
1. Introduction
Explosive volcanic eruptions generate jet flow by the impulsive release of gas and pyroclasts mixtures in the 
atmosphere (e.g., Matoza et al., 2009; Wilson, 1976). The dynamics of volcanic jets control eruption evolution, its 
hazards, and the seismo-acoustic signals used to monitor it (e.g., Haney et al., 2018; Matoza et al., 2013; Prejean 
& Brodsky, 2011), but how such dynamics are affected by the flow of the gas-pyroclasts mixture in the conduit 
is still unclear.

Impulsive discharge of gas from a pressurized reservoir generates a compressive wave, followed by the formation 
of vortex rings and a trailing jet, with specific acoustic signatures (e.g., Pena Fernandez et al., 2020). At the shear 
layer between the jet and the surrounding static fluid, turbulent mixing generates large and fine scale vorticity 
ensuing turbulent mixing noise. In supersonic jets the mismatch between static pressure inside and outside the 
jet produces quasi-periodic shock-cells that interact with the turbulence structure in the shear layer, producing 
a characteristic broadband shock noise and screech tones (e.g., Norman & Winkler, 1985; Peña Fernández & 
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Plain Language Summary Volcanoes are amongst the most fascinating and mysterious subjects of 
science, for they allow no direct observation of what is happening within the conduit during eruptive activity. 
Indirect observations (such as measurements of the sound and vibration accompanying eruptions) are routinely 
performed for monitoring and research purposes. Laboratory studies mimicking the eruptive processes in 
small-scale devices, are of great support for correctly interpreting such data. As such, we investigated the effect 
of the irregularity of conduit surface, amongst the most relevant and poorly known variables characterizing 
the eruptive processes, on volcanic jets and on their seismic and acoustic signals. We performed a series of 
laboratory experiments using conduits with different roughness of the internal surface and various starting 
pressures. Microphones and accelerometers, capable of measuring conduit sounds and vibration, respectively, 
in synch with high-speed camera were used to constrain the characteristics of the generated subsonic and 
supersonic jets. Results show that conduit roughness controls: (a) the relative amplitude of seismic and acoustic 
signals; (b) the velocity, turbulence and properties of the sound of these jets. Our results will shed light on the 
link between observation at the surface and dynamic evolution of conduit geometry at depth.
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Sesterhenn,  2017; Tam et  al.,  2008). Jet noise from volcanoes possesses additional complexities, due to the 
multiphase nature of the released fluid and to the complexity of crater and conduit morphology, with implications 
on the directivity of the radiated acoustic signals (e.g., Genco et al., 2014; Matoza et al., 2013; Pena-Fernandez 
et al., 2020; Taddeucci et al., 2012, 2014). Additionally, exploring the nature of volcanic jets and of jet noise 
requires addressing the audible components of the acoustic signals that have been recently the object of a renewed 
interest (e.g., Goto et  al.,  2014; Matoza et  al.,  2019,  2022; Rowell et  al.,  2014; Taddeucci et  al.,  2021). Yet 
fundamental source parameters can be derived from the observation of jet noise features of volcanic explosion; 
as an example Mach flow number (hence jet velocity) and vent diameter have been inferred from the observation 
of jet noise and high-speed video of vortex ring originating from gas-rich jets at Stromboli (Italy; Taddeucci 
et al., 2021).

Laboratory jets have indicated that the initial condition of the jet influences the downstream development (hence 
structures) through the entire flow field (e.g., George, 1989; Mi et al., 2001). High values of conduit length to 
diameter ratio, as in volcanic explosion occurring at depth, increase the thickness of the initial shear layer: for 
fixed diameters, the higher the length of the pipe the higher the initial thickness of the shear layer (e.g., Jothi & 
Srinivasan, 2009). Similarly, the geometrical properties of jet nozzle have been shown to modulate jet structures: 
amongst others the arrangement of chevrons at the nozzle (e.g., Bridges & Brown, 2004; Heeb et al., 2016), the 
geometry of the exit vent (e.g., Cigala et al., 2017; Schmid et al., 2022; Swanson et al., 2018), pipe surface rough-
ness at the micron scale (e.g., Jothi & Srinivasan, 2013). Clearly, it is of paramount importance to map the effect 
of complex volcanic geometries on observable parameters through well-constrained aeroacoustics laboratory 
studies.

Here, for the first time we investigate through laboratory experiments how surface roughness of conduit walls 
reflects on volcanic jet properties and the related seismo-acoustic radiation. We performed a set of laboratory 
shock-tube experiments mimicking volcanic jets dynamics, by changing the pressure of the high-pressure reser-
voir and the roughness of the conduit surface, quantified by means of fractal dimension. The structure of the jet 
and the accelerometric and acoustic related wave field are investigated using high-speed imaging and through an 
array of accelerometric and acoustic sensors.

2. Experimental Methods
2.1. Experimental Setup

The experimental setup (Figure 1) consists of a shock tube composed by (a) a high-pressure reservoir, that is, a 
cylindrical polyethylene tube (78 cm long, 3.8 cm inner diameter, 8.8 × 10 −4 m 3 inner volume), pressurized using 
compressed air at 2 × 10 5, 4 × 10 5, 6 × 10 5, 7 × 10 5, and 8 × 10 5 Pa, corresponding to pressure ratios (reservoir 
pressure divided by ambient pressure) of P = 2, 4, 6, 7, and 8; (b) an electrovalve allowing for rapid pressure 
release (<0.005 s); (c) the experimental analogue conduit, open to the atmosphere (80 cm long, 3 cm average 
inner diameter, 5.7 × 10 −4 m 3 average inner volume). The opening of the electrovalve generates a shock wave that 
pressurizes the air in the analogue conduit, from which, depending on P, a subsonic or supersonic jet is released 
into the atmosphere whilst radiating elastic energy to the surrounding medium. To vary conduit surface rough-
ness, we used three home-build epoxy pipes with the internal surface characterized by a different fractal dimen-
sion D: 2 (smooth surface), 2.18, and 2.99 (Spina et al., 2019, 2022; Giudicepietro et al., 2021 for further details).

The seismo-acoustic radiation was recorded along the conduit by accelerometers and in the atmosphere by 
microphones, respectively. A triaxial (frequency: 2 to 7 KHz sensitivity: 10 mV/g) and two monoaxial PCB 
Piezotronics accelerometers (frequency:0.5 to 10 KHz sensitivity: 100 mV/g) were placed in two slots along the 
conduit wall at ca. 7 (slot A) and 40 cm (slot B) below the outlet. The monoaxial accelerometers were alternated 
to the triaxial accelerometer, which was always located in slot B. We used two microphones: a PCB Piezotronics 
ICP 378B02 (frequency:7 Hz to 10 KHz sensitivity:50 mV/Pa in the band 7 Hz to 10 KHz (±1 dB) and ±2 dB 
in the range 3.75–20,000 Hz) and a GRAS 40AN (frequency: 0.5 Hz–20 KHz sensitivity: 50 mV/Pa) located 
at 30 cm left and right of the vent respectively (positions J and K). To avoid acoustic signal saturation, only for 
experiments with D = 2, an additional dataset of acoustic signals was acquired at a distance of 1 m (position L 
and N for the left and right side of the vent respectively; not included in Figure 1) and later corrected to the refer-
ence distance of 30 cm from the vent. Both accelerometric and acoustic signals were recorded at 200 KHz. In the 
rest of the paper only acoustic data from positions J and L and the accelerometric data from the monoaxial sensor 

Methodology: Laura Spina, Jacopo 
Taddeucci, Francesco Pennacchia, Juan 
José Peña Fernández, Jörn Sesterhenn, 
Giuseppe La Spina
Project Administration: Laura Spina, 
Jacopo Taddeucci
Resources: Laura Spina, Jacopo 
Taddeucci, Daniele Morgavi, Piergiorgio 
Scarlato
Software: Laura Spina, Jacopo Taddeucci
Supervision: Laura Spina, Jacopo 
Taddeucci
Validation: Laura Spina, Jacopo 
Taddeucci, Juan José Peña Fernández, 
Jörn Sesterhenn, Giuseppe La Spina
Visualization: Laura Spina, Jacopo 
Taddeucci
Writing – original draft: Laura Spina, 
Jacopo Taddeucci
Writing – review & editing: Laura 
Spina, Jacopo Taddeucci, Daniele 
Morgavi, Juan José Peña Fernández, 
Jörn Sesterhenn, Giuseppe La Spina, 
Piergiorgio Scarlato

 19448007, 2023, 19, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

L
104717 by Ingv, W

iley O
nline L

ibrary on [15/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Geophysical Research Letters

SPINA ET AL.

10.1029/2023GL104717

3 of 10

in slot B are shown, the other measurements providing congruent results (Figures S1–S6 in Supporting Infor-
mation S1). A high-speed camera (NAC MEMRECAM HX-3) synchronized with accelerometric and acoustic 
sensors filmed the conduit outlet and the lower part of the jet at 30–50 KHz using shadowgraph and, for P = 8, 
Schlieren imaging (Davies, 1981) and background subtraction (Supporting Information S1). We performed more 
than 150 experiments spanning 15 different starting conditions in terms of D and  P.  Repeated experiments 
confirmed the full reproducibility of the observations. The experiments were not performed in an anechoic 
chamber; and acoustic reflections from the surroundings possibly entered the late part of our recordings. To 
limit this effect, as specified in Section 2.2, we mostly did not account for the coda waveforms of acoustic and 
accelerometric signals. Figure S1 in Supporting Information S1 displays examples of acoustic and acceleromet-
ric waveforms of subsonic (P = 2) and supersonic (P = 8) jets for D = 2. Velocity and displacement waveforms 
obtained by integration of a subsonic and supersonic accelerometric event are shown in Figure S2 in Supporting 
Information S1.

Figure 1. Experimental setup. (a) Picture and (b) schematic sketch; (c) longitudinal sections (20 cm long, left-hand image) 
and top views (right-hand image) of the fractal analogue conduits.
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2.2. Analytical Methods

Acoustic and accelerometric signal processing was performed in a 0.045 s-long window encompassing the bulk 
of the experiment (dotted white box in Figure 2). We evaluated the RMS amplitude in the temporal domain. The 
temporal evolution of the spectral properties of the signals was characterized by wavelet periodograms. For each 
column (i.e., time step) of the periodogram (Figure 2), we extracted the frequency corresponding to the maximum 
spectral amplitude; then we computed the maximum frequency value obtained within the window. We also evalu-
ated the RMS amplitude ratio between the acoustic and accelerometric signals, as a proxy for energy partitioning. 
For the series of experiments performed in position L and N, the pressure (pred) at the reference distance (rred) was 
obtained from the actual distance r and pressure px a follows (Johnson & Ripepe, 2011):

𝑝𝑝red= 𝑝𝑝𝑥𝑥∗(
𝑟𝑟∕𝑟𝑟

red) (1)

Figure 2. Acoustic and high-speed Schlieren characterization of analogue volcanic jets for smooth (D = 2.00), (a) or fractal 
(D = 2.18 and D = 2.99, (b and c) respectively) conduits at P = 8. Each figure shows: (i) kymographs from Schlieren 
high-speed videos of the experiments, showing jets evolution over time along the jet centerline line (left-hand panels, top) 
and the relative wavelet periodogram of the acoustic radiation with highlighted the broadband shock noise (BBSN, red), the 
low-frequency component of the turbulent mixing noise (TMN, yellow), and the high-frequency component of both BBSN 
and TMN (green) (left-hand panels, bottom, white dashed box is the time interval used to compute temporal and spectral 
parameters shown in Figure 4). (ii) still frame of the Schlieren high-speed video 5.3 ms after the onset of the jet (red line in 
kymographs), showing the supersonic jets with their shock structure (white brackets mark Ls), the jet centerline (green line), 
and the inner and outer boundaries of the jet shear layer (dotted red line) (central panels); and (iii) the different components 
of the acoustic radiation in the horizontal and vertical Schlieren projection after background subtraction (BBSN, red; TMN, 
yellow; high-frequency BBSN and TMN, green) (right-hand- panels). The external conduit diameter, equal to 5.3 cm, provide 
a spatial reference.
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Equation 1 implies a pressure amplitude decay as 1/r, an assumption that is 
valid only in the far field, that is, at distance r >> λ/2π, with λ defined as 
the acoustic wavelength. For our set of measurements performed at a source 
distance of r = 1 m, we can assume far field conditions (hence Equation 1) 
are valid for frequencies above 100 Hz.

The elastic emissions of the experimental jets were compared against visual 
observation and kymographs of the high-speed shadowgraph videos. From 
these, we also measured the maximum spacing between shock cells (Ls) when 
visible.

3. Results
Visually, the onset of the jet is marked by the propagation of acoustic waves 
and the formation of a vortex ring, followed by the structuring of the jet itself 
and its waning, according to the evolution of starting jets (Peña Fernández 
et al., 2020). Acoustic waves radiate first from the conduit outlet, then from 
the vortex ring, and finally from the jet itself (Movies S1 and S2). At P ≥ 6 
experimental jets are clearly supersonic, and the vortex ring is preceded by 
a shock wave and followed by the formation of an under-expanded jet with 

shock cells whose Ls increases for about 5 ms and then gradually decreases. In the supersonic cases, Ls and peak 
acoustic frequency display specular trends over time, the former increasing while the latter decreases and vice 
versa (Figure 2). Increasing D results also in decreasing Ls (Figure 3) and shock cell stability and in faster growth 
of the shear layer downstream of the jet (increasing jet spreading angle). With increasing D, the acoustic radiation 
in P = 8 experiments increases its peak frequency, and the upstream directed component decreases considerably 
(Figures 2 and 4, Movie S3).

Rough conduit walls leave their fingerprint also on acoustic and accelerometric signals. The RMS amplitude of 
both acoustic and accelerometric signals increases with increasing P. For P > 6 acoustic amplitude decreases 

Figure 3. Shock cells spacing (Ls) as a function of pressure ratio for different 
conduit roughness D.

Figure 4. Acoustic and accelerometric radiation as a function of initial pressure ratio P and fractal dimension D. (a) Acoustic amplitude (RMS) of microphone in 
position J and L (diamonds; amplitude reduced to 30 cm); (b) accelerometric amplitude (RMS); (c) Amplitude ratio between accelerometric and acoustic radiation. (d) 
Peak frequency in the acoustic radiation wavelet periodogram. (e, f) Examples of Power Spectra computed using a 0.04 s window for experiments performed at P = 8 
(e) and P = 2 (f).
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with increasing D (Figure 4a); below this threshold the correlation is less clear. Accelerometric amplitude is 
always lower for D = 2 than for D = 2.18 and D = 2.99 (Figure 4b). The accelerometer to acoustic RMS amplitude 
ratio, proxy for energy partitioning between conduit and atmosphere, increases with increasing P until P = 6, and 
decreases afterward. At any P, the amplitude ratio increases with increasing D (Figure 4c).

The peak acoustic frequency of the wavelet periodograms increases with increasing D, but in a complex pattern. 
For D = 2, peak frequency increases with pressure until P = 6 (the approximate onset of the supersonic regime) 
and slightly decreases afterward, while for D = 2.18 and D = 2.99 the increase till P = 6 is sharper and the follow-
ing decrease less marked (Figure 4d).

The effect of D is strongly nonlinear, changes in all parameters from D = 2.00 to D = 2.18 being much larger than 
from D = 2.18 to D = 2.99. Similar results are shown in Figure S3 in Supporting Information S1 for microphone 
in position Y-M and accelerometer in slot A. Figures S4 and S5 in Supporting Information S1 show examples 
of the temporal evolution of spectral properties of respectively acoustic and accelerometric signals at subsonic 
(P = 2) and supersonic (P = 8) conditions for D = 2.

4. Discussion
4.1. Influence of Conduit Roughness on Jet Flow Structures

Previous studies on pipe flow have shown that roughness influences heat and momentum transfer at the boundary 
layer by increasing pressure drop, altering laminar-turbulent transitions, inducing secondary flow motion, improv-
ing flow mixing and enhancing heat transfer (e.g., Kadivar et al., 2021 and references therein). We observed 
increasing accelerometric amplitude with increasing D, indicating that rougher walls increment frictional energy 
loss of the gas flow within conduit. Although the majority of investigations have addressed relative surface 
roughness (i.e., roughness height to conduit diameter; in our study ∼25% for both fractal conduits) up to 5% in 
percentage (e.g., Flack & Schultz, 2010; Moody, 1944; Nikuradse, 1937), research performed on micro-channels 
with relative roughness up to 14% highlighted the additional effect of flow area restrictions influencing pressure 
drop and of the increased shear stress (Kandlikar et al., 2005; Taylor et al., 2006).

The energy lost frictionally against conduit walls is partially converted into turbulent energy of the resulting start-
ing jet. The roughness-induced frictional loss is undetectable in our setup for P = 2 and becomes more evident 
as P increases (Figure 4; Figure S3 in Supporting Information S1). The trend of the accelerometric to acoustic 
amplitude ratio as function of P and D reveals two key points of the conduit walls versus jet energy partition: 
first, it works oppositely for smooth and rough conduit walls; second, it reverses at the subsonic to supersonic 
transition. The first point is explained considering that, with increasing Reynolds number, friction decreases for 
smooth conduit and increases for rough-walled ones (Busse et al., 2017). The second point is explained by the 
different sources of jet noise acting in the two regimes and the respective changes in radiation directionality (e.g., 
Tam et al., 2008).

In the subsonic regime, turbulent mixing noise (TMN) dominates the acoustic radiation from the jet, and, in 
agreement with our results at P = 2–4, its frequency increases with Mach number (M) rising from 0.5 to 1.0 
(Ilario et al., 2017). TMN has a higher frequency component mainly radiated perpendicularly from the jet direc-
tion (best visible in the vertical blade Schlieren images, in orange in Figure  2), and a lower frequency one, 
increasingly dominant at increasing M (in yellow in Figure 2), mainly radiating in the downstream direction 
(Tam, 1995), in agreement with our observations, and thus less prone to reach our microphone, located at 90° to 
the jet axis and level with the vent. In the supersonic regime, TMN is joined and dominated by broadband shock 
noise (BBSN, in red in Figure 2), due to the interaction of variably-sized, downstream-migrating jet shear layer 
structures with the shock cells. Screech tones were not observed in our experiments (Figures 4e and 4f; Figure S6 
in Supporting Information S1), coherently with the observation that for pipes with length to diameter ratio above 
6 screech tones are suppressed (e.g., Jothi & Srinivasan, 2009, 2013).

Both TMN components and BBSN are clearly visible in our Schlieren images at P = 8, the latter being more 
pronounced in the D = 2.00 case and radiating in the downstream direction (Figure 2 and Movies S1–S3). Ls is 
linked to M as follows (Norum & Seiner, 1982):

𝐿𝐿𝑠𝑠

𝐷𝐷𝑒𝑒

= 1.1
√

𝑀𝑀2 − 1 (2)
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where De is the nozzle diameter. Assuming De = 0.03 m (Figure 1), M in our experiments at P = 6–8 range 
1.03–1.26 for D = 2.99, 1.1–1.36 for D = 2.18, and 1.6–1.99 for D = 2.00. M can be used to evaluate the jet 
velocity uj according to:

𝑢𝑢𝑗𝑗 = 𝑀𝑀 ∗ 𝑐𝑐 (3)

where c is the acoustic velocity in the medium at fully expanded conditions. This allows us to evaluate the 
expected broadband peak frequency fbbsn according to the following:

𝑢𝑢kh = 0.7𝑢𝑢𝑗𝑗 (4)

𝑓𝑓bbsn =
𝑢𝑢kh

𝐿𝐿𝐿𝐿
 (5)

where ukh is the eddy convection velocity, computed according to Equation 4. For the observed ranges of M, 
according to Equation 3 uj spans from ca. 350 m/s for D = 2.99 and P = 6 to ca. 670 m/s for D = 2.00 and P = 8 
with a percentage of increase from fractal to smooth conduit with the same starting conditions of about 25% at 
the same P. The expected fbbsn range from 8.7 * 10 3 up to 2.9 * 10 4 Hz, in relative good agreement with measured 
values (1 to almost 4 * 10 4 Hz, Figure 4; Figures S3 and S4 in Supporting Information S1) considering a slightly 
smaller nozzle diameter due to local departure from the mean values in fractal conduits.

The observed increase of fbbsn with increasing D is linked with the decrease in Ls with increasing D (Figure 3), 
due to different contributing factors: (a) variation in the radial jet cross-section due to increasingly irregular 
geometry of the conduit outlet, and (b) decreasing jet velocity as gas flow interacts with increasingly rough 
conduit walls. In military nozzles shock-cell spacing is effectively reduced by the introduction of chevrons at the 
nozzle outlet, which modify initial jet cross-sectional shape by introducing counter-rotating vortex pairs into the 
jet (Heeb et al., 2016). Local differences in the vent roughness could modulate the initial cross-section of the jet 
and the subsequent shock-cell structure and shock strength in our experiments. The larger spreading angle of the 
jet supports the formation of a larger mixing layer and effective smaller jet diameter for larger D. Concerning jet 
velocity, for the same P this can be reduced by the frictional energy loss due to friction with rough conduit walls. 
In agreement with our observations, higher jet noise level for smooth conduit walls than for micron-scale rough 
conduits has been observed (Jothi & Srinivasan, 2013.). In summary, our observations in the supersonic regime 
are explained by increasing roughness of the conduit walls increasing the relevance of TMN at the expense of 
BBSN.

4.2. Implications for Volcanic Jets and Seismo-Acoustic Signals

Previous studies have highlighted the importance of conduit wall roughness on the exponent of the power law 
relating seismic tremor to the volume flux in experimental conduits and volcanoes, and that fractal dimension 
is an effective descriptor of surface topography and of magma fragmentation (Kueppers et al., 2006; Mark & 
Aronson, 1984; Pfeifer, 1984; Risović et al., 2009; Sciotto et al., 2019; Spina et al., 2019). In this study, we 
experimentally tested, for the first time, how volcanic conduit wall roughness plays a role in the amplitude and 
frequency of elastic (seismo-acoustic) radiation from jets, that are routinely measured during explosive eruptions 
(e.g., Johnson et al., 2003; Johnson & Ripepe, 2011; Rowell et al., 2014; Taddeucci et al., 2014).

The characteristic frequency of different components of subsonic to supersonic jet noise has been used to 
get inferences on the diameter of erupting volcanic vents and their temporal evolution (Gestrich et al., 2022; 
Taddeucci et al., 2021). Acoustic amplitude is an important tool to monitor jet velocity as a proxy for eruption 
intensity, and its link with jet noise dynamics in the volcanic environment is now established (Fee et al., 2013; 
Matoza et al., 2013). Here we show that changes in the frequency and amplitude of eruption-generated sound 
could be induced by changes in the roughness of the conduit, a fact that was previously unaccounted for, despite 
plenty of evidence illustrating the occurrence conduit erosion during an eruption (e.g., Aravena et al., 2017; Fee 
et al., 2017; Macedonio et al., 1994; Schmid et al., 2021).

For given initial conditions, smoother conduit walls or a syn-eruptive decrease in conduit roughness, resulting 
from erosion or lining with new magma, would result in a decrease in energy transfer to the conduit walls and 
a corresponding increase in jet velocity. This would significantly affect the Volcano Acoustic to Seismic Ratio 
(VASR; Johnson & Aster, 2005) that is the ratio among acoustic and seismic energy of a given volcanic explosion, 
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a parameter commonly used to characterize eruption sources and their elastic coupling with the volcano and 
atmosphere (e.g., Andronico et  al.,  2013; Johnson & Aster,  2005; Smith et  al.,  2020). Conduit smoothening 
would also translate in a change in the dominant source and directionality in the jet-related noise, different in 
the subsonic or supersonic regime. In the trans-sonic to supersonic regime BBSN would become more dominant 
and with a lower peak frequency, while in the subsonic one TMN would have a lower fine-scale turbulence 
component.

Our findings have implications also for the numerical modeling of the flow of gas-pyroclast mixtures in volcanic 
conduits, where conduit wall roughness is mostly unaccounted for (an attempt to consider conduit wall roughness 
for relative roughness up to 5% in magma ascent dynamics has been done by La Spina et al., 2019, 2021, 2022), 
and for the evolution of eruption plumes, largely controlled by jet exit velocity and air entrainment at the jet shear 
layer (e.g., Carey and Bursik, 2015).

5. Concluding Remarks
Experiments on the role of conduit surface roughness on flow dynamics and elastic radiation of subsonic to 
supersonic jets brought to light the following key points:

1.  The increase in frictional energy loss with increasing roughness, inferred from the increment of acceleromet-
ric amplitude and accelerometric to acoustic amplitude ratio, is progressively more evident with increasing 
pressure ratio. Differences in the subsonic versus. supersonic regime for the above mentioned amplitude 
ratio likely mirror the contribution of distinct sources of jet noise, turbulent mixing noise dominating in the 
subsonic regime and broadband shock-noise in the supersonic one.

2.  In the supersonic regime, decreasing shock-cell spacing with increasing roughness causes increasing acous-
tic frequency. This is likely to result from the decrease in jet velocity due to increased energy transfer to the 
conduit. The variation in the jet cross-section at the conduit outlet, possibly introducing counter-rotating 
vortices, represents an additional contributing factor.

3.  Given that the coupling between volcanic flows and conduit shape has been shown to be highly dynamic, a 
wide spectrum of cross-sectional variations is expected to occur both in time and depth due to depositional 
and/or erosional processes. The observation of the jet structure and of the seismo-acoustic related radiation 
is of paramount importance for backtracking the evolution of explosive activity in conduit and to correctly 
interpret source processes and the coupling of their elastic energy with the conduit wall and the atmosphere.

Data Availability Statement
The repository of data is available at link: https://doi.org/10.5281/zenodo.7920109.
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