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A B S T R A C T   

Lava flows associated with effusive volcanic eruptions require accurate modelling in order to forecast potential 
paths of destruction. 

This study presents a new depth-averaged model that overcomes the classical shallow water hypothesis by 
incorporating several enhancements, allowing for a more precise representation of the flow dynamics and 
behaviour: (i) a parabolic profile which captures the vertical variations in velocity within the flow; (ii) a non- 
constant vertical profile for temperature, enabling a more realistic representation of thermal gradients within 
the flowing lava; (iii) a viscoplastic temperature-dependent viscosity model to account for the non-Newtonian 
behaviour of lava; (iv) a transport equation for temperature accounting for the thermal heat exchanges with 
the environment and the soil. The first two modifications allow us to describe, under reasonable assumptions, the 
vertical structure of the flow, and for this reason, we put our model in the class of 2.5D models. 

To assess the performance of our modified model, comprehensive benchmark tests are conducted using both 
laboratory experiments and real-world lava flow data related to the 2014–2015 Pico do Fogo, Cape Verde, 
effusive eruption. The benchmarking analysis demonstrates that this model accurately reproduces, with short 
execution times, essential flow features such as flow front advancement and cooling processes.   

1. Introduction 

Volcanic eruptions are among Earth’s most powerful natural phe-
nomena and threaten people living near them. Eruptions may display 
explosive activity with the ejection of gas and pyroclastic material into 
the atmosphere, or effusive activity with the propagation of a lava flow 
from the vent, or both. Lava flows see behaviours that depend on 
different effusion rates, temperatures, and lava’s chemical-physical 
composition, which may change from eruption to eruption and even 
during different phases of a single eruption, strongly affecting lava vis-
cosity. For example, during the eruption of the 2014–2015 eruption at 
Holuhraun, Iceland, the first phase had a discharge rate in the range of 
100–350 m3 s− 1 with an averaged lava flow velocity of 44.27 mh− 1, and 
the second phase was characterized by a discharge rate in the range of 
50–100 m3 s− 1 and average propagation velocity of 11.35 mh− 1 (Ped-
ersen et al., 2017). In most cases, volcano observatories and civil pro-
tection have time to respond promptly once the effusive event is 
underway by evaluating the current and potential event scenarios and 

preparing evacuation and safety plans if needed. Before an eruptive 
event, short-term hazard maps forecasting future scenarios can be 
generated. A priori study is one of the few preventive actions possible in 
the case of a very rapid lava flow, which is a rarer event to consider 
anyway. As an example, we remind the 1977 eruption of Nyiragongo, 
which recorded lava flow speeds of up to 60 km per hour (Nakamura and 
Aoki, 1980). Therefore, reliable forecasting of lava flow paths is a 
fundamental tool for improving volcanic hazard and risk mitigation, and 
requires a quantitative description of the effusive phenomenon. 

In the 1970s, the traditionally qualitative and observation-oriented 
field of Volcanology started transforming into a quantitative science. 
Modern volcanologists started to investigate volcanic eruptions behind 
visible phenomena, turning to physical and mathematical models to 
better understand their dynamics. The first generations of numerical 
models for volcanic processes were analytical and 1D models, in general 
steady-state. More recently, advancement in the physical processes 
description with new mathematical models and the increased compu-
tational resources allowed the development of more complex 
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Computational Fluid Dynamics (CFD) models leading to transient and 
2D/3D models. However, as far as lava flows are concerned, only a small 
number of transient and multidimensional numerical models have been 
developed so far because of the complexity, variability, and un-
certainties in the physical phenomenon. 

Lava flow models should account for both fluid dynamics and ther-
mal effects through the solution of the mass, momentum and energy 
conservation equations. In addition to the conservation laws, a lava flow 
emplacement model should consider other factors (Cordonnier et al., 
2015).  

(i) Firstly, an accurate and updated topography description and the 
precise vent position are among the major factors in forecasting 
the correct lava flow emplacement (Bilotta et al., 2019; Flynn 
et al., 2023). Slight differences in the vent location or the 
topography may lead to significant variations in the resulting 
simulation. 

(ii) Secondly, eruptive input conditions, such as effusion rate, effu-
sive temperature, and vent geometry, affect the emplacement 
(Harris and Rowland, 2009; Lister, 1992).  

(iii) Additionally, lava’s physical properties, such as density and 
rheology, have a major influence on the dynamics (Pinkerton and 
Wilson, 1994).  

(iv) Finally, the thermal boundary conditions at the fluid top and 
bottom (bound to thermal exchanges with the atmosphere, 
through convection and radiation, and with the ground, through 
conduction) and the possible thermal insulation due to a super-
ficial crust formation may be considered as well since they affect 
viscosity and, consequently, propagation velocity (Harris and 
Rowland, 2009). The cooling process on the fluid top and bottom 
may induce a phase transition on both sides and lead to the for-
mation of a lava tube (not modelled here). 

The mathematical translation of the mass, momentum and energy 
conservation laws together with conditions (i–iv) leads to a system of 
partial differential equations (PDEs) for which approximated solutions 
computed by numerical methods are increasingly employed (due to the 
absence of analytical solutions). However, theoretical models and nu-
merical methods cannot capture the entire complexity of lava proper-
ties, and different simplifications have been introduced to speed up 
codes. Models are distinguished for the deterministic or stochastic 
approach, the numerical method employed, and the complexity of the 
physical modelling adopted; hence the associated codes differ in their 
physical implementations, numerical accuracy, and computational 
efficiency. 

Here we briefly summarize the broad categorization of existing lava 
flow models, for a detailed review consult (Biagioli, 2021; Hyman et al., 
2022): stochastic models (DOWNFLOW (Favalli et al., 2005; Tarquini and 
Favalli, 2011), ELFM (Damiani et al., 2006), VORIS (Felpeto et al., 
2007), LASZLO (Bonne et al., 2008), MrLavaLoba (de’ Michieli Vitturi 
and Tarquini, 2021)), channelled models (FLOWGO (Harris and Rowland, 
2001; Harris et al., 2011; Harris et al., 2015)), cellular automata models 
(MAGFLOW (Bilotta et al., 2012; Del Negro et al., 2008; Ganci et al., 
2012; Herault et al., 2009; Vicari et al., 2007), SCIARA (Avolio et al., 
2006; Barca et al., 1994; Barca et al., 2004; Crisci et al., 1986; Crisci 
et al., 1998; Crisci et al., 2008), FLOW FRONT (Wadge et al., 1994; 
Young and Wadge, 1990), MOLASSES (Connor et al., 2012; Dietterich 
et al., 2017; Kubanek et al., 2015)), depth-averaged models (VOLCFLOW 
(Kelfoun and Vargas, 2016), Costa and Macedonio (Costa and Mace-
donio, 2005), ShaLava (Bernabeu et al., 2016), DG LAVA 2D (Conroy 
and Lev, 2021), LAVA 2D (Hyman et al., 2022)), nuclear-based models 
(CROCO (Michel et al., 2000), MELTSPREAD (Farmer et al., 1990)), 3D 
models (LavaSIM (Fujita and Nagai, 2022), GPUSPH (Zago et al., 2019)). 
The specific approach of our interest is the depth-averaged one, which 
represents an excellent compromise to provide accurate solutions in a 
reasonable time (since the heavy computational load required by 3D 

models remains a critical problem), by approximating the full model 
with a 2D one for the depth-averaged flow variables. This approach 
relies on the so-called “shallow water approximation” for which the flow 
depth (the thickness) is required to be much smaller than the horizontal 
scale of the phenomenon of interest. A small aspect ratio implies that 
vertical velocities are much smaller than horizontal velocities and can be 
neglected. Shallow water approximation was first introduced by de 
Saint-Venant in 1864 and Boussinesq in 1872 (Hager et al., 2019); their 
original formulation regarded incompressible, isothermal, and non- 
viscous fluids. However, the classical shallow water model may be 
enriched by considering viscosity and additional transport equations for 
energy or temperature and therefore are currently applied to a broader 
range of geophysical problems for hazard assessment (flood simulations 
(Coulibaly et al., 2020; Elong et al., 2022), tsunamis propagation (Deb 
Roy et al., 2007), granular flows such as avalanches, landslides, debris 
flows, and pyroclastic currents (Fernández-Nieto et al., 2016; Fernán-
dez-Nieto et al., 2018; Gueugneau et al., 2021), lava flows). VOLCFLOW 
(Kelfoun and Vargas, 2016) is an isothermal model that accounts for 
Bingham-plastic rheology. Instead, Costa and Macedonio (Costa and 
Macedonio, 2005), ShaLava (Bernabeu et al., 2016), DG_LAVA_2D 
(Conroy and Lev, 2021), LAVA_2D (Hyman et al., 2022) consider the 
lava cooling process, the development of different kinds of temperature 
profiles, a Newtonian (Costa and Macedonio (Costa and Macedonio, 
2005)) or Bingham-plastic (all the others) rheology model with different 
relationships for the temperature-dependent viscosity. Notice that 
LAVA_2D (Hyman et al., 2022) implements, in addition to complex ve-
locity, temperature and viscosity profiles, the solidification at the 
ground and the crust formation at the surface. 

This paper presents a novel depth-averaged model for lava flows, its 
validation with some benchmarks for lava flow models established in 
(Cordonnier et al., 2015) and its application to the real case of Pico do 
Fogo, Cape Verde, 2014–2015 effusive eruption. In the previous work by 
some of the authors (Biagioli et al., 2021), a preliminary model has been 
presented in the broader context of generic viscous fluids by setting the 
numerical scheme to apply and showing essential results - among which 
the capability of the model to correctly reproduce the first benchmark of 
(Cordonnier et al., 2015). The present paper describes how we improved 
that model by tailoring it for the specific application of lava flows. 

As we treat lava as a hot free-surface viscous fluid with heat exchanges 
with the environment, the present model goes beyond the assumptions of 
the classic shallow water equations, which are: (a) a negligible vertical 
component of velocity, (b) a hydrostatic vertical pressure distribution, (c) 
a constant vertical profile of the horizontal velocity component (which is 
a consequence of the inviscid flow hypothesis), and (d) isothermal fluid. 
In fact, for viscous fluids, the vertical shear has a significant impact, 
therefore assumption (c) becomes too restrictive and must be relaxed. In 
addition, for lava flows we overcome even the hypothesis (d), whereas the 
assumptions (a-b) remain. We overtake the classic formulation by 
assuming a viscoplastic model and non-constant vertical profiles for ve-
locity and temperature, which make the model 2.5D. In this way, even if 
done with strong assumptions on the functional form of the profiles, we 
describe not only the horizontal variations of the flow variables, but also 
the variations with depth. By considering the no-slip condition for viscous 
fluids in contact with surfaces, we consider a parabolic velocity profile. 
Using a non-constant velocity profile produces a modified momentum 
equation in which an additional coefficient, known as the Boussinesq 
factor or shape factor (Boussinesq, 1877), appears in the advective term. 
We assume a piece-wise linear vertical profile for the temperature, ac-
counting for the variations near the ground due to conductive heat ex-
change with the soil. The combined assumptions of non-constant velocity 
and temperature profiles lead to the appearance of a shape factor inside 
the advective term of the temperature equation and of some correction 
factors inside the heat exchange terms. The model has been further 
enriched by source terms that account for the lava effusion from a circular 
vent. In conclusion, our model largely respects the requirements (i–iv) 
listed before. 
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Our governing equations are obtained by integrating the mass, mo-
mentum and thermal energy conservation laws over the fluid depth and 
consist of a system of PDEs. The modifications that we introduced do not 
change the hyperbolic nature of the equations (see (E. Biagioli, and M. 
de’ Michieli Vitturi, and F. Di Benedetto, 2021)), but, in some cases, they 
can significantly impact front features and propagation (Hogg and 
Pritchard, 2004). The spatial discretization method employed is a 
modified version of the second-order central-upwind scheme introduced 
by (Kurganov and Petrova, 2007) for the classical shallow water equa-
tions, (see (Biagioli et al., 2021)). For the temporal discretization, we use 
an implicit-explicit Runge-Kutta technique (Russo, 2000; Russo, 2005), 
which permits an implicit treatment of the stiff terms, such as the vis-
cosity term and thermal heat exchange terms, making the numerical 
method more efficient. 

The paper is organized as follows. First, we present the detailed 
physical model for lava flow in §2 and suggest the numerical scheme to 
use. Then, we show and discuss in §3 the results of this model applied to 
two 2D benchmarks taken from (Cordonnier et al., 2015) and to an 
actual eruption case, represented by the event that occurred at Pico do 
Fogo volcano (Cape Verde, 2014–2015). Finally, we present the 
concluding remarks in §4 and discuss possible further improvements. 

2. Method 

In this section, we present the physical model we developed and 
summarize its formal derivation; Table 1 reports all the variables and 
parameters of the model. More mathematical details about the deriva-
tion are available in (Biagioli, 2021). 

In this depth-averaged model, we consider lava flows as incom-
pressible and laminar flows over a variable topography of a viscous and 
homogeneous fluid with Bingham-plastic rheology and temperature- 
dependent viscosity. Fluid temperature varies because of radiative and 
convective heat exchanges through the surface with the environment, 
heat conduction with the ground and viscous heating. The depth- 
averaged value of density may be constant or vary horizontally, 

further relaxing the assumptions of the classical shallow water equa-
tions, and both the model and the numerical solver retain it in their 
formalization for this reason. For example, density might depend line-
arly on temperature, in which case the depth-averaged density depends 
linearly on the depth-averaged temperature, see (Biagioli et al., 2021) 
for more details and a related application. 

Notice that the laminar flow hypothesis is an important assumption, 
and that is more suitable for high viscous fluid, precisely when the 
Reynold number is small (Re≪1). The laminar regime allows a thermal 
and rheological stratification, so the core remains hotter than the 
boundaries, requiring a longer time to cool. On the opposite, turbulent 
flows see a thermal mixing (unless rheological contrasts inhibit it), and 
the internal lava cools and solidifies faster than in the laminar case 
(Griffiths, 2000; Kilburn, 1999). 

In this work, we derive the equations by depth-averaging, in the 
Eulerian framework, the incompressible and 3D formulation of the 
Navier-Stokes Equations, under the assumption that the horizontal 
length scale is much greater than the vertical length scale: 

∂ρ
∂t

+∇⋅(ρu) = 0, (1)  

∂(ρu)
∂t

+∇⋅
(
ρuuT) = ρg − ∇p+∇⋅τ. (2) 

Eq. (1) is the continuity equation, namely the transport equation for 
density ρ(x, z, t), which is advected with velocity u(x, z, t), where x =

(x, y). Eq. (2) is the momentum conservation equation, a non-linear 
partial differential equation that accounts for the velocity advection. 
Pressure p is the mechanical pressure, which depends on the pressure 
distribution at the boundary. The viscous stress tensor τ(x, z, t) to which 
we refer here relates to incompressible flows and Newtonian and 
isotropic fluids with constant viscosity μ. Therefore, according to these 
assumptions, we get that the viscous stress tensor is defined as τ =

μ
(
∇u + (∇u)T ), where ∇u is the Jacobian matrix of the velocity field. 

Because of the incompressible flow condition, that is ∇⋅u = 0, we obtain 
that the term that appears in the momentum equation results as ∇⋅τ =

μΔu (for these classic arguments, the reader can refer to (Batchelor, 
2000)). Since (Biagioli et al., 2021) already present in detail the deri-
vation of the depth-averaged mass and momentum equations, in the 
present work, we only recall the significant points of those passages. 

We adopt a Cartesian coordinates system such that the plane defined 
by the x and y axes is orthogonal to the z axis, which is parallel, but with 
opposite verse, to the gravitational acceleration g = (0,0, − g) (g 
approximated by 9.8 ms− 2). The topography (assumed not to vary with 
time) is expressed by the function B(x). Assuming that the horizontal 
length scale is much greater than the vertical length scale and that the 
vertical dynamics are negligible compared to horizontal effects, the 
velocity vector u = (u, v,w) results with w = 0. h(x, t) denotes the fluid 
thickness above the topography and T (x, z, t) is the temperature field. 
We introduce the notation U(x, t) for the z-averaged horizontal velocity 
vector, whose two components U and V are given by 

U(x, t) =
1
h

∫ B+h

B
u(x, z, t)dz,

V(x, t) =
1
h

∫ B+h

B
v(x, z, t)dz.

(3) 

Similarly, T is the notation for the depth-averaged temperature 

T(x, t) =
1
h

∫ B+h

B
T (x, z, t)dz. (4) 

Under the assumptions of laminar flow and viscous fluid, a vertical 
velocity profile develops satisfying the conditions of (i) null velocity at 
the bottom, (ii) null traction between air and fluid, and (iii) maximum 
speed at the free surface. Also, considering the motion of a Newtonian 
fully developed laminar viscous flow (with constant viscosity along the 

Table 1 
Variables and parameters of the model.  

Symbol Definition Unit 

ρ density kg m− 3 

h fluid thickness m 
U = (U,V) depth-averaged velocity m s− 1 

T depth-averaged temperature K 
R volume rate of fluid per unit area m s− 1 

g gravity kg ms− 2 

B topography elevation m 
Tref reference temperature K 
Tvent temperature at the vent K 
Tsoil invariable soil temperature K 
cp fluid specific heat m− 2 s− 2 K− 1 

kfl,ksoil fluid and soil th. conductivity Wm− 1 K− 1 

n param. for fluid thermal boundary layer – 
M param. for soil thermal boundary layer – 
κ fluid th. diffusivity m2 s− 1 

H conductive coefficient m s− 1 

λ heat transfer coefficient W m− 2 K− 1 

f exposed inner core fractional area – 
W convective coefficient ms− 1 

ε emissivity – 
σSB Stefan-Boltzmann constant W m− 2 K− 4 

ℰ radiative coefficient m s− 1 K− 3 

Z viscous heating coefficient m− 2 s2 K 
ζ,ψ temperature source terms coefficients – 

γ friction coefficient m s− 1 

μ dynamic viscosity Pa s 
μ̃ power-law viscosity Pa s 
τ0 yield stress Pa 
b rheological parameter K− 1 

μref dynamic viscosity at Tref Pa s  
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vertical direction), the balance of friction and gravitational force leads 
to a parabolic velocity profile, as represented in Fig. 1a, similar to a 
Poiseuille flow (Dragoni et al., 2005). Notice that this profile develops 
for both velocity components u = (u, v). 

From the previous conditions, the following relationship between u 
and U may be deduced: 

u(x, z, t) = 3
2

{

1 −
[

B(x) + h(x, t) − z
h(x, t)

]2
}

U(x, t). (5) 

Therefore, by using the assumptions of parabolic profile (i − iii), we 
get an explicit expression of the vertical distribution u(z) in terms of U 
and the relative vertical position. 

The depth-averaged continuity equation is derived by integrating the 
mass conservation equation, Eq. (1), over the flow thickness, and it re-
sults as follows: 

∂(ρh)
∂t

+∇⋅(ρhU) = 0. (6) 

The depth-averaged momentum conservation equations is obtained by 
depth integrating the momentum conservation equation, Eq. (2), and 
assuming a hydrostatic profile for pressure p, i.e. ∂zp(x, z, t) = − ρ(x, t)g: 

∂(ρhU)

∂t
+∇⋅

(
βuρhUUT)+∇

(
1
2

ρgh2
)

= − ρgh∇B − ργU. (7) 

The differences between Eqs. (6–7) and the classical shallow-water 
equations are the viscous term − ργU and the coefficient βu. We 
remark that, in obtaining Eqs. (6–7) by an integration over the flow 
depth, we neglected the vertical variations of density (which, for a lava 
flow, are small), but we kept the density in the equations because of the 
possible variations with time and with the horizontal coordinates, which 
can occur on longer time scales. 

The coefficient βu is known in the literature as Boussinesq momentum 
coefficient or shape factor or corrector factor; in general, its magnitude 
relates the mean square velocity to the square of the mean velocity, 
reflects the shear in the profile of the horizontal fluid velocity, and may 
depend on factors such as the Reynolds number or the boundary 
roughness. Even though the value of βu is frequently set equal to unity 
(which holds only when velocity is constant over the flow thickness), it 
is well known that this coefficient may have a significant effect on the 
dynamics of the flow when a complete sheared flow is expected (Hogg 
and Pritchard, 2004). The presence of this coefficient in the momentum 
equation is due to the nonlinearity of the advective term with respect to 

the velocity (indeed, the term ∇⋅
(
ρuuT) in Eq. (2) is quadratic in u, 

whereas ∇⋅(ρu) in Eq. (1) is linear). In case of parabolic velocity profile, 
as represented in Eq. (5), by depth-averaging the momentum equation, 
Eq. (2), we obtain that the value of the Boussinesq coefficient is βu = 6/5 
(but different velocity profiles, for example, when non-Newtonian vis-
cosity is considered, will result in different values of βu). For the detailed 
derivation of the value βu = 6/5 we refer the reader to (Biagioli, 2021). 

Following (Costa and Macedonio, 2005), the friction term is given by 
− ργU, where the friction coefficient expresses as γ := 3μ/(hρ) due to the 
parabolic velocity profile. Such a coefficient is inversely proportional to 
the fluid thickness and directly proportional to the viscosity, which 
coincides with the dynamic viscosity in the Newtonian case. In the case 
of a Bingham plastic rheology, the friction coefficient slightly changes its 
expression, resulting in 

γ :=
3
hρμ̃+

τ0

ρ|U|
. (8) 

In this equation, μ̃ is the power-law viscosity (also called flow con-
sistency index) that Herschel and Bulkley introduced in 1926 to express 
the shear stress as a function of the shear rate for both Newtonian and 
non-Newtonian fluids (Tang and Kalyon, 2004). τ0 is the yield stress and 
is a threshold for the shear stress: if the shear stress magnitude is smaller 
than that, namely when ∣τ∣ < τ0, then there is no deformation. Bingham 
fluids are characterized by τ0 > 0 and Newtonian fluids by τ0 = 0. 
Notice also that when one uses the Bingham plastic rheology (Eq. (8)), if 
the velocity in the momentum equation (Eq. (7)) goes to zero, the fric-
tion term does not go to zero because of the velocity at the denominator 
in the yield stress term. For a Bingham fluid, plugged flow can occur far 
from the bottom, where the shear stress is smaller, and the velocity 
becomes constant with depth (Tallarico and Dragoni, 2000). This results 
in a deviation from the assumed parabolic profile, which is not consid-
ered here. 

For several materials, the viscosity, be it dynamic μ or power-law ̃μ, is 
strongly temperature dependent, and in the case of lava, the simple 
Nahme’s exponential relationship between viscosity and temperature 
may be assumed (Costa and Macedonio, 2002): 

μ̃ = μref e
− b(T − Tref ), (9)  

where b is an appropriate rheological parameter and μref is the viscosity 
at a particular reference temperature Tref that may be, for instance, the 
emission temperature at the vent Tvent. In the present work, we implicitly 
assume the crystallinity-dependence of viscosity through the value of 
the rheological parameter b; in fact, we do not have either equations or 
terms describing the crystallization process explicitly. 

2.1. Temperature profile for soil conduction and heat exchanges 

Because of the dependence of viscosity on temperature, we introduce 
an additional equation describing the temperature evolution. Although 
the temperature equation usually is derived from the energy conserva-
tion law (written in terms of the temperature), we consider the tem-
perature only as a transported quantity. In the following, we derive the 
depth-averaged equation, which accounts for the transport of the tem-
perature T , the heat exchange phenomena through convection and 
radiation with the environment and conduction with the ground, and 
the viscous heating. The result is a transport equation containing the 
advection term of the depth-averaged temperature and presenting 
source terms related to radiation, convection and viscous heating. We 
stress that depth-averaged variables are chosen as the unknowns of the 
system of equations: in particular, the temperature will appear in the 
average form T so that some independent quantities will be expressed in 
terms of T (even though this may seem counterintuitive). 

We assume that the vertical temperature variations are due to the 
conductive heat flux between the fluid and the ground with the conse-
quent development of two thermal boundary layers in both materials. 

Fig. 1. Vertical profiles assumed in the model. (a) Parabolic velocity profile. (b) 
Piecewise-linear temperature profile; δT and δsoil are the thermal boundary 
layers of fluid and terrain, respectively. 
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Indeed, in the case of lava flows or similar situations, the terrain is colder 
than the fluid, so a thermal boundary layer emerges in the fluid. At the 
same time, the ground temperature increases to a certain depth because 
of the presence of the hotter fluid, hence an underground thermal 
boundary layer develops too. By succeeding in doing so, we can describe 
the heat exchange processes in terms of the fluid depth-averaged tem-
perature and the unchanged temperature deep underground. 

We make two hypotheses to model heat conduction: (i) the fluid and 
the ground are both homogeneous and isotropic materials, and their 
thermodynamic properties are temperature independent, (ii) the time 
scale of the thermal diffusion process is faster than the time scale of the 
boundary conditions changes, so we can assume an equilibrium condi-
tion (namely, the temperature profile instantaneously reaches the 
thermal equilibrium). The latter assumption is justified by field and 
theoretical studies of lava flows showing that the interface temperature 
between the flow and the underlying ground rapidly reaches approxi-
mately the halfway point between the relatively low original ground 
temperature and the high lava melt temperature (Davies, 2007; Turcotte 
and Shubert, 1982). 

Because of assumption (i), the fluid and ground thermal conductiv-
ity, named kfl and ksoil, respectively, are constant and do not depend on 
temperature. On the other hand, thanks to assumption (ii), we may refer 
to the heat equation at the stationary state condition (namely to the 
Laplace equation) restricted to the vertical direction, leading to a linear 
solution: 

T (z) = Cz+D.

This leads to a linear profile in each thermal boundary layer 
considered. Consequently, the overall temperature profile is piecewise- 
linear. We denote with δT and δsoil the thermal boundary layer thick-
nesses of the fluid and soil, respectively. Tsurf is the temperature of the 
fluid free-surface, Tgr is the temperature at the fluid/ground interface, 
and Tsoil is the unchanged temperature underground, see Fig. 2. The 
profile’s explicit expression is: 

T (x,z, t)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Tsurf (x, t), if B+δT < z≤B+h

Tsurf (x, t) − Tgr(x, t)
δT

(z − B)+Tgr(x, t), if B< z≤B+δT

Tgr(x, t) − Tsoil

δsoil
[z − (B − δsoil) ]+Tsoil, if B − δsoil < z≤B

Tsoil, if z≤B − δsoil.

(10) 

Usually, the thickness of the fluid thermal boundary layer is 
approximated as a fraction of the whole flow depth, so δT = h/n (with 
n≥1) (Costa and Macedonio, 2005). Likewise, even the thickness of the 
ground boundary layer depends on the fluid depth, but with a different 
relationship: δsoil =Mh (with M≥1); for example, in (Patrick et al., 
2004), focused on the characterization of the cooling of a stationary lava 
flow, the authors use M = 2. We observe that the introduction of a 
vertical temperature profile also leads to a viscosity profile because of 
the dependence of the viscosity on the temperature (see Eq. 9). In the 
model presented here, we neglect the effect of these viscosity vertical 
changes on developing a parabolic velocity profile by using an average 
viscosity value obtained from the depth-averaged temperature value. 

According to the definition of the depth-averaged temperature T, Eq. 
(4), we integrate on the depth the temperature by using the expression of 
its profile, Eq. (10), and obtain a relation binding T to the top and 
bottom fluid temperatures, namely, Tsurf and Tgr, and to the thickness 
index n: 

T =

(

1 −
1
2n

)

Tsurf +
1
2n

Tgr. (11) 

The Fourier law (consult (Fagents et al., 2012)) states that the 
conductive flux qcond along the vertical direction, intended as the heat 
flux through a unit area per unit of time, is linearly proportional to the 

negative temperature gradient and to the thermal conductivity k. By 
assuming the same heat flux in both the fluid and solid, the following 
equality holds 

q(fl)
cond = − kfl

Tsurf − Tgr

δT
= − ksoil

Tgr − Tsoil

δsoil
= q(soil)

cond . (12) 

By rearranging the previous equation, we express Tgr in terms of the 
surface and soil temperatures 

Tgr = (1 − ϕ)Tsurf + ϕTsoil, with ϕ :=
1

kfl
ksoil

nM + 1
. (13) 

Using the depth-averaged model, we need to express the surface and 
ground temperature, Tsurf and Tgr, in terms of the depth-averaged and 
soil temperatures, T and Tsoil, in order to close the system of equations. 
So, from the previous equations Eq. (11) and Eq. (13), and after some 
manipulation, we find the expressions that we need: 

Tsurf = ζT + (1 − ζ)Tsoil, with ζ :=
1

1 − ϕ/(2n)
, (14)  

Tgr = ψT + (1 − ψ)Tsoil, with ψ := (1 − ϕ)ζ. (15) 

We also notice that when n→ + ∞ then ζ and ψ go to 1, consequently 
Tsurf ≈ T (from Eq. (14)) and Tgr ≈ T (from Eq. (15)). 

In the following, we describe the advective and source terms of the 
transport equation for T. 

2.1.1. Advective term 
We integrate the advective term of the temperature equation over the 

fluid depth by using the explicit expressions of velocity and temperature 
profiles, Eqs. (5, 10), obtaining the next expression: 
∫ B+h

B
T (z)u(z)dz = hU

[
(1 − θ)Tsurf + θTgr

]
,with θ :=

4n − 1
8n3 . (16) 

By writing Tsurf and Tgr in terms of T and Tsoil through Eqs. (14, 15), 
the temporal and advective terms integrated over the fluid depth result 
as: 

∂(hT)
∂t

+∇⋅{hU[T +(βT − 1)(T − Tsoil) ] },with βT := θ(ψ − ζ)+ ζ. (17) 

To express the dependence of βT on the physical quantities, we 
replace the definitions of ϕ, θ,ψ , ζ using Eqs. (14, 15, 16): 

βT = 1+
ksoil(2n − 1)2

4n2
[
2n2Mkfl + (2n − 1)ksoil

]. (18) 

The value of βT is clearly greater than 1 because the fraction has 
positive factors (remember that n ≥ 1). Because of this, and since T −

Tsoil > 0, the temperature advected (that is written in the square 
brackets of Eq. (17)) is surely greater than the average temperature T. 
Therefore models that advect only the depth-averaged temperature 
underestimate this flux. 

From the explicit expression of βT, we notice that the soil tempera-
ture influence becomes negligible and that the vertical distribution of 
temperature arises similar to a constant vertical profile in two situations: 
when the thickness δT = h/n of the fluid thermal boundary layer thins or 
when the thickness δsoil = Mh of the soil thermal boundary layer in-
creases a lot. In fact, as n or M goes to + ∞, the value of βT goes to 1 so 
that the advective term reduces to∇⋅(hTU), which is the classic 
expression of the depth-averaged equation obtained under the 
assumption of a uniform temperature profile (namely T = Tsurf = Tgr). 
The value, and hence the impact, of βT depends on the thermophysical 
properties of lava and soil (thermal conductivity kfl, ksoil) and the pa-
rameters that model the thermal profile (n, M). In realistic lava flows 
scenario, the value of these parameters might be n = 2, M = 2 (Patrick 
et al., 2004), kfl = 2.0 for basaltic lava (Costa and Macedonio, 2005), 
and ksoil = 0.83 which is a mean value for soil (Darkwa et al., 2013) The 
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resulting value is βT ≈ 1.01, so the influence of the profile on the 
advective term is very small. 

2.1.2. Conductive heat transfer source term 
So far, we have analyzed how conductive heat loss affects the tem-

perature profile and have derived a consequent expression for the 
advective flux. However, we must also quantify the actual thermal loss 
due to conduction and write the corresponding source term. The Fourier 
Law in Eq. (12) states that the heat exchange between the hot fluid and 
cold ground is directly proportional to the temperature gradient and the 
thermal conductivity. Since we are deriving an equation for temperature 
and not for energy, we divide the thermal conductivity by the specific 
heat cp and density ρ, thus the thermal diffusivity, defined as κkfl/

(
ρcp

)
, 

appears: 

qcond

ρcp
= − κ

Tsurf − Tgr

δT
. (19) 

Considering Eqs. (14, 15) to express the surface and ground tem-
perature in terms of T and Tsoil and rearranging the terms, we get the 
final expression of the conductive heat loss term: 

S cond = − H (ζ − ψ)(T − Tsoil),with H := κn/h. (20)  

2.1.3. Convective heat transfer source term 
Convection heat loss is the heat transfer from the surface of a warm 

body to the surrounding colder gas or liquid and is characterized by the 
motion of such fluid. In our case, the warm body corresponds to the free 
surface of the hot lava, overhung by the colder air. In models where the 
air is not represented (as in the present case) or when the whole 
complexity of the processes is not properly accounted for, there is no 
exact modelling of the convective phenomenon. However, the convec-
tive heat flux can be described by the Newton law of cooling in terms of 
the heat transfer coefficient λ and of the temperature difference between 
the fluid surface and the environment (Fagents et al., 2012), and writes 
as follows: 

qconv = λf
[
Tsurf − Tenv

]
, (21)  

where Tenv denotes the constant environmental temperature. The coef-
ficient λ depends on the physical properties of the colder fluid. More-
over, the value of λ changes if one models natural or forced convection, 
for example, a value between 2.5 and 25 Wm− 2 K− 1 is proposed in the 
literature (Kosky et al., 2013) for natural air convection and between 10 
and 500 Wm− 2 K− 1 for the forced case, as in the presence of wind. The 
variable f indicates the fractional area of the exposed inner core: the 
value of f is exactly equal to 1 for a fluid completely molten; when there 
is a superficial crust that insulates partially or totally the fluid, as it 
might happen in the case of lava (consult (Fagents et al., 2012) for more 
details) f assumes a smaller value. Moreover, in natural flows, the value 
of f may change with time and space because it depends on the solidi-
fication temperature of the material considered and on its chemical 
composition. In this model, we assume, for simplicity, a constant value 
for f . 

By using the same argument as for conduction, we divide the coef-
ficient in Eq. (21) by the specific heat cp and density ρ, express Tsurf in 
terms of T and Tsoil (Eq. (14)), and obtain the convective heat transfer 
source term to add to the temperature equation: 

S conv =
qconv

ρcp
= − W [ζT +(1 − ζ)Tsoil − Tenv ],with W :=

λf
ρcp

. (22)  

2.1.4. Thermal radiation transfer source term 
The so-called Stefan-Boltzmann law describes the radiative heat flux, 

stating that the rate of thermal radiation emitted from a surface per unit 
area qrad is: 

qrad = εσSBT4
surf , (23)  

namely is proportional to the fourth power of its absolute temperature at 
the surface, i.e. Tsurf , expressed in kelvin, to the Stefan-Boltzmann con-
stant σSB = 5.67⋅10− 8 Wm− 2 K− 4 and to the emissivity ε of the material, 
for more details see (Modest, 1993). Our model accounts for the radia-
tive heat exchange between the fluid and the environment, so the 
radiative heat flux depends on the difference of the fourth powers of the 
surface temperature and environmental temperature, according to Eq. 
(23), and consequently the radiative heat loss of the fluid is 

− εσSBf
[
T4

surf − T4
env

]

where ε is the fluid emissivity. The parameter f of the fractional area of 
the exposed inner core appears even in this term because the radiative 
heat loss is influenced by the presence of a superficial crust as well. 

By using the same argument as for conduction, we divide the heat 
loss by the specific heat cp and density ρ, express the surface temperature 
in terms of T and Tsoil (Eq. (14)), and finally get the expression for the 
radiative term to add in the transport equation: 

S rad = − ℰ
[
(ζT + (1 − ζ)Tsoil )

4
− T4

env

]
,withℰ :=

εσSBf
ρcp

. (24)  

2.2. Further considerations 

(a) In the case that a constant velocity profile is assumed, namely 
when u(z) = U as in the classic formulation of the shallow-water equa-
tions, a thermal boundary layer may still develop. The consequence is a 
simplification in the advective term, and the equation results as follows: 

∂(hT)
∂t

+∇⋅(hTU) = S cond +S conv +S rad (25) 

(b) We discuss the asymptotic behaviour of the thermal exchange 
terms. Concerning the convective and radiative terms, Eqs. (22, 24), the 
limit case of a constant temperature profile within the lava flow is 
studied, corresponding to a negligible lava thermal boundary layer 
(n→∞). One observes that both terms contain the parameter ζ that 
multiplies T, and that, according to (14), ζ→1 when n→∞. We get that 
the convective and radiative terms tend to − W (T − Tenv) and − ℰ

(
T4 −

T4
env
)

respectively, and these expressions correspond to those reported in 
(Costa and Macedonio, 2005). 

(c) When the thermal boundary layer in the soil is not accounted for 
in the modelling derivation procedure, then Tgr = Tsoil, and this co-
incides with the model proposed in (Costa and Macedonio, 2005). In 
such a circumstance, our conductive term is still described by Eq. (19) as 
κ
(
Tsurf − Tgr

)/
δT , instead of that present in (Costa and Macedonio, 2005) 

that is κ
(
T − Tgr

)/
δT. When the difference between T and Tsurf is small, 

replacing Tsurf by T is a little underestimation and, from this approxi-
mation, the different expression may be deduced. 

(d) A shrewdness must be accounted for in a simulation where a 
source area representing a vent is present. At the vent, there is no cooling 
at the bottom because there is no conductive heat exchange as the 
ground is the magma rising in the conduit. For this reason, the tem-
perature profile is constant in the source area. It comes out that the 
advective flux term assumes the expression as follows and that only the 
heat exchanges with the air must be considered: 

∂(hT)
∂t

+∇⋅(hTU) = − W (T − Tenv) − ℰ
(
T4 − T4

env

)
.

2.2.1. Viscous heating term 
In the dynamics of fluids characterized by a temperature-dependent 

viscosity, the coupling between the momentum and temperature (or 
energy) equations is essential. We obtain such coupling by assuming 
Nahme’s exponential law of Eq. (9) and including the viscous heating, 
another significant process that connects temperature to dynamics. For 
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viscous fluids, such as lava or polymers, the viscous friction increases the 
fluid temperature where viscosity is higher, namely near the surfaces 
touched by the fluid: for example, in an open-channel flow the increase 
of temperature happens near the bottom, instead for a fluid in a pipe 
occurs near the tube walls. The temperature increment leads to a vis-
cosity decrease, which reflects in a velocity increase, and then the higher 
velocity causes further heating. Moreover, viscous heating may change 
the velocity and temperature profiles, for example, transforming a 
parabolic velocity profile into a constant velocity profile. This may 
happen in the case of an open-channel flow, which presents the profile of 
Fig. 1a, as well as in the case of a flow in a natural or artificial conduit, 
which develops a slightly different profile, see (Kauahikaua et al., 1998). 
In the depth-averaged model introduced here, we derive a source term 
for the viscous heating by depth-averaging the term presented in (Costa 
and Macedonio, 2003), which states that the viscous heating is pro-
portional to the dynamic viscosity and the square of the vertical deriv-
ative of velocity: 

1
ρcp

∫ B+h

B
μ
[(

∂u
∂z

)2

+

(
∂v
∂z

)2
]

dz = Z γ
(
U2 +V2), Z :=

1
cp
; (26)  

for details see (Biagioli, 2021). We point out that if we had assumed a 
velocity boundary layer of thickness δu = h/α with a parabolic profile, 
we would have found Z = α/cp, instead we have simply α = 1. 

2.3. Synthesis and numerical schemes 

We write the results obtained previously all together in a system of 
equations with an additional source term R accounting for new material 
release, such as lava exiting from a volcanic vent, at the emission tem-
perature Tvent into the system at the volumetric rate of fluid per unit area. 
Consequently, additional source terms are added to the continuity and 
temperature equations, whereas no “vent” term is in the momentum 
equations because we assume that fluid exits with no velocity along x 
and y. 

∂(ρh)
∂t

+∇⋅(ρhU) = ρR, (27a)  

∂(ρhU)

∂t
+∇⋅

(
βuρhUUT)+∇

(
1
2

ρgh2
)

= − ρgh∇B − ργU, (27b)  

∂(hT)
∂t

+∇⋅{[T +(βT − 1)(T − Tsoil) ]hU }

= S cond +S conv +S rad +Z γUT U+RTvent. (27c) 

Notice that U is a column vector, so Eq. (27b) consists of two scalar 
equations. For Newtonian fluids, the friction coefficient is γ := 3μ/(hρ). 
Whereas, in the case of the Bingham plastic model, the system couples 
with the constitutive Eq. (8) for the friction coefficient expression. Also, 
Nahme’s relationship holds for a temperature-dependent viscosity, Eq. 
(9), and the presence of b ∕= 0 produces a coupling between the mo-
mentum and temperature equations. Table 1 summarizes all the relevant 
variables and parameters introduced in our model. 

Concerning the analytical properties of the system of Eqs. (27), the 
study of the system’s hyperbolicity and the role of the shape parameters 
are detailed in (Biagioli et al., 2021). In light of the hyperbolic character 
of equations, classical numerical techniques developed for such kinds of 
equations (LeVeque, 2002; Toro, 1990) apply to solve them. We describe 
below the numerical approach used to approximate the system’s solu-
tion, whose details are reported in (Biagioli, 2021; Biagioli et al., 2021; 
de’ Michieli Vitturi et al., 2019). 

The spatial discretization scheme is a modified version of a central- 
upwind scheme introduced in (Kurganov and Petrova, 2007), which 
belongs to the family of Finite Volume Methods. It is a second-order 
scheme when applied with the use of flux limiters. This allows the cre-
ation and propagation of discontinuities in the solutions and enforces 

the conservation properties of the equations. As proved in (Biagioli 
et al., 2021), this scheme respects the so-called well-balancing property, 
as it preserves the stationary steady states that, in our case, consist of the 
lake-at-rest conditions, namely a horizontal free surface with zero ve-
locity, constant temperature, no emission of new fluid in the system and 
no heat exchanges with the environment. Moreover, the scheme gua-
rantees the non-negativity of the fluid depth h throughout the simulation, 
respecting the so-called positivity preserving property. 

The time discretization scheme uses an Implicit-Explicit Runge-Kutta 
method as described in (Pareschi and Russo, 2000). We implicitly treat 
the stiff terms, namely the friction term of the momentum equation and 
the conductive, convective and radiative terms of the temperature 
equation. The other terms, i.e., the flux terms, the pressure term in the 
momentum equation, the viscous heating term in the temperature 
equation and the remaining source terms, are treated explicitly. 

Despite the simplifications introduced with the shallow water 
approach, the depth-averaged models have proven to be accurate 
enough to be a more convenient choice, and the advantage of a meagre 
computational cost increases the convenience of this choice with respect 
to 3D models. Indeed, one of the benefits of the depth-averaged 
approach is that the viscous term is not modelled through a second- 
order differential term but through a simpler and non-differential 
term. The implicit treatment of the viscous forces for 3D models in the 
numerical discretization would require the solution of a large coupled 
system of equations resulting from the implicit spatial discretization of 
the second-order differential term, for this reason, some 3D models rely 
on a simpler semi-implicit treatment of the viscous term (Bilotta et al., 
2022). Instead, in depth-averaged models, there is no coupling between 
the equations associated with these terms. This allowed us to adopt the 
IMEX scheme, where the implicit terms are integrated cell by cell, 
significantly reducing the complexity of the problem. 

The following numerical scheme properties refer to the model 
description and terminology presented in (Biagioli, 2021; Biagioli et al., 
2021; de’ Michieli Vitturi et al., 2019). In order to preserve the solution 
positivity and the explicit scheme stability associated with the CFL 
condition, a variable time step is used, which has been set (in terms of 
the spatial discretization steps) to the following values: 

Δt = k min
{Δx

a
,

Δy
b

}
for the 2D simulations,with k = 0.24, (28)  

where a, b are the maximum local propagation speeds at interfaces 
defined in (Kurganov and Petrova, 2007, Theorem 3.1). In each test we 
present here, the generalized minmod limiter (with θ = 1.3) is adopted 
because it is proved to produce very accurate solutions (Biagioli et al., 
2021). We use the 2-stage IMEX R-K scheme for the time marching 
(Pareschi and Russo, 2000). We set the initial time-step as Δt = 10− 4 s 
and use open boundary conditions, which means imposing zero-gradient 
Neumann conditions both for velocities, free surface h + B and tem-
perature. In the upcoming tests, we compare simulations obtained with 
computational grids of coarse and finer resolutions, where the grid is 
refined by halving the discretization step. This means that, for 2D cases 
like ours, the number of cells obtained with the refinement is four times 
the previous number and that the time step must also be halved to 
continue to meet the CFL condition, Eq. (28). Consequently, the 
computational cost increases by eight times. 

3. Applications 

The Fortran 90 numerical code developed for this work (available at 
(Biagioli and de’ Michieli Vitturi, 2021)) is based on the solver described 
in (de’ Michieli Vitturi et al., 2023). It has been tested and validated by 
some literature cases in (Biagioli et al., 2021) where a preliminary 
temperature model was developed. (Biagioli et al., 2021) also investi-
gated the role of the correction factors. Two 1D tests that perform a dam- 
break (over a horizontal and an inclined plane, respectively) were 
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presented, and they showed that the influence of the velocity corrector 
factor is non-negligible in the presence of supercritical flows, i.e. when 
the inertial force has a dominant effect on the gravitational force. This 
condition is verified when the Froude number is greater than 1, where 
the Froude number is defined as Fr = ∣U∣/

̅̅̅̅̅
gh

√
. In particular, the sim-

ulations that account for the parabolic velocity profile are initially 
slower than the ones with the constant profile, but after there is an 
overtake and they subsequently propagate faster. (Biagioli et al, 2021) 
also presented the 2D simulation of a warm fluid (with a temperature- 
dependent viscosity), initially concentrated on the top of an inclined 
plane and then slid down over it. In such a test, the impact of the tem-
perature profile correction factor was tested, proving that its influence is 
not only not negligible but significantly impacts the thickness distribu-
tion and the front position. As already stated, the temperature model 
adopted in (Biagioli et al., 2021) slightly differs from the one presented 
in this paper as it doesn’t account for the thermal exchanges, having 
been created to consider only the advection of temperature with a ver-
tical profile. Anyway, the observations from the 2D simulations per-
formed there give an idea about the non-negligible impact of the 
corrector factors. Indeed, when the piecewise linear temperature profile 
is considered, due to the combination of velocity and thermal profiles, 
the top layer has the highest temperature and moves faster than the 
lower layer. As the top layer propagates faster, it arrives to constitute the 
front and leads to a further front extent. Meanwhile, the fluid that re-
mains behind becomes, on average, colder as mainly constituted by the 
lower layer. In this situation, the depth-averaged temperature of the 
fluid that remains behind decreases, leading to a higher viscosity and, 
therefore, the fluid there moves slower. Bringing the discussion of this 
process into the case of the simulation on the inclined plane, it results 
that the fluid that remains behind is the one that occupies the upper part 
of the inclined plane, and as a consequence, it tends to accumulate, 
constituting a pile. Conversely, in the case of a constant thermal profile, 
the pile does not form. 

In the previous work (Biagioli et al., 2021), we mostly focused on 1D 
tests, instead, in the present paper, we continue the validation exclu-
sively by 2D simulations. The tests’ order is of increasing complexity to 
highlight the single performances of each implemented feature, such as 
the temperature evolution, the Bingham plastic temperature-dependent 
viscosity, and the use of a real volcano topography with realistic 
parameters. 

The first two tests presented originate from (Cordonnier et al., 2015), 
which proposes a suite of benchmark tests for lava flow models, and they 
have been combined in (Biagioli et al., 2021) with another benchmark 
given (dam-break of a viscous fluid over a flat bottom) to complete the 
validation for the 1D case. The first test (§3.1) consists of the spreading 
of an isothermal viscous fluid over an inclined plane with the aim of 
checking the fluid spreading correctness with respect to three directions. 

The second test (§3.2) treats the spreading from a source, over a flat 
plane, of a hot viscous fluid that cools during the axisymmetric propa-
gation because of radiative, convective and conductive heat loss. For this 
test, viscosity is not temperature-dependent, hence the dynamics are not 
influenced by that. The aim of the test is to check both the fluid prop-
agation and temperature changes. The third and last test (§3.3) is the 
simulation of a real lava flow in the context of a realistic effusive 
eruption, hence we modelled a Bingham plastic hot fluid and we 
accounted for the thermal heat exchanges with the environment and 
soil, the temperature-dependent viscosity, and the viscous heating. We 
simulate the early 24 h of the Fogo eruption that occurred in 2014–2015 
to study the sensitivity of model solutions to the rheological parameters 
and to the position of the vents. For all the tests presented in this work, 
we assumed a constant density because of the negligible variations in 
temperature and/or density. This assumption is valid for both the lab-
oratory experiments, performed with viscous fluids whose density does 
not change during the test execution, and for the Fogo eruption, for 
which the density changes are negligible in the 24 h simulated. 

A classical comparison between simulation results and laboratory 
data, analytic data and real data is often based on comparing the extent 
of the flows. Besides this kind of analysis, this work also presents results 
showing the fluid thickness, viscosity, and temperature. 

3.1. Inclined viscous isothermal spreading 

This test origins from a laboratory experiment of silicon oil spreading 
on an inclined plane of slope α, injected through a point hole at a con-
stant flow rate R, as represented in Fig. S1 (Supplementary Material 
§S.1). (Lister, 1992) used this laboratory experiment and derived some 
asymptotic scaling behaviours to analyze his numerical model’s per-
formance. Similarly, we aim to compare our results with his and the 
laboratory experiment. The set-up parameters we have employed follow 
those used by (Lister, 1992): the source point has a circular area with 
radius r = 10− 3 m, the plane is inclined at a slope of α = 2.5∘ from the 
horizontal direction, the fluid supply rate is 1.48⋅10− 6 m3 s− 1 and the 
kinematic viscosity (ν := μ/ρ) is ν = 11.3⋅10− 4 m2 s− 1; a Newtonian 
viscosity is assumed and no thermal phenomena are accounted for. 

A rectangular computational domain [ − 35cm, 115cm] × [ −

45cm, 45cm] is created and discretized by two grids of different reso-
lutions, a coarse one with 150 × 90 cells (low resolution) and a finer one 
with 300 × 180 cells (high resolution). In every plot reported, we show 
only values of the thickness h greater than 10− 3 m, which is rather 
reasonable since they correspond to the 95% of the total values 
computed. 

Figure 2 reports the flow contours as a function of time. On the left, 
the results coming from laboratory experiment and finite-difference 

Fig. 2. Inclined viscous isothermal spreading. Representation at various times of the flow front. Left: results from Lister (Lister, 1992), where lines describe the 
evolution of laboratory experiment while symbols describe the predicted results obtained from numerical simulations. Right: results obtained by our code. 
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numerical simulation performed by (Lister, 1992) are reported; those 
are compared with results obtained by our numerical model (using the 
finest discretization grid) that are presented on the right. It is immediate 
to notice that, for all results represented, the up-slope extent rapidly 
reaches a steady state, whereas the flow continues to advance down- 
slope with time. 

(Lister, 1992) determined a characteristic time t* that separates two 
different behaviours of the spreading. Initially, for the so said “short 
time”, fluid spreads radially from the source, as if it is on a horizontal 
plane. After that, for the so said “long time”, the opposite occurs, and the 
flow is predominantly down-slope, with some cross-slope spreading. 
This behaviour is due to the pressure terms in the momentum equation 
(Eq. (27b)) that we rearrange as follows: 
∫ B+h

B
∇p(z)dz = ∇

(
1
2

ρgh2
)

+ ρgh∇B = ρgh∇h + ρgh∇B.

For the short-time behaviour, the term with the thickness gradient ∇
h is bigger than the other one with the topography gradient ∇B, so the 
effect of the topography is almost negligible. Conversely, for the long- 
time dynamic, the term with ∇B becomes dominant, and then the 
flow mostly follows the topography. The short time dynamic is referred 
to as “density current”, and the long time behaviour is named 
“avalanche” (de’ Michieli Vitturi et al., 2019). 

According to the definition given by (Lister, 1992), the characteristic 
time depends on several physical parameters proper of the test: 

t* =

[
(cotα)5

R

(
3ν

gsinα

)3
]1/4

, (29)  

and in our case its value is ≈ 38 s. Fig. 3 presents the evolution of the 
fluid extent along the three directions, namely down-slope, cross-slope 
and up-slope, of our simulation and confirms that our dynamics are 
almost symmetric before the characteristic time. We also compare our 
results with the theoretical functions derived in (Lister, 1992) for the 
“long time” dynamics, confirming a reasonable asymptotic agreement, 
see (Biagioli, 2021). 

We have extrapolated the down-slope and cross-slope extents of the 
laboratory test made in (Lister, 1992) from the original graph (depicted 
in Fig. 2) to compare our results with them as a convergence study. 
Table 2 reports the data collected, denoted as Ld and yP, respectively and 
Fig. 4 shows a good agreement of the numerical simulation with the 
laboratory data. 

The segmented style of Figure 3 and Figure 4 is due to the dimension 
of the computational cells. This is more evident in Fig. 4, which com-
pares the results of the high-resolution and low-resolution simulations: 
the low-resolution simulation presents “steps” that are two times wider 
than those obtained by the high-resolution simulation. This happens 
because the cell size used for the low-resolution simulation is twice the 
size used for the high-resolution simulation. Fig. 3 presents the same 
stepping behaviour, which is not uniformly displayed because of the use 
of the logarithmic scales. 

All the simulations presented for this benchmark are obtained under 
the assumption of a parabolic velocity profile (βu = 1.2); however, using 
a constant velocity profile (βu = 1.0) produces similar results anyway. 
This behaviour is unsurprising because, although the fluid has low vis-
cosity, it moves very slowly, and the dynamics are driven by the gravity 
force instead of inertia. The fact that the motion is not led by inertia is 
the reason why this case is not much sensitive to the velocity profile 
assumption. For more details, see (Biagioli, 2021). 

The execution time for 730 s of the high-resolution simulation 
computed by an Intel® Core™i7-6500U CPU, 2.50 GHz × 4 processor is 
about 5700 s (approximately 1 h and a half). 

We point out to the reader that even (Dietterich et al., 2017; Zago 
et al., 2019) present results for the current benchmark. The former paper 
shows a comparison of performances of different models (such as 
VolcFLow (Kelfoun and Vargas, 2016), MOLASSES (Connor et al., 2012; 
Kubanek et al., 2015), and a solver written with OpenFOAM); the only 
observation we might add is that our model presents one of the best 
performances from the comparison of Fig. 4 with Figure 2.a presented in 
(Dietterich et al., 2017). Instead, (Zago et al., 2019) introduces a pre-
liminary validation of a 3D model named GPUSPH. A direct comparison 
between their model and ours is hard to achieve because of their 
different intrinsic nature. 

3.2. Axisymmetric cooling and spreading 

This benchmark is related to a warm viscous fluid spreading onto a 
flat plane and cooling down due to heat exchanges with the environ-
ment. Such a test is an intermediate proposal between the spreading- 
only benchmarks and the most complex lava flow case that follows. 
Viscosity is assumed Newtonian and temperature-independent, so there 
is no relation between rheology and thermal structure. 

This test is born from an analogue experiment reported in (Garel et al., 
2012) (originally denoted as C14) where a hot silicone oil (Rhodorsil® 47 
V 5000 or 47 V 12500, dyed red) is injected at a constant supply rate 2.2⋅ 
10− 8 m3 s− 1 onto a horizontal plane of polystyrene from a point source of 
2–4 mm of radius. Table S1, Supplementary Material §S.2, reports the 
values of the physical parameters involved in the experiment. (Cordon-
nier et al., 2015) reports most parameters, while all the others are 
available only on the original paper (Garel et al., 2012). However, there is 
a difference in the density value indicated in the two papers, and we 
adopted the value of 954 kgm− 3 reported in the original work by (Garel 
et al., 2012) (instead of 886 kgm− 3 referred in (Cordonnier et al., 2015)). 

The square [ − 12cm, 12cm] × [ − 12cm, 12cm] determines the 
computational domain that we discretize with two different grid reso-
lutions, a coarse one with Δx = 2⋅10− 3 m and a finer one with Δx =

10− 3 m, respectively low and high resolution. The circular vent is 
located in the domain centre and is approximated by discretization via 
grid squares. The mass flux through these source cells is not equal in 

Fig. 3. Inclined viscous isothermal spreading. Time evolution of the down- 
slope, cross-slope and up-slope extents. The dashed line refers to the charac-
teristic time t*, defined in Eq. (29). The results illustrated were computed with 
the high-resolution spatial discretization. 

Table 2 
Inclined viscous isothermal spreading. Down-slope Ld and cross-slope yP extents 
extrapolated from the laboratory experiment results (Fig. 2 on the left) that come 
from (Lister, 1992).  

time (s) 32 59 122 271 486 727 

Ld (cm) 9.5 14.5 23.5 42.5 65.5 88.5 
yP (cm) 7.0 9.4 13.0 18.4 23.3 27.2  
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every cell but is proportional to the fraction of the cell that belongs to the 
vent. From the modelling point of view, we adopt the parabolic velocity 
profile, with βu = 1.2, and the piecewise linear temperature profile, 
with βT defined in Eq. (17). The thermal boundary layers parameters are 
n = 4 for the oil and M = 12 for the polystyrene surface, whereas the 
fraction of the exposed inner core in Eq. (21) is f = 1 because the fluid is 
fully melted. Since the viscosity does not depend on temperature, the 
rheological parameter of Eq. (9) is b = 0. 

The experiment dynamics are symmetric with a “radial” flow 
advance. Despite using a cartesian grid, the simulation manages to 
reproduce the radial propagation thanks to the choice of the spatial 
discretization scheme and the source discretization. Fig. 5 depicts the 
evolution of the fluid thickness taken at a vertical slice passing through 
the vent. Initially, the fluid has uni-axial inflation developing only one 
central bulge. Later, the lateral spreading becomes dominant, lateral 
bulges develop too, and the central bulge above the feeding pipe quite 

reaches a steady state. We also performed a convergence study that 
shows the good agreement of our numerical results with the analytical 
solution determined in (Huppert, 1982), see (Biagioli, E., 2021). Notice 
that in every plot reported, we only show values of the thickness h 
greater than 10− 4 m, which is reasonable considering the fluid thickness 
represented in Fig. 5. 

Figure 6 shows an analysis of the temperature evolution: our results 
are compared with experimental and theoretical data of the original 
paper (Garel et al., 2012). Temperature and radial distance from the 
source are normalized, so x = 1 corresponds to the fluid front. This 
comparison proves that our results agree better with the experimental 
outcomes than with the theoretical ones. The Supplementary Material 
§S.2 presents another figure that compares the temperature computed 
with our simulation to the original data collected from the laboratory 
test, Fig. S2, and that shows a good agreement of our numerical results 
with the experimental results. 

Fig. 4. Inclined viscous isothermal spreading. Time evolution of the down-slope extent Ld(t) (top) and the cross-slope extent yP(t) (bottom). The extrapolated data 
refer to Table 2. The dashed line refers to the characteristic time t*, defined in Eq. (29). 

Fig. 5. Axisymmetric cooling and spreading. The thickness of the simulated fluid at different times.  
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The execution time for 632 s of the high-resolution simulation 
computed by an Intel® Core™ i7-6500U CPU, 2.50 GHz × 4 proces-
sor is about 1400 s (approximately 3 h and 50 min). 

The works (Biagioli, 2021; Dietterich et al., 2017; Zago et al., 2019) 
present results concerning the current benchmark. As stated previously 
for the former test, the first paper shows the comparison of performances 
of different models, whereas the second article introduces a preliminary 

validation of a 3D model named GPUSPH. The third reference presents 
this simulation performed by means of an OpenFOAM 3D solver. The 
reader might compare Fig. 6 with Figure 10 presented in (Zago et al., 
2019) and appreciate that, despite an overestimation of the values, our 
simulation results are closer to the experiment data, especially on the 
external part of the fluid at the time t = 5. 

Fig. 6. Axisymmetric cooling and spreading. Comparison of experimental, theoretical and simulated normalized surface temperatures, defined as 
(T − Tenv)/(Tvent − Tenv), over the normalized radial distance. t* = 5 corresponds to t = 156s and t* = 20 to t = 620s. In the original work (Garel et al., 2012), t* is 
defined as t* = t/τ where τ = 0.7154/3[3μR/(ρg) ]1/2

/κ. 

Fig. 7. Natural case. (a) Map of Fogo Island. (b) Archipelago of Cape Verde, of which Fogo is a part. (c) Lava emplacement of the real event after one day of the 
eruption, on 24 November 2014, is represented by an outline extracted from (Cappello et al., 2016) defined based on field mapping and satellite images. The stars 
represent the extrema of the fissural vent. 
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3.3. Natural case: the Pico do Fogo 2014–2015 eruption 

In general, models for lava flows work well when there are high 
slopes, namely where the gravitational term dominates in the transport. 
On flatter, shallow slope topographies, the accuracy of the models in 
treating viscous and inertial terms becomes more important. For this 
test, we applied our model to the eruption of the Fogo volcano, Cape 
Verde, West Africa, which started on 23 November 2014 and ended on 8 
February 2015. We chose this event because the eruption developed on 
an almost flat topography, a condition where the rheology significantly 
impacts the lava emplacement, making this event ideal for testing the 
model’s accuracy. Also, this event is well-documented, so the input data 
and the lava emplacement were easy to find. In this test, we use the real 
topography before the eruption and characteristic parameters of the lava 
flow event, i.e. the vent location, effusion rate, and effusive temperature, 
to simulate the eruption’s first day. 

Cape Verde Archipelago is located west of the Western Atlantic coast 
of Africa and has volcanic origins (Day et al., 1999). Fogo Island rises 
between Brava and Santiago islands and is the fourth largest island of 
the archipelago and the highest at 2829 m above the sea level of Pico do 
Fogo, see Fig. 7 (b). An active volcano stands in the island’s centre, 
presents a 9 km wide caldera, Chã das Caldeiras (“Plain of the Cal-
deras”), and has its summit at Pico do Fogo. An enormous crater rim, 
called Bordeira and up to 1 km high, encircles the caldera on its western 
side, Fig. 7 (a). Fogo volcano is the youngest and most active volcano of 
the archipelago (Courtney and White, 1986; Dionis et al., 2015). 

Topography and vent location have a major impact on real events 
simulation, so all numerical codes, including those that do not consider 
rheology and temperature, have to use topographic data. The more ac-
curate the topography and the vent position are, the more reliable the 
results will be. In our simulations, we used a DEM (Digital Elevation 
Model) generated from SAR satellite images with data acquired in 
2011–2013 and with a horizontal resolution of 12 m (the DEM of Fogo is 
a TanDEM-X WorldDEM2 data (Rizzoli et al., 2017) provided by the 
German Aerospace Center (DLR) through data proposal DEM_-
GEOL_1522, PI Nicole Richter). The eruptive source was a fissure that 
opened on the southwest flank of Pico do Fogo. Richter et al. (Richter 
et al., 2016) (who estimated the lava flow hazard at Fogo by using the 
probabilistic code DOWNFLOW (Favalli et al., 2005; Tarquini and 
Favalli, 2011)) used a single vent that corresponded to the highest end of 
the fissure (DMS coordinates: 14◦ 56′ 40.56″ N - 24◦ 21′ 12.28″ W; UTM 
coordinates: East 784,689.69 - North 1,653,895.03, zone 26P). Instead, 
the work (Cappello et al., 2016) observed that the other end of the 
fissure, the lowest, was the main source of lava. Having this discordant 
information, we decided to consider both vents, using the following 
position for the lowest one, DMS coordinates 14◦ 56′ 27.15″ N - 24◦ 21′ 
22.96″ W; UTM coordinates East 784,375.00 - North 1,653,479.0, zone 
26P. The vents’ position is reported in Fig. 7 (c). 

(Cappello et al., 2016) used HOTSAT, a satellite thermal monitoring 
system, to retrieve details such as the lava thermal flux and the effusion 
rate. For the first day of eruption (Fig. 7 (c) shows the corresponding 
lava emplacement that is extracted from (Cappello et al., 2016) and 
defined based on field mapping and satellite images), they recorded a 
mean effusion rate of 10.5 m3 s− 1, with peaks between 24 and 27 m3 s− 1. 
We adopt their mean value as a constant effusion rate since there is no 
information about the time variations and consider 20 m of radius for 
the vents. They estimated the extrusion temperature to be 1265∘C (1538 
K), and we use that as Tvent . Moreover, we adopt their suggested values 
for density ρ (2600 kg m− 3) and specific heat capacity cp (1150 

J kg− 1 K− 1) that are typical values of basaltic magma, as it is for Fogo. 
The Bingham plastic rheology model with temperature-dependent 

viscosity (Eqs. (8–9)) is adopted, assuming as reference values for tem-
perature Tref and for dynamic viscosity μref those at the vent, conse-
quently Tref = Tvent = 1538 K. The values of dynamic viscosity, 
rheological parameter b, and yield stress vary in the context of the 
sensitivity analysis among reasonable values for basaltic magma, as 
described in the following. Values for lava thermal conductivity, emis-
sivity, exposed area inner fraction, atmospheric heat transfer, and 
environmental temperature are those suggested in (Costa and Mace-
donio, 2005) for Etna effusive eruptions, as Etna and Fogo magmas are 
both basaltic. Soil thermal conductivity is taken from (Darkwa et al., 
2013). Table S2, in the Supporting Material, reports all the adopted 
physical parameters and the temperature profile characteristic values (n, 
M and Tsoil). 

It is worth mentioning that this test is not meant to reproduce exactly 
the actual natural event as close as possible but instead to analyze the 
impact that the rheological parameters have on lava flow emplacement. 
First, we present the effect of different grid resolutions on the results 
(obtained with a set of parameters chosen from the sensitivity analysis). 
As the spatial discretization grid with 40 m × 40 m cells stands out as 
a good trade-off between the solution accuracy and the computational 
time, this resolution has been used for all the other investigations. The 
sensitivity analysis then follows to enquire about the role of the rheo-
logical parameters on the lava flow emplacement. After such analysis, 
we finally investigate the impact of different vent positions on the so-
lution. We specify that, in all figures, we plotted results by applying a 1 
cm threshold to the flow thickness. A choice of a thinner thickness 
threshold impacts (however negligibly) only those simulations with 
small yield stresses (because the higher the yield stress, the thicker the 
lava front, as shown in the following). 

3.3.1. Grid resolution test 
The sensitivity of numerical outcomes to the grid resolution is tested 

by comparing simulations obtained with three different cell sizes (see 
Fig. 8): coarse 80 m × 80 m cells, medium 40 m × 40 m cells, and 
fine 20 m × 20 m cells. The rheological parameter values adopted 
(that come from the sensitivity study upcoming in the following section) 
are μref = 100 Pas, b = 10− 3 K− 1, and τ0 = 750 Pa. The result obtained 
by the coarse mesh is far from the one computed with the fine mesh. On 
the other hand, the runout computed by the medium mesh is compa-
rable to that over the fine mesh. We conclude that simulations produced 
using a mesh 40 m × 40 m are reliable. Table 3 shows the execution 
time of the three simulations computed by an Intel® Core™ i7-6500U 
CPU, 2.50 GHz × 4 processor. The short execution times allow the 
use of our model also for hazard quantification and for the production of 
probabilistic maps owing to the simulation’s short duration. 

3.3.2. Rheological parameters sensitivity study 
In this sensitivity analysis, we vary the values of three rheological 

parameters, namely, the dynamic viscosity at the vent, μref , the yield 
stress, τ0, and the rheological parameter b, within reasonable ranges as 
described in the following. 

Based on previous studies (Chevrel et al., 2020; Harris et al., 2016; 
Kolzenburg et al., 2018; Rhéty et al., 2017), the dynamic viscosity of 
basaltic magma upon eruption is estimated to be in the range of 
102–104 Pas. Therefore, we use three values for μref equal to 102, 103, 
and 104 Pas. (Bernabeu et al., 2016) assessed the basaltic lava yield 
stress τ0 in the range 102–104 Pa, and we select three values 102, 103, 
and 104 Pa. Additionally, to simulate the Newtonian behaviour, we set 
τ0 = 0 Pa. The viscosity exponent b has been adopted as 2⋅10− 2 K− 1 

(Costa and Macedonio, 2005) for a simulation of Etna volcano, and a 
similar value, 1.6⋅10− 2 K− 1 has been used by (Bernabeu et al., 2016) 
(both simulations are relative to basaltic lava). We opt to test the values 

2 The TSX/TanDEM-X mission is for the creation of a global, consistent, and 
high-resolution Digital Elevation Model (DEM) obtained by exploiting the 
interferometric capabilities of the two twin SAR satellites TerraSAR-X and 
TanDEM-X, which fly in a close orbit formation. The work for the creation of 
this global DEM lasted from December 2010 to September 2016. 
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of b = 10− 2 K− 1, 10− 3 K− 1 and b = 0 K− 1 (indicating viscosity inde-
pendent from temperature). 

Figure 9 presents the thickness and temperature of the lava flow after 
24 h of the eruption, considering μref = 102 Pas and varying yield stress 
τ0 and rheological parameter b. Similar results for μref = 103 and 
104 Pas can be found in Figs. S4 and S5 in Supplementary Material §S.5. 
From the comparison of results, we make two observations. First, 
increasing the yield stress leads to narrower and taller lava flow em-
placements. Secondly, we analyze the role of the parameter b. From the 
analytical expression of the temperature-dependent viscosity, Eq. (9), 
we get that for b = 10− 2 K− 1 there is the strongest coupling between 
temperature and velocity because temperature has the greatest influence 
on viscosity. In this case, regardless of the other parameters, the lava 
emplacement is not significantly affected by the topography and re-
mains confined in an area close to the vents. An exception to this is 
observed when τ0 = 104 Pa, where it is evident that lava follows the 
topography although the flow propagation is still limited. Simulations 
with b = 0 K− 1 (constant viscosity and decoupling between tempera-
ture and momentum equations) exhibit very different results, showing a 
high sensitivity to the details of the topography. The case with b =

10− 3 K− 1 presents results that are more similar to the decoupled case 
(b = 0 K− 1) but still reflect the dependence of viscosity on temperature. 

For all the three reference viscosity considered, the largest 

emplacement area of each figure occurs in the decoupled Newtonian 
case (b = 0 K− 1,τ0 = 0 Pa). This is because lower viscosity results in a 
larger surface area being inundated. Specifically, Fig. 9 presents the 
largest final emplacement among all simulations. 

3.3.3. Real event parameters estimation 
Our further attempt is to determine ranges for the values of b, μref , 

and τ0 that produce simulations compatible with the real event and to 
study their effects on the runout. By comparing the results of the pre-
vious sensitivity analysis with the emplacement of the real event (see 
Fig. 9 and Figs. S4 and S5 in Supplementary Material §S.5), we notice 
that simulations obtained with b = 10− 3 K− 1, τ0 = 102, 103 Pa and 
μref = 102, 103 Pas present more similarities with the real case, 
prompting us to perform further investigations. To provide a more ac-
curate description of the solution dependence on such parameters, we 
fix the parameter b and let τ0 and μref assume some values in the range 
102 − 103. 

Figure 10 depicts the thickness (in the logarithmic scale) of the 
simulations performed. Supplementary Material §S.6 presents more 
figures related to this analysis, depicting temperature and viscosity. 
Comparing the results shown in Figure 10 with the real lava emplace-
ment after one day of the eruption, we observe that the simulations 
obtained with μref = 100 Pas and τ0 = 500,750 Pa best reproduce the 
real event. Since more than one simulation shows a good agreement 
with the observations, we select a single set of parameters to continue 
with further analysis: namely μref = 100 Pas and τ0 = 750 Pa. 

To examine the temporal evolution of the first 24 h of the eruption 
with the chosen parameters (b = 10− 3 K− 1, μref = 100 Pas and τ0 =

750 Pa), Fig. S9 in the Supplementary Material §S.7 is presented. 

3.3.4. Study on the vent position 
In the simulations presented so far, we have assumed that two vents 

feed the flow. In order to analyze the effect of this assumption, Fig. 11 
compares the results of simulations obtained considering both vents 

Fig. 8. Natural case. Sensitivity to the computational grid size. Left: grid size 80 m × 80 m, grid dimensions 100 × 100 cells. Center: grid size 40 m× 40 m, 
grid dimensions 200 × 200 cells. Right: grid size 20 m× 20 m, grid dimensions 400 × 400 cells. Simulations of 24 h of eruptions computed with reference viscosity 
μref = 100 Pas, rheological parameter b = 10− 3 K− 1, and yield stress τ0 = 750 Pa. The black line represents the real lava emplacement after one day of the eruption. 
See Fig. S3 in Supplementary Material §S.4 for a more detailed chronology. 

Table 3 
Natural case. Elapsed time for the execution of simulations by different grid 
sizes; simulations of 24 h of eruptions computed using reference viscosity μref =

100 Pas, rheological parameter b = 10− 3 K− 1, and yield stress τ0 = 750 Pa. 
Processor specifications: Intel® Core™ i7-6500U CPU, 2.50 GHz× 4.  

Cell dimensions 80 m× 80 m 40 m× 40 m 20 m× 20 m 

Time 100 s 539 s 2606 s 
Total number of cells 104 4⋅104 16⋅104  
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versus only one of them. While the final lava flow emplacements do not 
differ significantly, we can observe that in cases where only one vent is 
adopted, the final front propagates more towards either north or south. 
This highlights the importance of choosing the vent location accurately 
and considering any changes that may occur during an eruption in order 
to achieve amore accurate description of lava flow emplacement. 

Finally, we point out to the reader that the paper (Cappello et al., 
2016) presents results of simulations concerning the Pico do Fogo 
eruption. Fig. 5 (top picture) reported in (Cappello et al., 2016) 

represents the simulation of the lava flow thickness after the first day of 
activity. This result may be compared with our Fig. 10 (picture with 
μref = 100 Pas and τ0 = 750 Pa) and Fig. 11 (picture on the right). Both 
simulations, ours and the one in (Cappello et al., 2016), overestimate the 
real propagation extent at the north lobe. Our simulation propagates 
more towards the south and the west lobes, still remaining inside the 
contour of the real event, with respect to the simulation in (Cappello 
et al., 2016) that, instead, underestimates these extensions. 

Fig. 9. Natural case. Rheological parameters sensitivity study. Simulations after 24 h of eruptions computed with a grid size of 40 m, considering μref = 102 Pas, 
varying the yield stress τ0 (Pa) and the parameter b

(
K− 1). The black line represents the real lava emplacement after one day of the eruption. Top: thickness (in 

logarithmic scale). Bottom: temperature. 
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4. Conclusions 

This paper presents a new physical-mathematical model for lava flow 
emplacement and its validation with the numerical simulation of two 
well-established benchmarks and a real-case scenario. 

We modelled lava as a hot and viscous fluid in a laminar regime that 
cools because of radiative and convective heat loss from the surface to 
the environment and through conduction with the soil. Following a 
variant of the depth-averaged (or shallow-water) approach, we derive a 
system of hyperbolic partial differential equations that we solve by a 
finite-volume method. Unlike the classical shallow water equations, our 
2.5D model accounts for velocity varying with the flow depth and 

assumes a parabolic profile to match the no-slip condition at the bottom 
in a laminar regime. Moreover, the viscosity may depend on tempera-
ture, and the rheology model can be Newtonian or Bingham plastic. 
Because of the conduction with the soil, temperature develops a thermal 
boundary layer that is accounted for by the 2.5D model assuming a 
piecewise-linear profile. Finally, a transport equation models the tem-
perature evolution by considering the thermal heat exchanges and the 
viscous heating. The flux terms of the momentum and temperature 
equations present corrector factors due to the assumptions on the ver-
tical profiles. 

The numerical scheme used here is a central-upwind Finite Volume 
Method, relatively simple to implement, that presents a low numerical 

Fig. 10. Natural case. Real event parameters estimation: thickness (in logarithmic scale). Simulations after 24 h of eruptions computed with a grid size of 40 m, 
fixing b = 10− 3 K− 1 and varying both the yield stress τ0 and the reference viscosity μref in the range 100 − 1000. The black line represents the real lava emplacement 
after one day of the eruption. 
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diffusion (being a high-order scheme) and satisfies both the positivity- 
preserving and well-balancing properties (guaranteeing that the nu-
merical scheme correctly describes steady-state solutions). The temporal 
discretization explicitly treats the advective terms and implicitly treats 
the viscous term in the momentum equation and the heat transfer terms 
in the temperature equation. 

We made simulations to validate the model with well-established 
benchmarks for lava flow models and the real-case scenario of the 
2014–2015 Pico do Fogo, Cape Verde, eruption. By comparing simula-
tion results with the two laboratory experiments, the model has proven 
to be able to properly reproduce the spreading of an isothermal viscous 
fluid over an inclined plane and the cooling due to heat exchanges with 
the environment. 

As regards the real case scenario, we chose the 2014–2015 Pico do 
Fogo, Cape Verde, eruption because it developed on an almost flat 
topography. The rheology significantly impacts the lava emplacement in 
this condition, making this event ideal to test the model’s accuracy. In 
general, lava flow models work well in the presence of high slopes for 
whom the gravitational term dominates in the momentum transport. On 
flatter, shallow slope topographies, the accuracy of the models in 
treating viscous and inertial terms becomes more important. For this 
reason, the stochastic models, for example, work well on topographies 
with high slopes and show problems in other cases. 

The main results of our work on this real case test are summarised in 
the following. We conducted a sensitivity analysis of the temperature- 
dependent Bingham rheological model parameters to test their impact 
on the final lava flow emplacement. The cases with the strongest 
coupling between temperature and momentum equations (b = 10− 2 K− 1 

in Eq. (9)) correspond to a greater temperature influence on viscosity. In 
such cases, the lava emplacement is less affected by the topography and 
remains close to the vents, almost independent of the other parameters. 
The case with the highest yield stress considered here, i.e. τ0 = 104 Pa in 
Eq. (8), represents an exception as lava follows the topography, despite 
the flow propagation being limited, owing to increasing the yield stress, 
which results in a narrower and thicker lava flow emplacement. The 
simulations where the temperature and momentum equations are 
decoupled (b = 0 K− 1), and the viscosity is constant, produce the largest 
inundated areas. Indeed, the viscosity remains equal to the value at the 
vent, at the emission temperature, thus, viscosity stays lower compared 
to the temperature-dependent cases. The cases with a weak decoupling 
(b = 10− 3 K− 1) show results different from those obtained with the 
strongest coupling, being more similar to the decoupled case. Lastly, 
simulations that use the highest viscosity at the emission (μref = 104 Pas 

in Eq. (9)) underestimate the lava flow extent greatly with respect to the 
real situation. 

We also investigated the impact of vent position and grid resolution 
on lava emplacement. Despite the lava flow being erupted from a fissure 
system, here we use circular vents, and we prove that placing two vents 
located at both ends of the fissure produces results that are significantly 
closer to the real lava emplacement than those obtained by considering 
only one of the two vents. Finally, the sensitivity analysis to the grid 
resolution, intimately linked to the topography accuracy, is tested by 
using three cell sizes: coarse with 80 m × 80 m cells, medium with 
40 m × 40 m cells, and fine with 20 m × 20 m cells. The coarse mesh 
produces a result far from the real lava flow emplacement, probably 
because of an imprecise topography description. Instead, the results 
obtained with the fine and medium meshes show a good fit with the real 
event and are computed in approximately 40 and 10 min, respectively. 

The accuracy of the simulations is often given in terms of the flow 
extent by comparisons with laboratory data, analytic data, and real data. 
Besides performing this kind of analysis, we also showed the fluid 
thickness, viscosity, and temperature with this model (the velocity field 
is another variable that can be addressed by our model, but its analysis 
was out of the purposes of our work, so we did not show it). The 
knowledge of the temporal evolution of the spatial distribution of these 
variables allows for further investigations of the model’s accuracy. 

In summary, our model is capable of accurately reproducing both 
isothermal and non-isothermal laboratory tests and producing a good fit 
with the real lava flow of the Fogo eruption. The latter application of the 
model showed promising results regarding real event description and 
computational time required for the simulation. It is worth highlighting 
that the short execution times specified above allow using our model 
also for hazard quantification and generating probabilistic maps, as 
many simulations can be performed in a short time. This makes our lava 
flow model a tool well-suited for use in volcano observatories during 
real-time eruption crises. 

4.1. Limits and future developments 

It is important to highlight that the set of equations we derived is 
based on strong assumptions on the velocity and temperature profiles, 
and these assumptions carry with them some limitations. As already 
written, the assumption of a temperature-dependent viscosity for a fluid 
with a vertical temperature profile would lead to the development of a 
vertical profile also for viscosity (Hyman et al., 2022), and thus to a 
deviation to the parabolic velocity profile we used, which is based on a 

Fig. 11. Natural case. Sensitivity to the vent position. We call V1 and V2 the two vents we employed in our simulations: V1 (DMS coordinates: 14◦56′40.56″ N - 
24◦21′12.28″ W; UTM coordinates: East 784,689.69 - North 1,653,895.03, zone 26 N), and V2 (DMS coordinates: 14◦56′27.15″ N - 24◦21′22.96″ W; UTM coordinates: 
East 784,375.00 - North 1,653,479.0, zone 26 N). Left: we used V1, the highest vent. Center: the lowest vent V2 was adopted. Right: both vents were used. Sim-
ulations after 24 h of eruptions computed with a grid size of 40 m, reference viscosity μref = 100 Pas, rheological parameter b = 10− 3 K− 1, and yield stress τ0 =

750 Pa. The line represents the real lava emplacement after one day of the eruption. 
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constant viscosity profile. In the future, we plan to account for the effects 
of a non-constant viscosity profile on the velocity. 

Future advances in our work also include improving the description 
of the vertical velocity profiles by considering a dynamic evolution for 
the profiles, allowing them to vary as a function of the local flow regime. 
For example, different velocity profiles can be designed as a function of 
the local Reynolds number, distinguishing between laminar and turbu-
lent regions of the flow, or by introducing a plug profile, which can 
develop with a Bingham rheology (Tallarico and Dragoni, 2000). The 
thermal boundary layer thickness discussed above could be related to 
the velocity boundary layer thickness, with the ratio of the two thick-
nesses governed by the Prandtl number (the ratio of momentum to 
thermal diffusivity). However, these modifications require not only a 
rewriting of the set of equations, since the depth-averaging of non- 
constant profiles gives rise to new shape factors in some of the terms 
of the governing equations, but also further studies on the properties of 
the numerical schemes (well-balancing and positivity-preserving), 
which are not obvious when one modifies the model. 

Under the hypothesis of negligible vertical velocity and hydrostatic 
pressure distribution, the shallow water models need further improve-
ments to entirely capture fast dynamics that develop over terrain with 
high gradients. Natural processes that present those features are, for 
example, avalanches, landslides, and debris flow, but even lava flows 
may develop over steep terrain and flow fast. (Hergarten and Robl, 
2015) proposed a modified shallow water model that introduces a 
correction factor for the friction term to better capture dynamics over a 
steep slope. (Xia and Liang, 2018) proposed another modified model 
that considers both the effects of the vertical acceleration and the con-
sequences of curvature due to a complex terrain morphology, intro-
ducing inside the momentum equation correction factors for the 
pressure and friction terms. (Bachini and Putti, 2020) developed a 
geometrically intrinsic shallow water model defined on a local reference 
frame anchored to the bottom surface. As a future development, we plan 
to modify our model by following one of the former approaches to make 
it more flexible and applicable to a broader spectrum of cases. 

Lava reaches the solidus temperature during the cooling process, 
becomes solid, and does not flow anymore. As we are accounting for a 
vertical thermal profile developed through ground conduction, we can 
expect that the solidus temperature is first reached at the flow base, close 
to the ground. A possible future development consists of describing the 
solidification at the ground by modelling the incorporation of an 
appropriate lava layer in the topography, where the layer thickness 
depends on its temperature. Anyway, cooling arises from the surface too, 
sometimes resulting in a dominant effect; therefore, further work should 
be also devoted to find a way to incorporate crust formation in the 
model. 

Finally, we remind that the process of crystallization (induced by 
lava cooling) has a high impact on flow dynamics because it leads to a 
viscosity increase and possible flow stopping. This phenomenon can be 
explicitly treated by including an equation describing the transport of an 
additional phase, representing crystals, with a related source term 
modelling crystallization rate as a function of flow temperature and 
magma composition. Our future plan is to include this process in our 
model together with a rheological model capable of considering both 
temperature and crystal content by modifying the viscosity term. 
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Simulating the thermo–rheological evolution of channel–contained lava: FLOWGO 
and its implementation in EXCEL. Geol. Soc. Lond., Spec. Publ. 426 (1), 313–336. 
https://doi.org/10.1144/SP426.9. ISSN 0305-8719.  

Harris, A.J.L., De Groeve, T., Garel, F., Carn, S.A., 2016. Detecting, modelling and 
responding to effusive eruptions. Geol. Soc. Lond. Spec. Publ. 426, 1001–1027. 
https://doi.org/10.1144/SP426. 29. 

Herault, A., Vicari, A., Ciraudo, A., Del Negro, C., May 2009. Forecasting lava flow 
hazards during the 2006 Etna eruption: using the MAGFLOW cellular automata 
model. Comput. Geosci. 35 (5), 1050–1060. https://doi.org/10.1016/j. 
cageo.2007.10.008. 

Hergarten, S., Robl, J., 2015. Modelling rapid mass movements using the shallow water 
equations in Cartesian coordinates. Nat. Hazards Earth Syst. Sci. 15, 671–685. 
https://doi.org/10.5194/nhess-15-671-2015. 

Hogg, A.J., Pritchard, D., 2004. The effects of hydraulic resistance on dam–break and 
other shallow inertial flows. J. Fluid Mech. 501, 179–212. https://doi.org/10.1017/ 
S0022112003007468. 

Huppert, H.E., 1982. The propagation of two–dimensional and axisymmetric viscous 
gravity currents over a rigid horizontal surface. J. Fluid Mech. 121, 43–58. 

Hyman, D.M.R., Dietterich, H.R., Patrick, M.R., 2022. Toward next–generation lava flow 
forecasting: development of a fast, Physics–Based Lava propagation model. JGR: 
Solid Earth 127. https://doi.org/10.1029/2022JB024998 e2022JB024998.  

Kauahikaua, J., Cashman, K., Mattox, T., Heliker, C., Hon, K., Mangan, K., Thornber, C., 
1998. Observation on basaltic lava streams in tubes from Kilauea Volcano, island of 
Hawai‘i. J. Geophys. Res. 103, 27303–27323. https://doi.org/10.1029/97JB03576. 

Kelfoun, K., Vargas, S.V., 2016. VolcFlow capabilities and potential development for the 
simulation of lava flows. Geol. Soc. Lond. Spec. Publ. 426 (1), 337–343. https://doi. 
org/10.1144/SP426.8. 

Kilburn, C.R.J., 1999. Lava Flows and Flow Fields. In: Encyclopedia of Volcanoes, 
pp. 291–305. 

Kolzenburg, S., Giordano, D., Di Muro, A., Dingwell, D.B., 2018. Equilibrium viscosity 
and disequilibrium rheology of a high magnesium basalt from piton de la fournaise 
volcano. Ann. Geophys. 61 https://doi.org/10.4401/ag-7839. 

Kosky, P., Balmer, R., Keat, W., Wise, G., 2013. Exploring Engineering, 3 edition. 
Academic Press (ISBN 9780124158917.).  

Kubanek, J., Richardson, J.A., Charbonnier, S.J., Connor, L.J., 2015. Lava flow mapping 
and volume calculations for the 2012–2013 Tolbachik, Kamchatka, fissure eruption 
using bistatic TanDEM–X InSAR. Bull. Volcanol. 77 (106), 1–13. https://doi.org/ 
10.1007/s00445-015-0989-9. 

Kurganov, A., Petrova, G., 2007. A second–order well–balanced positivity preserving 
central upwind scheme for the Saint–Venant system. Commun. Math. Sci. 5 (1), 
133–160. 

LeVeque, R.J., 2002. Finite volume methods for hyperbolic problems. Cambridge 
university press. 

Lister, J.R., 1992. Viscous flows down on inclined plane from point and line sources. 
J. Fluid Mech. 242, 631–653. https://doi.org/10.1017/S0022112092002520. 

E. Biagioli et al.                                                                                                                                                                                                                                 

https://doi.org/10.1186/2191-5040-1-3
https://doi.org/10.5194/gmd-14-3553-2021
https://doi.org/10.5194/gmd-14-3553-2021
https://doi.org/10.1144/SP426.7
https://doi.org/10.1029/2001GL014493
https://doi.org/10.5194/npg-10-545-2003
https://doi.org/10.1029/2004gl021817
https://doi.org/10.1029/2004gl021817
https://doi.org/10.3390/w12082120
http://refhub.elsevier.com/S0377-0273(23)00192-0/rf0125
http://refhub.elsevier.com/S0377-0273(23)00192-0/rf0125
http://refhub.elsevier.com/S0377-0273(23)00192-0/rf0125
http://refhub.elsevier.com/S0377-0273(23)00192-0/rf0130
http://refhub.elsevier.com/S0377-0273(23)00192-0/rf0130
https://doi.org/10.1007/978-1-4471-1281-5_10
https://doi.org/10.1007/978-1-4471-1281-5_10
https://doi.org/10.1016/j.jvolgeores.2008.01.041
https://doi.org/10.1016/j.cageo.2005.08.011
https://doi.org/10.1016/j.cageo.2005.08.011
http://refhub.elsevier.com/S0377-0273(23)00192-0/rf0145
http://refhub.elsevier.com/S0377-0273(23)00192-0/rf0145
http://refhub.elsevier.com/S0377-0273(23)00192-0/rf0145
http://refhub.elsevier.com/S0377-0273(23)00192-0/rf0150
https://doi.org/10.1016/S0377-0273(99)00103-1
https://doi.org/10.1016/j.jvolgeores.2017.11.016
https://doi.org/10.1016/j.jvolgeores.2017.11.016
https://doi.org/10.5194/gmd-2018-224
https://doi.org/10.5194/gmd-2023-80
https://doi.org/10.1016/j.csr.2006.10.004
https://doi.org/10.1007/s00445-007-0168-8
https://doi.org/10.1186/s13617-017-0061-x
https://doi.org/10.1186/s13617-017-0061-x
https://doi.org/10.1186/s40623-015-0219-x
https://doi.org/10.1186/s40623-015-0219-x
https://doi.org/10.1029/2004JB003523
https://doi.org/10.3390/app122211622
http://refhub.elsevier.com/S0377-0273(23)00192-0/rf0195
http://refhub.elsevier.com/S0377-0273(23)00192-0/rf0195
http://refhub.elsevier.com/S0377-0273(23)00192-0/rf0200
http://refhub.elsevier.com/S0377-0273(23)00192-0/rf0200
http://refhub.elsevier.com/S0377-0273(23)00192-0/rf0200
https://doi.org/10.1029/2004GL021718
https://doi.org/10.1029/2004GL021718
https://doi.org/10.1016/j.jvolgeores.2007.07.008
https://doi.org/10.1016/j.jvolgeores.2007.07.008
https://doi.org/10.1017/jfm.2016.333
https://doi.org/10.1016/j.jcp.2017.11.038
https://doi.org/10.1016/j.jcp.2017.11.038
https://doi.org/10.1016/j.envsoft.2023.105768
https://doi.org/10.1144/SP426.14
https://doi.org/10.1016/j.rse.2011.12.021
https://doi.org/10.1029/2011JB008698
https://doi.org/10.1146/annurev.fluid.32.1.477
https://doi.org/10.1007/s00445-021-01491-y
https://doi.org/10.1016/j.crme.2019.08.004
https://doi.org/10.1007/s004450000120
https://doi.org/10.1007/s004450000120
https://doi.org/10.1144/IAVCEl002.3
https://doi.org/10.1007/s11069-010-9709-0
https://doi.org/10.1007/s11069-010-9709-0
https://doi.org/10.1144/SP426.9
https://doi.org/10.1144/SP426. 29
https://doi.org/10.1016/j.cageo.2007.10.008
https://doi.org/10.1016/j.cageo.2007.10.008
https://doi.org/10.5194/nhess-15-671-2015
https://doi.org/10.1017/S0022112003007468
https://doi.org/10.1017/S0022112003007468
http://refhub.elsevier.com/S0377-0273(23)00192-0/rf0290
http://refhub.elsevier.com/S0377-0273(23)00192-0/rf0290
https://doi.org/10.1029/2022JB024998
https://doi.org/10.1029/97JB03576
https://doi.org/10.1144/SP426.8
https://doi.org/10.1144/SP426.8
http://refhub.elsevier.com/S0377-0273(23)00192-0/rf0310
http://refhub.elsevier.com/S0377-0273(23)00192-0/rf0310
https://doi.org/10.4401/ag-7839
http://refhub.elsevier.com/S0377-0273(23)00192-0/rf0320
http://refhub.elsevier.com/S0377-0273(23)00192-0/rf0320
https://doi.org/10.1007/s00445-015-0989-9
https://doi.org/10.1007/s00445-015-0989-9
http://refhub.elsevier.com/S0377-0273(23)00192-0/rf0330
http://refhub.elsevier.com/S0377-0273(23)00192-0/rf0330
http://refhub.elsevier.com/S0377-0273(23)00192-0/rf0330
http://refhub.elsevier.com/S0377-0273(23)00192-0/rf0335
http://refhub.elsevier.com/S0377-0273(23)00192-0/rf0335
https://doi.org/10.1017/S0022112092002520


Journal of Volcanology and Geothermal Research 444 (2023) 107935

19

Michel, B.D., Piar, B., Babik, J.C., Latche, F., Guillard, G., De Pascale, C., 2000. Synthesis 
of the validation of croco v1 spreading code. Proceed. OECD Workshop Ex–Vessel 
Debris Coolabil. 6475, 235–245. 

Modest, M.F., 1993. Radiative Heat Transfer. McGraw–Hill, New York.  
Nakamura, Y., Aoki, K., 1980. The 1977 eruption of Nyiragongo volcano, eastern Africa, 

and chemical composition of the ejecta. Bull. Volc. Soc. Jpn 25 (1), 17–32. https:// 
doi.org/10.18940/kazanc.25.1_17. 

Pareschi, L., Russo, G., 2000. Implicit–Explicit Runge–Kutta schemes for stiff system of 
differential equations. In: Recent Trends in Numerical Analysis. Nova Science, 
pp. 269–288. 

Patrick, M.R., Dehn, J., Dean, K., 2004. Numerical modeling of lava flow cooling applied 
to the 1997 Okmok eruption: Approach and analysis. J. Geophys. Res. 109, B03202. 
https://doi.org/10.1029/2003JB002537. 
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