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This study provides a lithospheric-scale model along the Ionian Subduction zone
in Southern Italy, contributing to the seismotectonic investigation of a region
which is affected by relevant historical seismicity. The study employs gravity
forward modelling to build the geo-structural model along a composite, NW-
SE trending transect extending from the Ionian to the Tyrrhenian Sea, including the
Aeolian arc and the Calabro-Peloritan onshore. Through a multidisciplinary
approach, we propose new interpretations of three 2D deep-seismic reflection
profiles across the study area. Such interpretative profiles are used as constraints
tomodel the observed Bouguer gravity anomalies providing upper and lower crust
geometries. Whilst a tomographic model provides constraints for the lithospheric
and asthenospheric modelling. The entire workflow is constrained by literature
data about Moho geometry, deep seismicity and tomographic images that are
integrated to determine the subducting slab geometry. The proposed model of
the entire subducting system reasonably fits the observed gravity field and is
coherent with the first-order geological and geophysical constraints. The
modelling results in updated Tyrrhenian and Ionian Moho depth, subducting
slab geometry and location, and densities of the main units, providing valuable
input about the composition and geometry of the Calabrian arc structures.
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1 Introduction

The aim of this study is to reconstruct a geo-structural model of the crustal and sub-
crustal structure of the Tyrrhenian- Calabrian-Ionian subduction system in Southern Italy
(Scandone, 1979). Gravity forward modelling, along with the interpretation of available
deep-penetrating seismic lines (i.e., CROP Project, Scrocca et al., 2003), have been used to
build the geo-structural model along a transect extending from the Ionian to the Tyrrhenian
Sea, including onshore Calabria (Figure 1).

The trace of the modelled transect (Figure 1) is composed of two segments with different
orientations: the NW-SE trending, Eastern part follows the trace of the CROPM4 line in the
Ionian off-shore. While the WNW-ESE trending, the Western part runs in-between the
CROP M27 and the M2AA lines in the Tyrrhenian off-shore, extending eastward through
the Calabria onshore. Starting from the NW, the proposed transect crosses the following
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tectonic domains: the Tyrrhenian back-arc basin, the Aeolian
volcanic arc, the Paola fore-arc basin, the onshore Southern
Calabrian-Peloritan block, and the thick and wide accretionary
wedge in the Ionian Sea, floored by the oldest (Permian-Triassic
age) oceanic crust of theMediterranean Sea (Finetti, 1982; De Voogd
et al., 1992; Finetti et al., 1996; Stampfli et al., 1998; Catalano et al.,
2001; Speranza et al., 2012; Dellong et al., 2018; Tugend et al., 2019).

This study is based on a multidisciplinary approach where 2D
deep seismic reflection profiles, seismicity, and tomographic images
are integrated to provide constraints for the modelling of the
observed Bouguer gravity anomalies. In fact, if properly
constrained, the forward or inverse modelling of the Bouguer
gravity anomaly has proven reliable for the investigation at
different scales since it is capable of unveiling crustal and sub-
crustal structures (e.g., Tassis et al., 2013; Mancinelli et al., 2020;
Akimbekova et al., 2021; Mancinelli et al., 2021). In particular,
gravity anomalies at subduction zones are generally characterized by
strong signatures that are linked to topographic effects, material

density, and temperature heterogeneities in the lithospheric mantle
and the crust or even forces and stresses induced by plate dynamics
(e.g., Marotta et al., 2006; Bassett and Watts, 2015).

The Bouguer gravity anomaly data used in this work (Figure 2A)
derive from the 1:500,000 Gravity map of Italy (C.N.R.-P.F.G., 1991),
where data originally acquired by AGIP and CNR, consisting of
~270,000 station measurements, were gathered. The dataset was
gridded through 1 km × 1 km spacing and 85,952 nodes. The
Bouguer reduction was calculated using a density of 2,670 kg m−3.

Along the modelled transect, anomaly maxima are located in the
Tyrrhenian Sea at the north-western end of the transect, while the
regional trend decreases towards the southeast, reaching a minimum
of 20 mGal on the Ionian coastline of Calabria (Figure 2B). Gravity
anomaly values gently increase in the south-eastern part of the
modelled transect, towards the Ionian Abyssal Plain.

By exploring the subsurface setting of the Tyrrhenian-Calabrian-
Ionian subduction system (TCISS hereinafter), this study is also aimed at
providing contributions to the seismotectonic understanding of a region

FIGURE 1
Geological map showing the main features within the study area, including: i) seismic reflection profiles, ii) modelled transect which corresponds to
the length of the tomography, iii) instrumental seismicity, iii) themain tectonic features, iv) historical destructive seismicity (1. Mw 7.0, 2. Mw 6.7, 3. Mw 7.1,
4. Mw 7.1). Across the study area, the topography ranges between 0 and 828 ma. s. l., while bathymetry reaches 3445 m in the Tyrrhenian Sea and 2010 m
in the Ionian Sea. Topography and bathymetry data are from the Global Relief Model (Gebco compilation group, 2020).
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of Southern Italy, which is affected by relevant seismicity, including also
some significant historical destructive seismic events (Figure 1), whose
causative faults are still unknown or debated. Even though historical
destructive earthquakes are associated with normal faulting in onshore
Calabria (Monaco and Tortorici, 2000; Jacques et al., 2001), still the
subduction interface is the source of deep earthquakes responsible for
most of the moderate seismicity registered in the Calabrian Arc region.
Thus, investigating the deep crustal structures, especially the location and
geometry of the Ionian slab,may result useful to reveal what processes are
causing the seismicity of the area. In particular, modelling the boundary
between the downgoing slab and the upper plate along the subduction
zone is crucial for assessing the potential of this subducting zone to

generate megathrust earthquakes. However, such investigation would be
impossible without geological and geophysical constraints about the
lithosphere and the asthenosphere over the target area. Following a
classical geophysical modeling approach, we search for those constraints
in previous works and independent data. After a compelling review of the
available literature about the geophysical investigation of the Ionian
subduction, we provide an interpretative view of three depth-
converted crustal-scale seismic reflection profiles cross-cutting the
Tyrrhenian and Ionian Sea. The crustal geometries resulting from
those seismic data, coupled with a tomographic model over the same
area, provide the required constraints for the lithospheric scale forward
modeling of the observed Bouguer gravity anomaly.

FIGURE 2
(A) Bouguer gravity anomaly map of across the study area. (B) Profile view of the observed Bouguer gravity (above) and of topography/bathymetry
(below), along the modelled transect. Across the modelled profile, the topography ranges between 0 and 828 m a.s.l. on the Calabrian onshore, while
bathymetry reaches −3500 m b.s.l. in the Marsili basin in the southern Tyrrhenian Sea and −2000 m in the Ionian Sea.
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2 Geological and geodynamic setting

The Tyrrhenian-Calabrian-Ionian subduction system in the
Central Mediterranean is the result of the Neogene-Quaternary
subduction of the narrow Ionian slab below the Calabrian Arc
and the Tyrrhenian basin (Scandone, 1979).

The Calabrian Arc (CA) in Southern Italy is an arc-shaped
terrane (Malinverno and Ryan, 1986; Johnston and Mazzoli, 2009)
of European-derived continental rocks surrounded by deep-water
basins of different nature and age, the Pliocene-Pleistocene back-arc
Tyrrhenian Sea to the West and the much older Ionian remnant of
the Mesozoic Neo-Tethys (Sengör, 1979) to the East. The CA is
mostly composed of the Variscan metamorphic basement and
remnants of Mesozoic-Cenozoic carbonate and clastic covers
(Ogniben, 1973; Amodio-Morelli et al., 1976).

Despite that subduction has slowed down starting from the
Middle Pleistocene (Goes et al., 2004) and the slab has undergone
detachment processes both longitudinally and transversally (Scarfì
et al., 2018), the seismicity is distributed along a well-defined
Wadati-Benioff zone with focal depth that is less than 50 km in
the Ionian Basin and down to 660 km in the Tyrrhenian Basin
(Selvaggi and Chiarabba, 1995; Engdahl et al., 1998). As regards the
Ionian slab, recent studies based on wide-angle seismic survey
imaged a 5- to 6-km-thick oceanic crust in the Ionian basin
(Dellong et al., 2018; Dannowski et al., 2019). According to
many authors (e.g., Catalano et al., 2001; Speranza et al., 2012),
the opening of this diverging basin occurred since the Late Triassic
to the Late Jurassic-Early Cretaceous along the northern margin of
the African plate, between the Pelagian and the Apulian blocks.
Other studies propose ages ranging between the Late Triassic and
the Early Jurassic (Frizon de Lamotte et al., 2011; Gallais et al., 2011).
Multichannel seismic studies show that sediments accumulated
above the Ionian crust increase their thickness from about 5 km
in the abyssal plain to 10–15 km within the accretionary wedge, with
the subducting plate (dipping 1°–2° on average) steepening as it
approaches the CA (Cernobori et al., 1996; Minelli and Faccenna,
2010; Gallais et al., 2011; Polonia et al., 2011; Maesano et al., 2017).

In the frame of the Neogene-Quaternary tectonic convergence
between African and European plates, the CA and its continental
roots form the upper plate of the Ionian Subduction Zone (ISZ),
acting as a backstop of the accretionary wedge, whereas the Ionian
oceanic lithosphere forms the lower plate. The Ionian basin
represents an oceanic crustal compartment of the African plate,
laterally confined by the WNW-ESE trending Apulia and Malta
escarpments to its northern and southern boundaries, respectively
(Scandone et al., 1981; Fabbri et al., 1982; Casero et al., 1984). This
crustal setting is inherited from the Permian–Triassic rifting phase,
followed by the subsequent Jurassic–Cretaceous spreading stage
(Ben-Avraham and Grasso, 1991; Catalano et al., 2001).
According to the original paleogeographic configuration, the
laterally variable (continental to oceanic) African margin has
been progressively involved in subduction (oceanic versus
continental) and collision (continental versus continental) during
the Neogene tectonic shortening (Scandone, 1979). In this frame, the
denser Ionian oceanic lithosphere began to underplate toward the
NW beneath Iberia and France, of which the Sardinia-Corsica and
the Calabro-Peloritan continental blocks were parts (Jolivet and
Faccenna, 2000). Since ~35 Ma, the rapid SE-wards rolling-back of

the Ionian slab has controlled the tectonic evolution of the Western
Mediterranean region, resulting in the opening of two large back-arc
extensional basins, i.e., the older Ligurian-Provençal basin and the
younger Tyrrhenian basin (Scandone, 1979; Malinverno and Ryan,
1986; Patacca and Scandone, 1989; Faccenna et al., 2004), combined
with upper plate delamination and fragmentation (Ghisetti and
Vezzani, 1982). The back-arc opening was accompanied by
trench migration and by the consequent accretion of a set of
imbricated, foreland-verging orogenic wedges (e.g., Faccenna
et al., 2014 and references therein). In this setting, the SE-ward
advancement of the Calabrian backstop toward the unconstrained
Ionian basin resulted in the formation of an up to 150 km wide
accretionary wedge in the Ionian Sea (Minelli and Faccenna, 2010).

The current tectonic setting in the upper plate of the ISZ is that
of an intricate back-arc/fore-arc/trench system (Scandone, 1979;
Malinverno and Ryan, 1986; Patacca and Scandone, 1989; Faccenna
et al., 2004) where volcanism (De Astis et al., 2003), extensional
faulting (Monaco and Tortorici, 2000), uplifting (Ferranti et al.,
2006), frontal thrusting (Minelli and Faccenna, 2010; Polonia et al.,
2011) and slab-edge tear deformation (Barreca et al., 2014; 2019;
Gutscher et al., 2016; Polonia et al., 2016; Cultrera et al., 2017; Scarfì
et al., 2018) have taken place simultaneously. The lower plate setting
is imaged at depth by the occurrence of intermediate to deep
seismicity beneath the Calabrian Arc (Latorre et al., 2023), where
hypocenters well define a narrow descending slab with a Wadati-
Benioff plane that is continuous down to 600 km depth (Frepoli
et al., 1996), as well as by tomographic models of the lithosphere
(e.g., Wortel and Spakman, 2000; Neri et al., 2012; Calò et al., 2012;
Scarfì et al., 2018). Even though the near-cessation of the Calabrian
roll-back and stalling of the slab subduction has been proposed
(Faccenna et al., 2001; Goes et al., 2004), residual trench
migration <5 mm/yr), see D’Agostino et al., 2008 & 2011) point
to a still slowly receding slab.

3 Previous studies of the Moho and
lithosphere

3.1 Ionian vs. Tyrrhenian Moho

Prior to starting the modelling along the transect, we performed
a compelling review of the available literature about the Moho depth
across the study area. We collected interpretations of data acquired
through both active and passive seismic methods, like DSS, seismic
refraction/reflection, teleseismic and gravity data (Scarascia et al.,
1994; Nicolich, 2001; Finetti, 2005; Cassinis et al., 2003; Piana
Agostinetti and Amato, 2009; Di Stefano et al., 2011; Mele,
2012). Data retrieved from the aforementioned works reveal
some discrepancies between the proposed Moho geometries at
depth (Figure 3). However, all interpretations highlight the
occurrence of two distinct Moho surfaces, characterizing the NW
and the SE part of the transect, respectively: a shallower, gently SE-
dipping Tyrrhenian Moho beneath the Tyrrhenian Sea and a
relatively deeper and steeper, NW-dipping Ionian Moho in the
SE side of the profile. In the central part of the transect beneath the
Calabrian onshore, the Tyrrhenian crust is tectonically superposed
to the Ionian crust: the intersection between the two superposed
Moho discontinuities localizes the plate boundary at depth.
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The comparison between the different Moho interpretations
shows that in the upper plate region (i.e., beneath the Tyrrhenian
Sea, 0–150 km), the depth of the Tyrrhenian Moho ranges
between 10 and 20 km according to all the aforementioned
models. Moving towards the SE, the Tyrrhenian Moho gently
deepens beneath the Calabria coastline down to a depth of 35 km
(yellow data points in Figure 3). In the lower plate region (SE
portion of the profile), the Ionian Moho depth ranges between
14 km in the Ionian offshore (Finetti, 2005) and 50 km by moving
NW-ward along the modelled profile. According to previous
studies (Scarascia et al., 1994; Nicolich, 2001; Finetti, 2005;
Cassinis et al., 2003; Piana Agostinetti and Amato, 2009; Di
Stefano et al., 2011; Mele, 2012) between km 300 and km 150, the
Ionian Moho depth is more uncertain since it carries local
discrepancies up to 13 km wide (blue data points in Figure 3).
Considering all these data, for our model we adopted a geometry
and depth of Moho discontinuity in agreement with observed
Bouguer anomalies.

3.2 Lithosphere/upper asthenosphere
structure

Along our profile, the models proposed by Pontevivo and
Panza (2006), using nonlinear inversion of surface-wave data,
locate a very shallow lithosphere/asthenosphere boundary at
around 20 km of depth in the southern Tyrrhenian Basin
(B4 cell in their work) and at 135 km depth in the south-
eastern part of our profile corresponding to Ionian Sea (cell
C7 in their work). Below the Calabria block, a serpentinized layer
ranging between ~110 and 170 km depth is reported by the same
authors (see cell C6).

4 Deep crustal seismic (CROP) profiles
interpretation

Three deep seismic reflection profiles (traces on Figure 1), acquired
in the framework of the CROP Project (Scrocca et al., 2003) were
interpreted and depth-converted in the present study: two lines crossing
the Southern Tyrrhenian Sea (lines M27 and M2AA) and one crossing
the Ionian Sea, (line M4). The interpretation of the three deep seismic
reflection profiles aims at constraining the major stratigraphic and
structural features within the crust in order to provide reliable
geometries for gravity modelling. A detailed seismo-stratigraphic
interpretation of these CROP profiles has been provided by Finetti
(2005).

Starting from the tectono-stratigraphic interpretation in TWT
(clean lines - Figures 4A, 5A, 6A and interpreted lines—Figures 4B,
5B, 6B), the profiles were time-to-depth converted (Figures 4C, 5C,
6C) using average velocities, selected according to previously
published velocity models, as summarised in Table 1 (e.g.,
Scarascia et al., 1994; Neri et al., 2009; Pepe et al., 2010; Polonia
et al., 2011; Dellong et al., 2018; Scarfì et al., 2018).

4.1 M4 CROP profile

The NW-SE trending deep seismic profile M4 (Figure 4) has
been acquired in the offshore SE of Calabria across the wide and
thick Ionian accretionary wedge.

The profile mainly shows the tectono-stratigraphic structure and
thickness of the Ionian accretionary wedge. The accretionary wedge is
a well-visible feature that can be followed for about 250 km and up to
25 km of depth in its inner portion, made up of Mesozoic–Cenozoic
sediments (Polonia et al., 2011), internally deformed by NW-dipping

FIGURE 3
Moho depth interpretations along the modelled transect (see the trace in Figure 1), as proposed in the works listed in the legend box, together with
the corresponding method.

Frontiers in Earth Science frontiersin.org05

Akimbekova et al. 10.3389/feart.2023.1259831

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1259831


imbricated thrusts has been described in a wide range of literature
(e.g., Finetti, 2005; Minelli and Faccenna, 2010; Polonia et al., 2011;
Gutscher et al., 2017; Maesano et al., 2017). Polonia et al. (2011)
subdivided the wedge into two lobes: eastern and western. Our study
transect is located in the eastern part, which is structurally split into
Post-Messinian salt bearing (outer) and Pre-Messinian clastic (inner)
accretionary wedge.

Additionally, a detailed interpretation provided by Finetti (2005)
suggests the occurrence of two structural domains within the accretionary
prism: an inner domainmade up of shortened continental sediments and
an eastern domain, consisting of imbricated slices made up of the
obducted deep-water sediments covering the Mesozoic oceanic crust
of the Ionian Sea.

The shallowest portion of the accretionary wedge hosts thrust-top
basins infilled by recent, syn-tectonic sediments. The Squillace basin
(between shot points 4,200–3,800, close to the Ionian Calabria coastline)
is the most prominent syn-tectonic basin along the transect. It is
characterized by well-stratified seismic facies bounded by several
angular unconformities, indicating a complex interaction between
tectonic and sedimentation. At the depocenter, the basin is filled by a
thick (ca. 5 km) sequence of Neogene–Quaternary sediments, mainly
composed of clastic sequences andMessinian salt (Minelli and Faccenna,
2010). The thickness of the syntectonic sediments decreases towards the
SE, where they also appear less deformed.

The Top of the Ionian oceanic crust was traced following a strong set
of reflectors between 7 and 9 s (TWT section at Figure 4), also imaged by

FIGURE 4
Interpreted M4 CROP NVR profile in time clean (A) and interpreted (B) and depth converted domains (C).
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previous seismic reflection surveys (Cernobori et al., 1996). At the SE end
of the profile, the top of the old Ionian crust is interpreted at a depth of
7.5 s (TWT) from a series of strong reflectors which progressively deepen
North-westwards reaching the depth of 9.5 s TWT in the NW. Due to
limited coverage of the available Bouguer gravity anomaly data (Figure 2)
our forward modelling is truncated at km 100 of this profile.

In general, the profile does not provide a continuous and convincing
image of the Moho discontinuity, which is partly masked by the
presence of multiples at the same depth range. Indeed, only a few
discontinuous packages of high amplitude low-frequency reflectors
could be recognised and interpreted as the Moho discontinuity.

4.2 M27 and M2AA CROP profiles

The M27 (Figure 5) and M2A/III (Figure 6) profiles, acquired in
the Tyrrhenian Sea offshore Calabria with a SW-NE and NW-SE
trend, respectively, show the Tyrrhenian upper plate region of the

TCISS. The tectono-stratigraphic interpretation of these two lines
provides important constraints on the thickness and arrangement of
the main tectonic and structural elements of the Tyrrhenian margin
of the Calabrian Arc.

4.2.1 M27 profile
The M27 profile (Figure 5) images several tectono-stratigraphic

features (or domains) that typically develop along subduction zones. At
the NW edge of the profile (sp. 90–150), a series of chaotic reflectors are
related to the volcanic material of the Marsili seamount. Further to the
east (sp. 150–630), a series of high-amplitude low-frequency reflectors
are interpreted to be the seismic signature of the Tyrrhenian oceanic
crust. The oceanic crust is topped by a thin (0.5–1.5 km) sedimentary
cover, characterised by high-amplitude and continuous reflectors.
Between sp. 630 and 960, the profile images the submarine Alcione
volcano, which is part of theAeolian volcanic arc (Lucchi et al., 2013). In
the eastern part of the profile, the Paola basin is well-illuminated, and it
is characterized by well-defined high amplitude sub-parallel continuous

FIGURE 5
Interpreted M27 CROP NVR profile in time clean (A) and interpreted (B) and depth converted domains (C).
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reflectors that can be interpreted as ~5 km thick Pliocene–Quaternary
sedimentary deposits (Monaco et al., 1996; Pepe et al., 2010).

Between sp. 200 and 500, at around 7 s (TWT), the almost flat
Tyrrhenian Moho is detectable even if it appears not continuous.
Between sp. 630 and 1,400, high-amplitude low-frequency reflectors
of the Tyrrhenian Moho are more evident, becoming progressively
deeper eastwards, reaching about 11 s (TWT) beneath the
depocenter of the Paola basin.

Between sp. 1,350 and 1,500, a prominent west-dipping
reflector (8–11 s TWT) could be the seismic expression of the
subducting Ionian Moho. Further, a series of diffractions
recognized at around 8 s (TWT) beneath the western edge of
the Paola basin, could be attributed to an uprising, fluids-rich
portion of the Tyrrhenian lithospheric mantle.

4.2.2 M2A/III profile
In the NWpart of the profile (sp. 90–310), a 8 km thick Tyrrhenian

oceanic crust is clearly imaged by high-amplitude low-frequency
reflectors (Figure 6). The oceanic crust is overlain by a 1.5 km thick
sedimentary cover, characterised by a series of high-amplitude and
continuous reflectors. The transition from the oceanic to the continental
crust is marked by a series of W-dipping normal faults. Between
sp. 950 and 1,500, a series of chaotic reflectors are interpreted as
volcanic material associated with the Panarea volcano.

At depth, the reflectors of the Tyrrhenian Moho are not clearly
detectable in the NW part of the profile beneath the young oceanic
crust. A more evident Moho image can be associated with high-
amplitude low-frequency reflectors at 8 s (TWT), between
sp. 1950 and 2050. Between sp. 2,150 and 2,350, a series of SW-

FIGURE 6
Interpreted M27 CROP NVR profile in time clean (A) and interpreted (B) and depth converted domains (C).

Frontiers in Earth Science frontiersin.org08

Akimbekova et al. 10.3389/feart.2023.1259831

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1259831


dipping high-amplitude subparallel reflectors (16–18 s TWT) might
correspond to the top of the Ionian subducting slab.

5 Lithosphere tomography and
seismicity distribution

5.1 Lithospehere Vp tomography

Figure 7 shows a NW-SE trending vertical section of the
tomographic VP model by Scarfi et al. (2018), effectively imaging
the deep architecture of the TCISS, along the transect modelled

in this work (see trace in Figure 1). The descending slab is
clearly depicted by the tomographic image, confirming the
overall geometry depicted by deeper tomographic models of the
mantle (e.g., Dellong et al., 2020): in fact, the sub-vertical (more
than 70°) high-velocity anomaly (VP > 8.4 km/s), that goes down
through the mantle from about 50 to 300 km of depth, can be
interpreted as a cold oceanic lithosphere that penetrates a warmer
and lower velocity supra-subduction lithospheric mantle and
asthenosphere. Accordingly, an NW subducting slab geometry is
imaged to be continuous at least up to 300 km in the considered
section.

The VP model of Figure 7 also well delineates the lateral
variations of the Moho depth across the TCISS; a relatively thin
crust characterises both the upper and the lower plates under
the Tyrrhenian and external Ionian Sea, respectively. A thicker
crustal wedge (down to about 50 km of depth) is instead
identified beneath the inner portion of the Ionian
accretionary wedge and below the Calabrian
backstop. P-wave velocities higher than >6 km/s are found in
the continental crust beneath the Calabrian Arc in the depth
range of 10–15 km.

In the western sector of the section, a strong negative velocity
anomaly, wedging up from the bottom of the Tyrrhenian thinned
crust, suggests mantle upwelling below the Aeolian volcanic arc
(Ventura, 2013).

5.2 Seismicity distribution (the Ionian
Wadati-Benioff zone)

The geometry and structure of the subduction zone are
further constrained by the large available dataset of shallow
and deep earthquakes (see Scarfì et al., 2018), also plotted
along the same profile (Figure 7). Intermediate and deep
earthquakes, which are located within the positive seismic
velocity anomalies in the upper mantle, reveal the plate
interactions and allow to map a very steep (>70°) Wadati-
Benioff zone (Figure 7). In a more general view, the slab
geometry can be deduced by the deep seismicity distribution,

TABLE 1 Seismic velocities (m/s) compiled from literature compared with the present study.

Scarascia et al.
(1994)

Neri et al.
(2009)

Pepe et al.
(2010)

Polonia et al.
(2011)

Dellong et al.
(2018)

Scarfi et al.
(2018)

Present
study

Syn-tectonic
unit

<6.0 4.5–5.3 2.1 — 2.0–2.35 — 3.2

Messinian
evaporites

— — — 4–5 4.5–4.8 —

Volcanic bodies — — 5.5 — — — 5.5

Upper crust 6–6.3 5.7–6.5 5.5–6 — 5.5 5.7–6.2 6.5

Lower crust 6.5–7.3 6.5–7 6.5–7.5 — 6.6 6.5–7

Oceanic crust — — — — 6.5–7.4 7.5 7

New Oceanic
crust

— — — — — — 6.6

Upper mantle 8 — — — — 7.8–8 8.1

FIGURE 7
Tomographic modelling and seismicity distribution along the
study profile (after Scarfi et al., 2018).
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registered in the SE sector of the Tyrrhenian Sea, according to a
trend following the western Calabrian coastline (see Figure 1).
Shallower seismicity is instead mostly located within the inner
portion of the Calabrian accretionary wedge, with a trend that

highlights a deepening of the foci towards SE (see also Barreca
et al., 2021).

Historical seismicity testifies that the region has been the site of
numerous destructive earthquakes (Rovida et al., 2022; Polonia et al.,

FIGURE 8
Integrated best-fitting Bouguer gravity forward model across the study profile. (A) Comparison between observed (black line) and calculated
anomaly (green line) (B) synthetic model across the investigated profile at 1:1 scale. Density of the modelled blocks was assigned according to colour-
coded units.
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2023). The analysis of the instrumental seismicity at the regional
scale reveals that the Calabrian Arc is affected by a prevailing
extensional regime, while the accretionary wedge area is affected
by a stress field characterized by sub-horizontal P-axes striking
roughly NW-SE (see Scarfì et al., 2021).

6 Forward modelling of Bouguer
anomalies

6.1 Observed Bouguer gravity anomalies
along the study transect

Gravity forward modelling was performed along NNW-SSE
trending, 290 km long transect across the whole TCISS, from the
Tyrrhenian back-arc basin to the Ionian oceanic basin, extended
down to 300 km depth (Figure 8).

Across the study area in Figure 2A, the Bouguer gravity anomaly
ranges between 8 and 220 mGal. The anomaly maxima, an almost
flat segment of ca. 200 mGal, is located in the central part of the
Southern Tyrrhenian Sea oceanic floor (Marsili basin, Scarascia
et al., 1994), reflecting the presence of dense, newly-formed
oceanic crust, confirmed by its magnetic signature (Nicolosi
et al., 2006) and drilled wells (Kastens, 1988; Kastens and Mascle
1990). Moving progressively eastward, Bouguer anomaly values
decrease towards the peri-Tyrrhenian continental platform
margin and to the onshore Calabrian Mountain range. The
Bouguer minima, resembling an arc-shaped feature, extend from
the NW-SE trending Neogene clastic continental basins of Southern
Italy to the marine wedge-top basins of the Ionian side of Calabria.
On the eastern part of the map, gravity values gradually increase
south-eastwards, approaching the abyssal plain of the Ionian Sea.

The gravity patterns described above are well reflected in the
gravity profile along the study transect (Figure 2B). In the Southern
Tyrrhenian Sea, the maximum gravity value is 198 mGals. The
gravity minimum is observed in the central part of the modelled
transect with values of 8 mGals. Bouguer gravity increases, reaching
108 mGals at the southeastern end of the modelled profile.

6.2 Gravity model of the lithospheric
transect

Starting from the Bouguer anomaly data (Figure 2) along the
modelled profile, we propose the best-fitting forward gravity model
shown in Figure 8.

The model represents a 290 km-long and 300 km-deep volume
imaging the complete TCISS, and crossing, from SE to NW: the wide
accretionary wedge across the Ionian Sea; the Calabrian-Peloritan
onshore continental block and its western, thinned margin; The
Paola forearc basin; the Aeolian volcanic arc; and theMarsili basin in
the Southern Tyrrhenian back-arc. The geometries of the synthetic
blocks included in the model presented in Figure 8, have been
constrained by integrating different data sources, i.e., the available
literature data about Moho discontinuities and passive seismic data
(see Section 3), the reinterpreted deep seismic profiles (see Section
4), and a tomographic model matching the location of the modelled
profile (see Section 5).

The density values assigned to the synthetic blocks in
Figure 8 were defined according to the pertaining structural
domain, as derived after seismic interpretations and tomography
data, and by comparison with the density data available in the
literature, as summarised in Table 2. Such data provided starting
values for the modelled synthetic blocks, whose density was
slightly adjusted in order to fit the observed gravity signature.
Table 2 provides the best-fitting density values used in the
modelling.

Pliocene-Quaternary sediments infill the shallower, recent
basins of both the Tyrrhenian and Ionian Seas, representing the
shallowest modelled bodies, including the Squillace basin, reaching a
maximum depth of 4.5 km and seabed sediments on the Ionian side
of Calabria, and the Paola fore-arc basin, with a maximum depth of
5 km, in the Tyrrhenian side. For all these bodies, a density value
between 2,300 and 2,350 kg m−3 was assigned, the lower values are
found in the Tyrrhenian seabed sediments, with a thickness ranging
between 600 and 1,200 m (Akimbekova et al., 2021).

Moving towards deeper layers, different density values were
assigned, considering their different tectonic domains. At the north-
western end of the transect, starting from the Tyrrhenian domain,
we model a ~7 km-thick Tyrrhenian oceanic crust with a density of
2,900 kg m−3.

Further lateral variations were introduced in the peri-
Tyrrhenian region, corresponding to the continental margin and
platform (between 72 and 151 km of the modelled profile). Here the
modelled upper and lower crusts represent the transitional zone
between the higher-density Tyrrhenian oceanic crust and the lower
densities of the continental Calabrian crust. In this transitional
domain, we modelled densities of 2,750 and 2,860 kg m−3 for the
upper and lower crust, respectively, with a total maximum thickness
of 15 km. The density values for transitional upper and lower crusts
were adjusted from those modelled by Akimbekova et al. (2021) in
the Central Tyrrhenian Sea. Moreover, the transitional crustal
volume is affected by magmatic upwelling, related to the Aeolian
volcanic Arc, which was modelled with a density of 2,930 kg m−3

(Pepe et al., 2010; Tassis et al., 2013).
The forearc Paola basin was modelled as an eastward-thickening

block between the Aeolian Volcanic Arc and the Calabrian-Peloritan
onshore with maximum thicknesses of 5 km and using a density for
the Pliocene-Quaternary sediments of 2,350 kg m−3 (Pepe et al.,
2010). These shallow basins, allocating the lowest modelled
densities in small-sized and thick blocks, carry the shallower and
shorter-wavelength sources of the observed Bouguer gravity
anomaly as clearly observable between km 140 and 150 and
between km 180 and 220 of the modelled profile (Figure 8).

Moving further to the East in the onshore area, we modelled the
Calabrian continental crust with a maximum thickness of 29.5 km.
Here, the upper crust was attributed with metamorphic and
intrusive rocks in the Variscan basement and thus modelled with
a density of 2,680 kg m−3, while the lower crust was modelled with a
density of 2,850 kg m−3. Modelling of the onshore area was also
constrained by outcrops pertaining to the hanging wall of the Ionian
subduction (Ortolano et al., 2005; 2015). These hanging wall crustal
units are bounded eastward by a major tectonic boundary. This
boundary corresponds to the backstop, and merges upwards into a
complex thrust system, overlaying the footwall crust, represented by
the oceanic Ionian crust. The Ionian oceanic plate is composed of a
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TABLE 2 Compilation of the density values (g/cm3) extracted from the available literature and . summary of the representative density values of themain layers derived in this work from the Bouguer gravity forwardmodelling.

Menardi
Noguera and
Rea (2000)

Tiberti
et al.
(2005)

Anelli
et al.
(2007)

Biella
et al.
(2007)

Pepe
et al.
(2010)

Tassis
et al.
(2013)

Dellong
et al. (2020)

Mancinelli
et al. (2019)

Akimbekova
et al. (2021)

Present
study

Plio-Quaternary
sediments

Thyrrenhian Seabed 2.35 2.3 2.35 — 2.2–2.35 2.2–2.3 2.3 — 2.3 2.3

Foredeep, wedge-top 2.35

Messinian Evaporites — — — — — — 2.58 — — -

Volcanics — — — — 2.86 3–3.3 — — — 2.93

Continental crust Tyrrhenian Upper 2.63 2.63–2.65 2.58–2.67 2.6–2.65 2.69 2.75–2.77 2.63 2.58–2.67 2.6–2.65 2.68

Lower 2.85

Ionian Inner
wedge

2.68

Outer
wedge

2.48

Transitional crust Upper — — — — — — — — — 2.75

Lower 2.86

Oceanic crust Tyrrhenian Upper — — — — 2.85 3 2.8 — 2.85 2.85

Lower 2.9 2.9

Ionian — — — — 3.1 — — — — 2.9

Lithospheric
mantle

Tyrrhenian 3.2 3.32 2.95 3.15 3.28–3.37 3.3 3.22 3.2 3.2 3.2

Ionian 3.1 3.35 3.3 3.24

Asthenosphere Tyrrhenian — — — — 3.18–3.34 — — — 3.13 3.13

Ionian 3.16
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thin and dense oceanic crust with a maximum thickness of 7 km and
a density of 2,900 kg m−3, overlain by a thick accretionary wedge.
Such accretionary wedge consists of a mixed lithological assemblage
comprising Messinian evaporites, pre-Messinian Miocene deposits,
Mesozoic platform, and deep-water pelagic carbonates (Finetti,
2005; Minelli and Faccenna, 2010; Polonia et al., 2011; Gutscher
et al., 2017; Maesano et al., 2017). The inner accretionary wedge is
thicker, with a maximum thickness of 38 km (between km 156 and
245 in the modelled profile, Figure 8), and is split into two blocks
with different densities. The inner accretionary block was modelled
with an average density of 2,680 kg m−3 representing the crustal
rocks of the Ionian slab (Polonia et al., 2011). The outer
Accretionary prism was modelled with an average density of
2,480 kg m−3.

In the model, we present two different Moho discontinuities: a
newly-formed Tyrrhenian Moho and an older Ionian Moho. In the
western end of the modelled profile, the relatively shallow
Tyrrhenian Moho, flattening at about 11 km depth, reflects the
presence of a deep marine basin (about 3,500 m b.s.l.). In the eastern
end, the Ionian Moho is at a depth of ~27 km. In the central part of
the profile, beneath the Tyrrhenian coastline, we found the
superposition between a gently east-dipping Tyrrhenian Moho at
about ~30 km and a deeper and steeper, west-dipping Ionian Moho,
intersecting at a depth of ~55 km resembling the subducting slab.
The downward continuation of this slab is clearly imaged by deep
seismicity (Latorre et al., 2023), as well as by mantle tomography
(Scarfì et al., 2021), down to a depth of at least 300 km (Figure 7).

The subducting Ionian mantle was modelled with a density of
3,245 kg m−3 beneath the Calabrian and Peloritan continental blocks
coastline.

Beneath the Tyrrhenian and the Ionian Moho, the Lithospheric
Mantle was also modelled, accounting for different ages and thermal
states between the Tyrrhenian and the Ionian domains. In fact, the
older and colder Ionian lithospheric mantle was modelled with the
relatively higher density value of 3,245 kg m−3, with respect to the
presumably hotter and lighter, newly formed Tyrrhenian
lithospheric mantle that was modelled with a density of
3,200 kg m−3.

The presence of the uppermost asthenosphere is marked as a
lower density (3,130 kg m−3) block found at 20 km depth beneath
the Tyrrhenian Sea at the NW end of the profile and intersecting the
subducting slab at a depth of 48 km (at km 140 along the modelled
profile). Under the Ionian domain, the transition between the
asthenosphere and the lithosphere was modelled at ca. 100 km
depth, attributing a density value of 3,160 kg m−3 to the Ionian
asthenosphere, slightly higher than the Tyrrhenian.

7 Discussion and concluding remarks

Considering all the available geophysical and geological
constraints, we forward-modelled the Bouguer gravity anomaly
along a regional-scale transect spanning from the Tyrrhenian to
the Ionian oceanic crusts, cross-cutting the Calabrian Arc. The
resulting 290 km-long and 300 km-deep model provides further
constraints to the regional lithospheric geometries. Supported by
the interpretation and depth conversion of crustal-scale seismic
profiles from the CROP project (Scrocca et al., 2003) and by a

tomographic model (Scarfì et al., 2018) across the same modelled
profile.

The aforementioned multidisciplinary approach was aimed at
minimising the intrinsic non-uniqueness that the forward
geophysical modelling carries. Nevertheless, we stress that in the
workflow we followed, relevant uncertainties can mainly arise from
interpretative or procedural errors in the seismic and/or
tomographic models. Absolute values and regional trends of the
Bouguer gravity signature are clearly affected by the crustal and
lithospheric thickness representing the first-order contributor across
the entire profile. Density changes between the Ionian and
Tyrrhenian lithospheric mantle and asthenosphere were
introduced due to the different ages and thermal evolution of the
two distinct geodynamic domains. Volcanic intrusions in the
younger Tyrrhenian domain also contribute to the observed
gravity signature, while the short-wavelength, local-scale gravity
anomalies are clearly generated by the shallow, recent basins,
such as the Paola and Squillace basins. The crustal setup carries
strong lateral density changes, which are found in both the
continental and transitional domains. Such lateral contrasts are
coherent with the present-day tectonic setting, which is in turn,
inherited from the complex geodynamic evolution of the area. A
clear example is provided by the mantle upwelling in the Tyrrhenian
domain, where it is preceded by lower-density oceanic crust and
followed by lower-density Peri-Tyrrhenian transitional crust. While
a more complex example is found in the central part of the profile
where the subduction hanging wall is in lateral continuity with the
transitional upper crust westwards and with the accretionary wedge
eastwards. However, to improve the resolution of the upper crustal
geometries and density values would require shallower high-quality
constraints (boreholes and/or commercial seismic lines) beyond the
purpose of this work.

The review of the available literature was both a driver for this
work since it highlighted contrasting models for the Moho
discontinuities across the area (Figure 3) and was also key for the
depth-conversion of the seismic data (Figures 4–6) and for the
parametrization of the synthetic blocks in the forward model
(Figure 8). Such review allowed us to provide the reader with up-
to-date data collection about the average seismic velocities and
density values for the study area (Tables 1, 2) and, ultimately, to
provide best-fitting density values (Table 2) that are somehow
supported by the geometrical references provided by the seismic
and tomographic data.

The final forward gravity model (Figure 8) fits the observed
gravity field and provides an overall imaging of the TCISS,
identifying the first-order geological and geophysical contributors
to the observed gravity field. In particular, it effectively images the
structural settings of the crust and of the lithospheric mantle along
the modelled transect throughout the different structural domains of
the Tyrrhenian Neogene oceanic crust, Aeolian Arc, Calabrian
continental block and Ionian Mesozoic oceanic crust.

The results of this work will likely contribute also to
understanding the lithospheric-scale relationships between depth
and seismic velocities and densities by providing reference values for
the study area concerning the lithospheric mantle and the lower
crust (Tables 1, 2).

Nevertheless, there are still some features that could be
furtherly modelled to improve the accuracy and the research
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impact of the proposed model. For example, more detailed
information on shallow structures can be derived from the
interpretation of other seismic reflection profiles, including
also high-resolution surveys, acquired offshore (Caporali et al.,
2003; 2009; Devoti et al., 2011; D’Agostino et al., 2011b; Carafa
et al., 2018; Cambiotti et al., 2020; Gutscher et al., 2017; Dellong
et al., 2020). The Moho depth under the Ionian Sea, as well as the
mantle rising beneath the Aeolian Arc, also needs some
improvement due to the limited resolution of the CROP
seismic profiles, especially in their deeper portion. Moreover,
future modelling efforts should consider alternative scenarios of
the slab geometry, such as the potential occurrence of slab
detachment phenomena at intermediate depths. In our current
model, we assumed a continuous slab extending at least 300 km, a
configuration supported by tomographic imaging and deep
seismicity studies (Scarfi et al., 2018; Dellong et al., 2020;
Latore et al., 2023). Scarfi et al. (2018) propose a
comprehensive 3D image of the Calabro-Ionian subduction
system in the central Mediterranean, obtained through seismic
tomography and integrated with earthquake data. Their findings
indicate that the slab remains continuous beneath the southern
sector of the Calabro-Peloritan Arc where our profile is crossing.
However, deformation processes occurring at its edges contribute
to its gradual narrowing. Combined analysis of tomography and
earthquake distribution suggests that the slab is continuous only
in its SW part (From ATLFS to the Gulf of S. Eufemia). This long-
lasting (35 Ma) NW-dipping subduction of the ancient Ionian
oceanic lithosphere affects surface tectonics and magmatism,
potentially leading to stress concentration in the tip zones.
The authors identify three distinct seismogenic zones, with
our model profile crossing between zone 3 (the slab) and zone
2 (a tear fault bounding the slab SW), referred to as the “Aeolian
Tindari Letojanni Fault System” (ATLFS). Latorre et al. (2023)
analyze the CLASS catalogue of earthquakes, where the Ionian
slab is imaged by the seismicity distribution. A near-vertical
Benioff-Wadati zone (>75°) at a depth of 80–300 km between the
Aeolian Arc and the submerged Paola forearc basin. Also, in this
work, the slab is continuous only in the “central” part of the study
area, and the section highlights that the shallow part of the slab
(D<80 km) dips 55°, whilst the deeper part is nearly vertical
(>75°). Dellong et al. (2020) image the slab and related seismicity
that reaches a depth of about 500 km.

An important extension of this research, which could be
beneficial for both the scientific community and society,
should be focused on providing a more comprehensive
understanding of the natural hazards associated with the
region. This includes further studies of the active tectonics of
the region concerning geodetic data (Billi et al., 2023), that can
provide valuable insights into the ongoing processes of plate
collision and subduction. Such studies would provide the base for
a revision of the crustal-scale seismotectonics of this region
including its eventual potential to generate megathrust events.
In this frame, the compressional seismicity at the crustal-scale,
with particular focus on the lower crust and the accretionary
wedge, is still poorly understood and represents an important
area of research that can help us to better understand the present-
day dynamics of this complex region and possibly locate crustal
volumes that are prone to strong compressional seismicity.

Being constrained by seismic reflection data (Figures 4–6) and in
agreement with previous models in the available literature
(Figure 3), our modelling provides the first-order lithospheric-
scale tomographic (Figure 7) and geometric (Figure 8)
constraints where such studies can be framed.

Finally, the key findings of this work can be summarised as
follows:

1. Basin gravity signatures: The Calabrian arc is flanked by two
prominent recent basins that carry clear and strong short-
wavelength gravity signatures, i.e., the Paola forearc basin in
the hinterland, the wider and deeper Squillace basin on top of the
accretionary wedge.

2. Tectonic complexity: The orogen displays a heterogeneous
nature and complex arrangement of the involved tectonic
units. The lateral complexity of the upper crust contributes
to the observed gravity signature through strong lateral
density contrasts ranging from the transitional crust
(separating the Calabrian Arc from the Tyrrhenian young
oceanic crust) in the Tyrrhenian domain, to the thick and
wide accretionary wedge covering the old oceanic crust of the
in the Ionian domain.

3. Accretionary wedge: A well-developed, thick Accretionary prism
is present in the Ionian Sea and its thickness and density decrease
eastward, compatibly with the observed gravity signature.

4. Crustal Structure: Two distinct, superposed Moho
discontinuities can be modeled across the Calabrian Arc. The
footwall plate displays a subducting, westward-dipping Ionian
Moho of older late Paleozoic-Mesozoic origin, while the
hanging wall plate showcases a newly-formed Neogene
Tyrrhenian Moho.

5. Heterogeneities at the asthenospheric scale: The observed
Bouguer gravity anomaly is compatible with slight density
differences between the Tyrrhenian and the Ionian domains,
supporting different ages and thermal evolutions of the two.

6. Ongoing Subduction: In the Calabrian Arc, the subduction of the
Ionian oceanic lithosphere appears to be active, as evidenced by
well-developed deep seismicity extending to at least 300 km
(Figure 7; Scarfì et al., 2019; Latorre et al., 2023).

7. Subduction-Related Volcanism: The Aeolian volcanic arc
exhibits clear evidence of subduction-related volcanism
(Lucchi et al., 2013; Ventura, 2013; Castro-Melgar et al.,
2021), that is compatible with the observed gravity signature
(Figure 8).

These findings contribute to our understanding of the orogen’s
morphology and of its tectonic and geodynamic evolution by
providing new evidence on the size and extent of the main
basins, the crustal structure and the volcanic activity in the
Aeolian arc. Finally, these findings provide valuable insights into
the dynamic processes shaping the region and have implications for
seismic hazard assessment and geological modelling in similar
tectonic settings.

We believe that this model will contribute to the tectonic and
geodynamic understanding of this intriguing and complex region,
towards the refinement of the seismogenic crustal thickness and
possibly assessing the potential of this subducting zone to generate
megathrust earthquakes.
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