is defined as follows:
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where I1 and I2 are corresponding pixel values of the intensity (see examples in Figure 1 for the Izmit test case).

Note that these two features hold different information concerning changes in the scene. The complex coherence is mostly influenced by the phase difference between radar returns, a distinctive parameter measured by a coherent sensor. It is particularly related to the spatial arrangement of the scatterers within the pixel and thus to their possible displacements. Conversely, the intensity correlation is more related to change in the magnitude of the radar return.   

Expected values in equation 1 and 2 are estimated by averaging procedures. The size of the averaging window can affects the sensitivity of the derived parameters with respect to the changes occurred in a scene (Yonezawa, 2001). Thus, before computing the complex coherence and the intensity correlation, a preliminary analysis on the averaging window size has been performed in order to obtain the best compromise between resolution and discrimination performances. The complex coherence has been derived by first computing si as the complex mean of 5x1 SLC values and then averaging sisj* within a 3X3 window around each pixel, leading to a 60X60 m resolution. As for the intensity correlation an averaging window size of 7x7 pixels has been applied, leading to a 140X140 m resolution. 
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Figure1: a) Pre-seismic and b) co-seismic SAR intensity correlation coefficient of the Marmara Sea area. Correlation ranges between 0.0 – 1.0.
An interactive selection of control points (about one hundred) and a polynomial warping have been used to co-register optical data and to superimpose the radar on the optical images. A nearest neighbour interpolation has been used in order to retain pixel values and their statistics. All SAR images and derived parameters have been re-sampled to match the spatial spacing of the optical data (5m for IRS and 15m for ASTER). SAR intensities, derived parameters (complex coherence and intensity correlation) and optical images form the set of information related to each pixel (hereinafter the feature vector of dimension n).
The work has demonstrated that a useful feature to detect changes in the scene is the pixel to pixel difference between pre-seismic and post-seismic images which have been previously co-registered (difference is computed either on a pair of optical images or  a  pair of SAR images, thus producing optical change image and radar change image, respectively); note that areas with different cover types can produce either positive or negative changes.  Another technique to detect changes using radar data is the ratio between pre-seismic and post-seismic acquisitions (Rignot, 1993). This technique has been also applied to our SAR data but did not produce appreciable results compared with the simple pixel-to-pixel difference. 
As far as ASTER data, the images exhibited significant vertical striping due to calibration difference between adjacent detectors of the radiometer. It appears like distinct linear stripes of varying brightness in single-band displays, so we had to apply destriping procedures to reduce this noise affecting the images. Then to compute the change image from the multispectral ASTER data, an arithmetic average of the two visible bands has been calculated to simulate a sort of panchromatic image. The NDVI (Normalized Difference Vegetation Index) feature has been also computed from VIS (red) and NIR bands to extract the amount of green vegetation and to select urban areas with more accuracy. 
Before computing the optical change image, a histogram equalization algorithm has been applied to diminish the effect of different illumination and looking angle (Richards, 1986). To this aim, we have selected only those urban portion of the reference image characterized by urban cover and where no changes between pre- and post-seismic data occurred. The histograms of those areas have been used to construct the transfer function to be applied to the second image. 

3 The Izmit case study

The availability of an extensive dataset has allowed us to perform a damage classification exercise. As a preliminary step, we have identified, by simple detection algorithms and visual inspection, regions where changes occurred in the IRS optical images. A threshold applied to the optical change image has demonstrated itself very useful for this scope. These changes have been also recognised belonging to different classes: settlements built after the earthquake, buildings with decreased dimensions (probably collapsed), rubbles, subsidence (causing sinking of the shoreline) and damaged (burnt) oil tanks. A sixth class has been defined corresponding to unchanged urban areas (no damage). The number of pixels in the various regions ranges from 1000 to 14000 for the damaged classes and 34000 for the unchanged class. The polygons corresponding to such regions are superimposed on the pre-seismic IRS image in the area surrounding the Marmara Sea in Figure 2. The different colours show the regions we have selected to represent the six classes, which have been split to generate the training and test sets of the classifier (about 50% of pixels as test set and 50% as training set). 
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Figure 2: Regions used to represent the different classes within the IRS images. In the red box a selection of the Golcuk urban area. Each region has been randomly split to generate the training and test set of the classifier (see main text for details).

Starting from the mean vectors and covariance matrices estimated from the training pixels, a maximum likelihood criterion that assumes a normal distribution of the extracted feature vector within each class has been adopted to classify all the rest of the image into six classes. 
The overall classification accuracy (percentage of correctly classified pixels), and the well known Kappa coefficient (Jensen, 1986), computed using the test pixels, are reported in Figure 3. Note that to estimate the classification accuracy the number of test samples has to satisfy some conditions. Limiting the number of test samples increases the confidence interval of the Kappa estimate. According to the formula proposed by Hudson and Ramm (1987), the Kappa coefficient variance has been calculated, assessing the consistency of the classification.
We performed the classification exercise by using some different combinations of the features forming the input feature vectors. The results have been compared in order to understand which of them mostly contribute to discriminate changes. Therefore, we have considered six different combinations of such features forming the feature vector (n-dimensional or n-D) identified as follows (see Figure 3):

· COHER:  (3-D feature vector) pre-seismic coherence, post-seismic coherence, co-seismic coherence 

· CORREL : (3-D feature vector) as above but considering correlation instead of coherence

· SAR : (8-D feature vector) vector COHER, vector CORREL, pre-seismic SAR intensity image, post-seismic SAR intensity image

· OPT : (2-D feature vector) pre-seismic IRS image, post-seismic IRS image
· OPT+SAR : (10-D feature vector) vector SAR and vector OPT 

· OPT+COHER : (5-D feature vector) vector COHER and vector OPT
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Figure 3: Results of pixel-by-pixel classification of damaged areas in terms of overall accuracy and Kappa coefficient as function of different sets of features used in the classification algorithm.

As far as the radar data, Table 2 sum up the SAR images availability and all the possible pairing for computing the complex coherence and the intensity correlation features. The co-seismic pair has been selected with the aim to have a comparable spatial baseline with respect to the pre- and post-seismic pairs, in order to compensate the geometric decorrelation.
	Izmit case
	ERS-2  13/8/99
	ERS-1 16/9/99
	ERS-2 17/9/99

	ERS-1 12/8/99
	1 day
241m
	35 days

69 m
	36 days

231 m

	ERS-2  13/8/99
	
	34 days

280 m
	35 days

52 m

	ERS-1 16/9/99
	
	
	1 day

255 m


Table 2: SAR data for the Izmit case study: temporal and spatial baseline for the different pre- post- and co-seismic combination. The bold style indicate the selected pairing.

It is evident that SAR features alone give a poor contribution to the detection of changes, mostly because of the speckle effect that degrades class separability. The quite high accuracy using IRS data is partially originated from the fact that the damaged training areas have been extracted by IRS itself. However, it comes out from Figure 3 that some of the SAR features contribute to improve the classification accuracy when added to the optical ones. In particular, the addition of the complex coherence determines the best classification performance, even better than taking into account all SAR data. This is probably due to the increased dimension of a noisy feature vector. Note that, even if the intensity correlation alone produces better results than complex coherence, it does not complement the optical features with independent information, if compared with the complex coherence.
The low accuracy obtained using SAR at pixel level has drawn our attention to the possibility to estimate the damage level within extended areas, where speckle effects can be smoothed. This analysis has been carried out based on independent ground truth information (AIJ and JSCE and JGS, 1999), provided us by Prof. M.Matsuoka and collected during a post-earthquake ground survey. The result was a map reporting the so called “collapse ratio”, indicating the percentage of completely collapsed buildings with respect to the total number of buildings within a city block. The surveyed areas have been geometrically registered onto our multiparameter dataset; Figure 4 shows such “collapse ratio” placed upon the IRS image. The different features extracted from the above mentioned remote sensing products have been averaged within each surveyed area with same collapse ratio in order to study the correlation between remotely sensed and in situ surveyed data. The most interesting result is the dependence of the IRS intensity change image and the SAR intensity correlation coefficient on collapse ratio. This is shown in Figures 5a and 5b, where the normalised IRS change image (NCI) and the SAR intensity correlation difference (ICD) are plotted as a function of the collapse ratio, being the quantities given by:
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Figure 4: Ground survey map of collapse ratio superimposed to the IRS image (ground truth data provided us by Prof. M.Matsuoka, Earthquake Disaster Mitigation Res. Centre, Japan).
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Figure 5: a) IRS change (i.e., difference between pre-seismic and post-seismic images) averaged over the surveyed areas as function of the corresponding collapse ratio; b) Pre-seismic and co-seismic intensity correlation difference averaged over each surveyed area as function of the corresponding collapse ratio.

The increase of the IRS change image value as well as the increase of the SAR intensity correlation difference between pre-seismic and co-seismic maps as function of the collapse ratio is clearly evident. In this case, the complex coherence has not given encouraging results, as for the pixel-by-pixel classification. In fact it is strongly influenced by spatial decorrelation due to large interferometric baselines, as for the Turkish data (about 240 meters of spatial baseline), resulting in large differences between SAR looking directions, causing a substantial decrease of the complex coherence which masks the drop off due to the damage (Zebker and Villasenor, 1992). In summary, the complex coherence and intensity correlation have exhibited a different behaviour depending on the context. The former carries independent information with respect to optical features but, in case of large spatial baseline, the latter still remain more sensitive to changes.
4. The Bam (Iran) case study
Using the procedures described in section 2.2 the following products have been generated, precisely superimposed and with a spatial sampling corresponding to the ASTER pixel spacing (15 m): 

· Pre-seismic coherence and correlation maps from ASAR June 11th 2003 and December 3rd, 2003

· Co-seismic coherence and correlation maps from ASAR December 3rd, 2003 and January 7th, 2004

· Change image from ASTER February 2nd, 2003 and January 2nd, 2004

Unfortunately, ASAR interferometric image pairs had very high values of the perpendicular baseline (see Table 3) and the resulting high spatial decorrelation prevented us from detecting damage levels through the InSAR phase coherence. The latter has almost the same values both in damaged and undamaged areas as the baseline is too high. 
	Bam case
	ASAR 03/12/03
	ASAR 07/01/04

	ASAR  11/06/03
	175 days

480 m
	210 days

880 m

	ASAR 03/12/03
	
	35 days

510 m


Table 3: SAR data for the Bam case study: temporal and spatial baseline for the different pre- post- and co-seismic combination. The bold style indicate the selected pairing.

This effect of baseline on complex coherence change detection capability as been also affirmed by Yonezawa and Takeuchi (2001), although some information seem to be retained as shown in Hoffman et al. (2005), where an analogous comparison with intensity correlation is however not available. Note that in the Izmit case the coherence was retaining some additional information compared to optical data, being the baseline smaller (about 250 m). On the contrary, the SAR intensity for the Bam case still revealed itself a valuable tool for a draft survey of the damage. For instance, from the analysis of the SAR change image (Figure 6c) we have obtained a draft map showing the most damaged portion of the city (the brightest points in Figures 6c). This result seems to be fairly in agreement with the ground survey map (Figure 6d, and extracted contours of the building blocks with damage level of 50-80% and 80-100% superimposed on Figure 6c) made available through Internet by the International Centre for Geohazards (ICG report, 2004), hereinafter the “ground truth”. A region of apparent disagreement with overestimation of damage from SAR change is present in the Southern area. Activities occurred after the earthquake before image acquisition could have caused it, but this can not be demonstrated. 

In spite of the very high perpendicular baselines, a slight but still significant difference in intensity correlation between damaged and undamaged areas is evident. We have plotted the difference between the pre-seismic and co-seismic intensity correlation averaged within an area of homogeneous damage level as function of the three damage levels, weak, medium and strong, reported in the “ground truth” (Figure 7). We have also added to the plot a further class of non-damaged areas. In order to better focus the SAR data analysis on man made structures, we have retained only those pixels where the NDVI was below a given threshold to discard vegetated areas. The sensitivity to damage level is apparent, though it is less significant with respect to the Izmit case (see Figure 5b).
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Figure 6: a) ASAR pre-seismic image; b) ASAR post-seismic image: the intensity increase in the damaged areas; c) ASAR absolute change image: red polygons and green polygons superimposed on the change image indicate heavy damaged building blocks (80-100%) and  medium damaged building blocks (50-80%) respectively. The polygons are derived by the ICG report map, selecting only building blocks; d) the “ground truth” from ground survey (ICG report, 2004) defines three level of damage: weak damage (20-50%), medium damage (50-80%) and  strong damage (80-100%). 

To assess the classification capability of the medium resolution data (ASTER and SAR) on a pixel bases, we have applied the same damage classification procedure of the Izmit test case. The four classes (no damage, weak, medium and strong damage) have been once again randomly separated into training and test regions and we have adopted the same Izmit classifier. The results have been quantified in terms of overall classification accuracy and Kappa coefficient and they are reported in Figure 8 for different combination of features forming the following vectors:
· SAR: (4-D feature vector) pre-seismic and co-seismic coherence, pre-seismic and co-seismic correlation

· OPT: (2-D feature vector) pre- and post seismic ASTER images
· OPT+SAR: (6-D feature vector) vector SAR and vector OPT
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Figure 8: Results of pixel-by-pixel classification of damaged areas in terms of overall accuracy and Kappa coefficient as function of different sets of features used in the classification algorithm.

Differently from the Izmit case, where the damaged training and test areas have been extracted by IRS itself, the damage extraction procedure and the classification method are based on two completely separated datasets. This only partially explains the decrease of accuracy with respect to the Izmit case. In fact, the most relevant causes of this result are the lower resolution of ASTER data and the higher spatial baseline of the interferometric SAR pairs. Nevertheless, also for the Bam test case the combined use of optical and SAR data still confirms a clear improvement of the image classification accuracy.
5. Conclusions

In this paper we have analysed both capabilities and limitations of satellite remote sensing to detect damage due to earthquakes. In particular, we have investigated which features extracted from such data more contribute to detect damage and estimate damage level. The correlation coefficient between SAR image intensities is a valuable feature when SAR is used alone (even if results remain very poor). A noteworthy result is that the combination of optical data and some SAR features significatively improves the damage classification. Among such SAR features the complex coherence reaches the higher classification accuracy when combined with optical images. This demonstrates that the complex coherence carries out independent information able to complement those carried by optical sensors. Its drawback is the high sensitivity to spatial baseline of the interferometric pair, less affecting the correlation of SAR intensities. Considering the high spatial baselines in our case studies, the radar intensity correlation averaged over extended areas showed a fairly good correlation to damage level. 
In the Izmit case the combination of SAR and IRS optical data allowed us to apply automatic procedures and to prove the capability to identify well defined damage classes, reaching the 90% of correct classification. In this favourable case, it has been demonstrated the possibility to significantly improve the results taking advantage of the change detection potential of the InSAR complex coherence. The work has indicated the need of carefully selecting SAR image pairs with small spatial baseline to increase the usefulness of the coherence feature. A very promising correlation with damage level observed in situ has been also demonstrated for the optical change image and SAR intensity correlation when data are aggregated within homogeneous regions (such as blocks of buildings). 
In the Bam case, even if the ASAR dataset had a very high spatial baseline, hampering the use of complex coherence, the sensitivity of SAR intensity and intensity correlation to surface changes has been also demonstrated. Moreover, medium resolution optical images revealed themselves moderately useful for our purpose. In fact, the combined use of SAR and optical data reached 77% of correct classification, confirming the complementarity of optical and microwave data. The apparently lower quality of the Bam result originates from the large spatial baseline of the SAR image pairs and the moderate resolution of the optical data. 

This study suggests that it is possible to conceive automatic systems for correlating satellite remote sensing features extracted from optical and radar sensor with typical seismological observations, like macroseismic intensity or other damage indicators. Future developments of the research are addressed towards the generation of a damage map useful for Civil Protections during crisis management. However, at present the network of operative Earth Observation systems needs to be improved to ensure a reliable operative support. 
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Classes (from visual inspection of IRS)


Red:	    new settlements after earthquake


Blue:	    partial damaged buildings


Magenta:   rubble


Cyan:	   subsidence


Green:	   non damaged areas


Orange:	  burnt oil tank
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