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Abstract: Modelling the Earth’s ionosphere is a big challenge, due to the complexity of the system.
Different first principle models have been developed over the last 50 years, based on ionospheric
physics and chemistry, mostly controlled by Space Weather conditions. However, it is not un-
derstood in depth if the residual or mismodelled component of the ionosphere’s behaviour is
predictable in principle as a simple dynamical system, or is conversely so chaotic to be practi-
cally stochastic. Working on an ionospheric quantity very popular in aeronomy, we here suggest
data analysis techniques to deal with the question of how chaotic and how predictable the local
ionosphere’s behaviour is. In particular, we calculate the correlation dimension D2 and the Kol-
mogorov entropy rate K2 for two one-year long time series of data of vertical total electron content
(vTEC), collected on the top of the mid-latitude GNSS station of Matera (Italy), one for the year
of Solar Maximum 2001 and one for the year of Solar Minimum 2008. The quantity D2 is a proxy
of the degree of chaos and dynamical complexity. K2 measures the speed of destruction of the
time-shifted self-mutual information of the signal, so that K−1

2 is a sort of maximum time horizon
for predictability. The analysis of the D2 and K2 for the vTEC time series allows to give a measure
of chaos and predictability of the Earth’s ionosphere, expected to limit any claim of prediction
capacity of any model. The results reported here are preliminary, and must be intended only to
demonstrate how the application of the analysis of these quantities to the ionospheric variability
is feasible, and with a reasonable output.

Keywords: predictability; ionosphere; embedding phase space

1. Introduction

The Earth’s ionosphere is a very rich open system [1] that interacts with the Solar Wind,
the Earth’s magnetosphere, the neutral atmosphere including the troposphere, the cosmic
radiation and, very likely, with the Earth’s lithosphere [2].

Due to its relevance for human activities, such as navigation and positioning, power
plant and pipeline safety, great efforts have been done to make models of it, enabling
predictions of its behaviour (see for instance the book [3], where some different authors
review the first principle and empirical ionospheric models). The prediction of iono-
spheric behaviour, on a great variety of space and time scales, has made great progress
in the history of aeronomy and space science since the “discovery of the ionosphere”
by Marconi, Appleton, and Barnett in the 1920s. Still, it does make sense to raise the
general question of to which extent this behaviour may really be predicted. Since the
pioneering studies of Lorenz [4], physicists have realised that even perfectly deterministic
systems, the dynamics of which may be written in closed form, show a certain degree
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of unpredictability, due to the phenomenon of chaos, whenever non-linearity comes into
the play.

This is the case of the components of the Earth’s atmosphere as well [3,5]: in every
possible model of a local or global portion of the ionosphere, any predicted quantity X
is always expected to have some fluctuations δX , irregular and apparently out of reach
for our prediction. These space and time irregularities represent an effect of the non-linear
components of the ionospheric dynamics, working as a magnifying lens on the effects of
the matter’s granularity, as it happens with fluid turbulence [6]. While making physical,
empirical, machine-learning-based models of the ionosphere, one would not mind to know
if the precision to predict some quantity may be reduced arbitrarily, or if any limit to this
predictability exists. Such issues make perfect sense in the field of tropospheric weather
prediction [4,5], so there should be no surprise for them to make sense in ionospheric
weather and climate as well [7–9].

This paper is dedicated to presenting some data analysis tools, commonly used to
assess the predictability of complex systems, which can be used to study the same aspect
for the ionosphere. The application of the data analysis tools presented is suggested for the
study of the vertical total electron content (vTEC), a physical quantity largely used to describe
the local ionosphere, and of which huge worldwide continuously data monitoring exists.
The definition of the vTEC on the top of a ground location of geographical coordinates
(ϕ, λ) reads:

T(ϕ,λ)
vert (t) =

∫ hGNSS

0
Ne(ϕ, λ, z, t)dz, (1)

where Ne is the free electron density number (in (1) z is the quote and t is the time).
The dynamics of the density number Ne of free electrons is very rich, and it should be
expected to show all the characteristics defining “complexity” [5], precisely as it happens in
meteorology. The complex dynamics of Ne are necessarily reflected in a complex evolution
of T(ϕ,λ)

vert . The choice of vTEC as a proxy of the local ionosphere state makes practical
sense: indeed, the total electron content along a general path γ is very useful in the field of
ionospheric radio propagation, being proportional to the optical path contribution due to
the ionospheric medium along γ [10]. The vTEC on the top of a certain ground location of
coordinates (ϕ, λ) is meant to give an idea of the effect of the local ionospheric medium on
radio propagation.

Ionospheric complexity may result in precise mathematical terms when a representa-
tion of the ionospheric medium is chosen. Consider, for instance, the fluid representation of
the ionospheric medium (FRIM): the evolution of Ne is described by a system of coupled, time
dependent, and partial differential equations (PDEs) in which the density number, bulk
velocity, and temperature of each chemical component of the ionosphere are involved as
classical fields. Moreover, the geomagnetic and geoelectric field equations couple with those
fluid PDEs. This would be by itself enough to expect complex dynamics to develop [3],
namely high dimensional chaos [11]. Moreover, the FRIM is not even the most “detailed”
representation possible: it is a complex, but still deterministic picture [3]; representations
including fluctuations may be stochastic variations of the FRIM, such as the representation
of the sporadic spread F layer in Ref. [12] or the kinetic pictures in Ref. [13].

The complexity of the dynamics just mentioned is expected to be reflected in the
vTEC time series, as indeed it is. The evolution pattern of T(ϕ,λ)

vert (t) with time appears
as quasi-periodic: the main component of this evolution is the diurnal variability, driven
by insolation. Besides this periodicity, however, a huge variety of shapes appear in the
T(ϕ,λ)

vert (t), all encoding the complexity of the ionospheric dynamics: this renders the evolu-

tion T(ϕ,λ)
vert (t) scarcely predictable. Assessing the limit of predictability of the vTEC, if any,

a statement is made on the extent to which the ionospheric medium may be predictably
modelled, i.e., represented deterministically [3].

In the present work, the data analysis techniques applied make use of concepts well
known in the literature of complex systems, which become popular in the early 1990s in the
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field of magnetospheric physics (see, e.g., Refs. [14,15] and the later work of Ref. [16] and
references therein), but less so in the field of ionospheric dynamics, although important
attempts have been made in the past [17]. In particular, three concepts are used in our vTEC
analysis: the concept of embedding phase space, that of correlation dimension D2, and that of
Kolmogorov entropy K2 [18] (the symbols D2 and K2 refer directly to the way the correlation
dimension and Kolmogorov entropy are calculated: see below).

The aforementioned quantities are well defined when one deals with an autonomous
finite dimensional dynamical system Σ, described via its trajectories X(t) throughout some
phase space V, with finite dimension dimV = m. The dynamics

Ẋ = F(X) (2)

of Σ determine the local properties of the trajectories: in particular, how “irregular” they are,
“filling” a region of V as chaotic curves, which is described by the correlation dimension;
and how fast the information shared by the present state X(t) with the past ones X(t′ < t)
is lost, which is given by the Kolmogorov entropy rate.

The physical system in our case is the local ionospheric medium (LIM), of vTEC (1),
where “local” means the correspondence of the given ground coordinates (ϕ, λ). As
we have sketched before, the mathematical representations of the ionospheric medium
are more complicated than a “simple” m-dimensional Σ: both the FRIM and all the
possible kinetic representations of the “dirty plasma” [1,3] have an infinite dimensional
V, as they are in practice field theories. In fact, one should think of the ionosphere as a
fluid that may be in different conditions, ranging from “laminar” to “turbulent” flows:
hence, it may show different behaviours, described via phase spaces of a different finite
dimension, depending on how many physical modes are “switched on” in the flow
conditions at hand. The use of finite dynamical systems in fluid dynamics is already well
known in the literature, since Lorenz defined his paradigmatic 3-dimensional chaotic
system to represent a simplified model for the atmospheric convection [4]: of course,
the continuum mechanics of the atmosphere is an infinite-dimensional system as it
would be the case for a kinetic representation of it. Yet, some selected modes of it,
coupled among themselves but decoupled from, e.g., smaller scale ones, may well be
described via a finite-dimensional Σ.

In order to obtain the information about the vTEC predictability, namely the pre-
dictability of the local ionospheric state, we consider the time series T(ϕ,λ)

vert (t) as the only
physical information available, and look for a “suitable Σ” that can mimic the LIM physics. In
particular, we apply the embedding phase space analysis obtained from the important works by
Takens and others, see for instance Ref. [18] and the many references therein (in particular,
Refs. [19,20]). The procedure, well known in the literature, and already applied by the
Authors T.A. and G.C. to the Space Weather research [16], is worth briefly discussing in
terms of how far the assumptions behind it will fit the LIM dynamics (for technical details
the reader is addressed to the quoted references [18–20]).

The paper is organized as follows.
In Section 2 the dynamical system tools to be applied to the vTEC time series are

introduced, and in Section 3 the outcome of their application to two vTEC time series
is presented; one series pertains to a year of Solar Minimum and the other one to a
year Solar Maximum: this choice is expected to make the analysis explore different
helio-geophysical conditions, as the solar activity is the main trigger of the ionospheric
response, called Space Weather [3].

Section 4 is finally devoted to the conclusions and physical reasonings regarding the
presented results, and also some developments that are on their way.

2. Embedding Phase Space, D2 and K2

As stated in Section 1, we are trying to infer some dynamical information about
the physical system “LIM around the location (ϕ, λ)”, being able to work only with the
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time series T(ϕ,λ)
vert (t). This is done by constructing a finite-dimensional dynamical system,

assumed to be governed by some dynamics as in Equation (2), solely out of the collection
of values

{
T(ϕ,λ)

vert (t)
}

. The tools presented here are able to give us the dimension

m = dimVLIM

of the phase space VLIM, and other two quantities D2 and K2 that characterise the topologi-
cal structure of the system trajectories X(t) and their predictability. Nothing more will be
inferred, instead, on the form of the function F giving the dynamics of X as in (2).

A description of the presented analysis tools is worth to be given.

2.1. The Embedding Phase Space V
Let us have a certain time series {y(t)} as the only proxy collected for a given physical

system. For t ∈ [ti, tf], t will assume only discrete values t = ti + nτs, being τs the sampling
time and n = 0, . . . , N− 1, so that ti +(N − 1)τs = tf. The assumption is that the values y(t)
taken by the time series are due to the dynamics of a system Σ. In particular, if the system
Σ is described by the finite-dimensional state X = (X1, . . . , Xm), at each time the quantity
y depends smoothly on all the components of X, such as y(t) = g(X(t)) / g ∈ C∞(V,R).
The aim of the data analysis tool described here is “to obtain Σ out of y”, i.e., to reconstruct
the trajectory X(t) out of the time series y(t), for t in the interval of observation of y. Let us
underline again that this system Σ is completely unknown, but some prior hypotheses on it
are necessary:

• Along the interval [ti, tf], its physics is “stationary”, i.e., no sudden changes in the
parameters or in the external forces take place, so that the dynamical structure in
V remains the same. In practice, one assumes X to be governed by an autonomous
dynamics as in (2), where F does not depend explicitly on time;

• The dimension m = dimV is unknown, and it will be an output of the embedding
procedure (needless to say, this dimV must be constant along the time interval [ti, tf].
As in our practical case, the condition of the ionospheric medium to range from hydro-
static equilibrium to bursty turbulence, should be not taken for granted. Reasonably,
one should apply this technique to data sets of vTEC where the degree of turbulence
of the LIM is constant, or accept to obtain results that are an average of all the different
conditions of the LIM met throughout the time series. This latter condition is precisely
the one met in the 1-year-long vTEC series analysis, as done here).

The result regarding whether finding a reasonable Σ out of {y(t)} is possible, dates
back to Takens’ Theorem [18], stating that an m-vector

Y(t) = (y(t), z1[y; t), . . . , zm−1[y; t)), t ∈
[
t̂i, t̂f

]
⊆ [ti, tf], (3)

formed by y(t) and m− 1 other quantities zk[y; t) functionally depending on y(t), and func-
tionally independent of each other, may work as a good state of Σ, existing as a smooth
1-to-1 relationship between Y and the “true state” X. In the definition (3) the brackets of
zk[y; t) underline that, even if those quantities are locally dependent on t, they may depend
non locally on y(t), as it will be clear from the practical choice of our zks below. Note also
that the system state is reconstructed in a possibly proper subinterval of [ti, tf],

[
t̂i, t̂f

]
with

t̂i ≥ ti and t̂f ≤ tf.
Once the vector Y(t) is reconstructed, i.e., as we know the number m, and all the

values Y1,...,m(t) for t ∈
[
t̂i, t̂f

]
, the topological properties of X :

[
t̂i, t̂f

]
7→ V, characterizing

the degree of chaos and predictability of Σ, are known, because one holds the curve
Y :
[
t̂i, t̂f

]
7→ V that is in 1-to-1 infinitely differentiable correspondence to X :

[
t̂i, t̂f

]
7→ V

(X and Y are said to be diffeomorphic to each other).
The chosen form for Y(t) in (3) is

Y(t) = (y(t), y(t + ∆), y(t + 2∆), . . . , y(t + (m− 1)∆)) : (4)
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the time ∆ is a time lag suitably chosen, so that y(t + k∆) is functionally independent of its
neighbours y(t + (k− 1)∆) and y(t + (k + 1)∆). In practice, on the one hand, ∆ must be so
large that indeed the neighbouring Yk(t) = y(t + (k− 1)∆) are independent; on the other
hand, ∆ cannot be too large because, after all, the components of Y(t) in (4) must all refer
“to the same state” of Σ; namely, the non-linear dynamics moving Σ has not to had the time
to change X during a time interval of length ∆. In our analysis, ∆ is chosen as the delay
after which the mutual information between y(t) and y(t± ∆) goes to less than 0.4 bit (this
results into approximately ∆ = 1200 s for the data of vTEC at hand, see below). Clearly,
other choices for ∆ might be done: the one adopted here guarantees the zk[y; t) functions as
in (3), realised as the y(t + n∆) in (4), to be functionally independent of each other, and not
only linearly independent; moreover, the mutual information is not reduced too much,
so to render y(t) and y(t + q∆), with q = 1, 2, . . . , m − 1, is still suitable to describe an
instantaneous state Y(t).

As the ∆ is established, next one needs to fix m to construct Y(t). In the present work,
the right embedding dimension is, in a sense, established by looking at what would be
the result of guessing it. The guess-and-refine work to obtain the proper m = dimV is
done through the guess calculation of the quantity D2: various guess dimV are tried,
for each of them a guess D2 is calculated, and the right dimV is chosen as the one giving
the correct D2.

2.2. How Chaotic? Defining D2 and Fixing dimV
The dimension D2 is intended (and calculated) as the Hausdorff dimension of the points

in V lying along the curve Y(t), and it is reasonable to state that the right m is the smallest
one for which D2 reaches a saturation value, as stated in a while. The fact that one calculates
this D2 means that the trajectory Y(t) is expected to develop on an attractor A ⊂ V that
has real dimension dimA = D2; there is an implicit assumption that the dynamics has a certain
amount of chaos, otherwise A should have dimension 1. So, the quantity D2 rather makes
sense for irregular evolutions Y(t), giving irregular time series y(t). This is indeed the case
of the vTEC time series analysed here, as one can see by looking at the plots in Figure 1
below. Considering µ(Y0, r) the amount of points of the trajectory Y(t) around the point
Y0 ∈ V within a (small) neighbourhood of size r, the Hausdorff dimension D2 is defined
so that:

µ(Y0, r) ∝ rD2(Y0). (5)

In (5) the dimension D2 may depend on the point around that is calculated (multi-fractal,
or locally fractal, attractors), but in this work we are looking for a unique D2 throughout
the whole evolution studied, as t ∈

[
t̂i, t̂f

]
. In general, D2 ≤ m: the larger D2, the thicker

is the attractor in V, through which the system trajectory evolves, i.e., the more chaotic its
dynamics turns out to be. The value D2 = 1 is that of an infinitely regular (smooth) curve,
a value 1 < D2 < m is chaos, while D2 = m represents a fully stochastic evolution, i.e., pure
noise (the idea of smoothness out of the necessarily discrete map of any real data is rather
loose: on the one hand, it does not make sense to speak about any C∞ space of discrete
time evolutions; on the other hand, the solution of a system as the Ẋ = F(X) thought of
to govern Σ is infinitely derivable, as F is. In practice, the calculation of D2, giving rise
to some number in between 1 and dimV, with some uncertainty of course, provides us
with an idea of how chaotic the dynamics of Σ is. Moreover, “noise” does not mean “white
noise” or “Gaussian noise”, rather fully probabilistic evolution: turbulence has made us used
to probability distributions that represent all but “trivial” noise). A regular evolution with
D2 = 1 may be fully predicted, while the more chaotic it is, the less predictable it turns out
to be. Fully stochastic evolutions with D2 → m should be treated only via probability.
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Figure 1. The two plotted vTEC time series y2001(t) (on the left hand side) and y2008(t) (on the right
hand side). Note that the vTEC scales are different in the two plots. See the text for details.

Coming back to the evaluation of m, as a candidate embedding dimension d is given, it
is possible to calculate the first quantity we are interested in, i.e., the correlation dimension
D2(d), out of the curve Yd(t) = (y(t), y(t + ∆), . . . , y(t + (d− 1)∆)): due to its meaning,
one has D2(d) ≤ d, and it can just grow with d, that is D2(d + 1) ≥ D2(d). Hence,
the procedure of attempting to use Vd with larger and larger d stops when the correlation
dimension D2 stops growing as the embedding dimension is increased, that is for d = d̃
with D2

(
d̃ + 1

)
= D2

(
d̃
)
. Then, the embedding dimension m is chosen as m = d̃.

2.3. How Unpredictable? Defining K2

The other quantity that will be calculated for our system is the Kolmogorov entropy
K2, representing, in practice, the amount of trajectory location precision that is lost in a single time
step of the evolution (this K2 calculated from Yd(t), depends on the candidate embedding
dimension d, i.e., one expects to have K2(d)). This quantity is calculated by considering
ε-coarse graining of the reconstructed phase space V, so that all along the trajectory points
are collected in finite size neighbourhoods, as in Figure 2. By simply point counting, one
may calculate the joint probability measure P(Y1, . . . , Yn) that the system state is in the

neighbourhood U(Y1, ε)
def
= i1 at time t1, in U(Y2, ε)

def
= i2 at time t2 > t1 and so on: the

total Shannon uncertainty about the trajectory location after n times is defined as:

Kn = − ∑
i0,...,in

P(Y1, . . . , Yn) log P(Y1, . . . , Yn). (6)

With those Kns, one may define the limit

K2 = lim
τs→0

lim
ε→0

lim
N→+∞

1
Nτs

N−1

∑
n=0

(Kn+1 − Kn), (7)

that is our Kolmogorov entropy (rate), where N is the number of times considered. In (7)
the limits limτs→0, limε→0 and limN→+∞ rather indicate that the sampling time should be
much smaller than the dynamics timescales, so that the neighbourhood size should be much
smaller than the Y gross variability, and that enough data must be collected, respectively.

Some remarks are necessary for the definition (6) and its use (7). First of all, the tra-
jectory Y(t), reconstructed via the embedding procedure discussed above, is namely fully
known, so that a rigore it should be non-sense speaking about an ignorance entropy. How-
ever, introducing the ε-graining, the resolution of our observation becomes finite, and some
uncertainty must be admitted. This uncertainty is not a mere artefact of some entropy-
fanatic: the quantity K2 defined in (7) is in fact different for different systems, and is
larger for more chaotic systems, i.e., systems with a higher degree of chaos diagnosed via
other proxies, for instance Lyapunov exponents. This stated, one accepts that K2, which is
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measured in bit/s, and is indeed an information entropy rate, is in practice the inverse of
the time after which the ignorance about the system position increases 1 bit: (K2)

−1 is the
timescale within which the behaviour of the system can be accurately predicted.

Figure 2. Sketching the ε-coarsening of the points of the trajectory, in order to compute the joint
probability distributions P(Y1, . . . , Yn). See the text for details.

Regarding the practical interpretation of K2, a fully predictable evolution would show
K2 = 0, because it would be predictable forever as 1

K2
→ +∞; a chaotic system has a finite

K2 > 0, that is predictability within some time 1
K2

> 0; last but not least, a fully stochastic
system shows K2 → +∞, so that the predictability horizon would be a zero time 1

K2
= 0,

and the evolution is somehow a continuous dice rolling.

2.4. Practical Calculation of D2 and K2

In the data analysis performed here, the correlation dimension D2 and the Kolmogorov
entropy K2 are calculated through the numerical recipes by Grassberger and Procaccia [21],
whose work rendered those abstract quantities more easily calculable in practice [16]. First
of all, one defines a correlation intergral Cm[Y , r) as

Cm[Y , r) = lim
N→+∞

1
N2

N

∑
i,j=1

Θ
(
r−

∥∥Y i − Y j
∥∥). (8)

In (8), Θ is the Heaviside step function, while the symbol
∥∥Y i − Y j

∥∥ is the distance in Vm
between the two points Y i and Y j along the trajectory embedded in a Vm space of dimension
m: usually this is calculated as an Euclidean norm, or the m-dimensional Pitagora Theorem∥∥Y i − Y j

∥∥ def
=

√
∑m

h=1

(
(Yi)h −

(
Yj
)

h

)2
; instead, r > 0 is simply a real positive number.

Then, one assumes this integral Cm[Y , r) to be a power law in the limit of small r:

lim
r→0

Cm[Y , r) = O
(

rD2
)

.

Starting from this correlation integral, the correlation dimension D2 is finally calculated as:

D2 = lim
r→0

log Cm[Y , r)
log r

. (9)

Once the quantity in (9) is calculated for the time series Y(t) of interest, i.e., for the original
y(t) of real data, the degree of “chaoticity” of the dynamics giving rise to y(t) may be
assessed as stated before.
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The Grassberger–Procaccia method described in Ref. [21] allows us to calculate K2
practically: a satisfactory approximation of the quantity defined in (7) is indeed obtained
by using the correlation integrals in the m and m− 1 embedding dimensions as

K2 = lim
r→0

1
τs

log
(

Cm−1[Y , r)
Cm[Y , r)

)
, (10)

where τs is still the sampling time. Equation (10) is a powerful estimation of K2 and it
directly comes from inserting Equation (8) into Equation (7), since, as shown by Grassberger
and Procaccia [21],

Cm[Y , r) ∼ rD2 e−τsK2 . (11)

With the two operative formulas (9) and (10), we are now in the position of applying
these tools to the evolution of the vTEC.

3. Application to the vTEC Time Series: Results

The discussion developed in Section 2 may now be applied to the study of the vTEC
dynamics. In particular, we are going to study the case of the mid-latitude ionosphere
by applying the aforementioned techniques to two time series T(ϕ,λ)

vert (t), representing
respectively the vTEC on the top of the GNSS station of Matera during the Solar Maximum
year 2001 and the Solar Minimum year 2008. The vTEC data are taken from the “ICTP
Calibrated GNSS TEC Service” (https://arplsrv.ictp.it/, accessed on 12 February 2023) that
makes use of the TEC calibration technique described in Ref. [22].

The station of Matera has the following geographic coordinates [23]

(ϕ0, λ0) = (40.649◦, 16.704◦),

and is generally indicated with the acronym MATE00ITA. In the (heavy) symbols of
Equation (1), the two time series will hence be indicated as T(ϕ0,λ0)

vert (2001, DOY) and

T(ϕ0,λ0)
vert (2008, DOY), where “DOY” is the day-of-the-year. The vTEC are expressed in

TEC units (1 TECu= 1016/m2 electrons) [5,10]. The time t, represented by the year and the
DOY, has a resolution τs = 30 s. The two vTEC time series will be more simply indicated as
y2001(t) = T(ϕ0,λ0)

vert (2001, DOY) and y2008 = (t)T(ϕ0,λ0)
vert (2008, DOY): this emphasizes how

the vTEC time series plays the role of the physical proxy y(t) discussed in Section 2.
The time series y2001(t) and y2008(t) are plotted in Figure 1: at a glance, one can see

that the two evolutions show a similar seasonal time structure, but that of Solar Maximum
y2001(t) has much wider excursions, due to the “higher” solar activity. Equally, one can
note that in the year-long time series, geomagnetically and seasonally different conditions
of the ionosphere are included, a fact that will have to be further discussed more ahead in
this Section and in Section 4 below.

3.1. The M = 3 Embedding and the Dimension D2 for the vTEC

As a first step of the vTEC embedding analysis, we have determined the time lag ∆
necessary to construct the vectors

Y2001(t) = (y2001(t), y2001(t + ∆), . . . , y2001(t + (m− 1)∆)),

Y2008(t) = (y2008(t), y2008(t + ∆), . . . , y2008(t + (m− 1)∆)).

The value ∆ = 40′ has been chosen, as it is the one reducing the ∆-delayed self-mutual
information of the y(t) to less than 0.4 bit; see Figure 3. The proper embedding procedure is
performed as described in Section 2. As a guess, dimV is chosen, the correlation dimension
D2 of the evolution is calculated for the resulting trajectory in the phase space V: the larger
the “tentative” dimV is, the larger the dimension D2 turns out to be. The right m = dimV

https://arplsrv.ictp.it/
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is the smallest one, for which D2 reaches its constant saturation value. For both the time
series y2001(t) and y2008(t), the embedding dimension found is:

m = 3. (12)

Hence, the two quantities of interest in (9) and (10) read, respectively, as:

D2 = lim
r→0

log C3[Y , r)
log r

, K2 = lim
r→0

1
τs

log
(

C2[Y , r)
C3[Y , r)

)
. (13)

Figure 3. The mutual information (MI) between T(ϕ0,λ0)
vert (t) and T(ϕ0,λ0)

vert (t± ∆) as a function of ∆.
The arrow highlights the ∆ ' 40′ in the correspondence of MI ' 0.4 bit: this value is strictly correct
for the vTEC of year 2008, while it would be too short for that of the year 2001.

The fact that (12) holds both for the Solar Maximum time series y2001(t) and the
Solar Minimum y2008(t) is already an interesting piece of information: it suggests that in
the mid-latitude, the higher variability of the ionosphere during a Solar Maximum year is
not big enough to render it necessarily a phase space V larger than in the Solar Minimum
year, because no more degrees of freedom enter the play of dynamics, at least on average
over a time of one year. The dynamical similarity between y2001(t) and y2008(t) may also
be inspected by looking at a two-dimensional projection of the trajectories Y2001(t) and
Y2008(t): this may be qualitatively understood by plotting y(t + ∆) against y(t) for the
two time series, obtaining the plots of Figure 4. Such plots should be the “shadow”,
along one of the three possible coordinate planes in the phase space V3 of the attractor A
described by Y(t). By a loose inspection of plots in Figure 4, one may see that, even if the
range of the vTEC in the two cases is different, the “shape” of the attractor does not look
very different for y2001(t) and y2008(t), essentially suggesting similar vTEC dynamics for
the two years.
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Figure 4. The plots of y(t + ∆) against y(t) for the two years of 2001 (on the left hand side) and 2008
(on the right hand side); see the text for details. Note that the scales of the axis are not the same for
the two plots.

This similarity is confirmed in numbers when the D2 is calculated for the two time series.
Indeed, one obtains the values:

D2(2001) ' 2.78, D2(2008) ' 2.78, (14)

i.e., the same number for the two time series y2001(t) and y2008(t). In Figure 5, log C3[Y , r)
is plotted against log r for the two years of vTEC: the two curves are well approximated
by straight lines for r → 0, the angular coefficient of which gives D2 (please note that,
for simplicity, only the dependence on r is highlighted in the symbol C3(r) in the plot); the
two lines are parallel, i.e., they have the same slope, and hence D2(2001) = D2(2008).
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)

 2.78

 2.78

Figure 5. The correlation integral, calculated according to the Grassberger-Procaccia method, for the
two time series y2001(t) in blue and y2008(t) in green, and plotted against r in log-log scale; see the
text for details. This determines the value of D2 for the two embedded evolutions.

The result of D2(2001) and D2(2008) states a first assessment and raises a question
about the vTEC dynamics. First of all, the dimA diagnosed by the results (14) is very
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high, considering dimV = 3: this means that the y2001(t) and y2008(t) evolutions come
from highly chaotic dynamics, which are almost phase-space-filling, i.e., almost probabilistic. This
cannot directly mean that the ionospheric deterministic modelization is hopeless, but rather
that one must do some work to disentangle the regular part of the vTEC evolution out
of the whole signal, restricting the realm of “noisy dynamics”. Theoretically speaking,
this will correspond to disentanglement in the ionspheric proxy T(ϕ,λ)

vert (t), the effect of the
regular component N0 from that of fluctuations δN in a decomposition Ne = N0 + δN of
the free electron number density (this subdivision is richly explained in Refs. [3,12] and
references therein).

The question raised by the presented result (14) is that these two correlation dimensions
have surprisingly equal values for the two years of Solar Maximum and Solar Minimum, and
this may look like an apparent contradiction with the fact that the helio-geophysical conditions
of a year of Solar Maximum are different from those of Solar Minimum: in the Solar Maximum
period, the geomagnetic storms are more frequent, and hence more irregularity is expected
in the series y2001(t). We will thoroughly comment on this question in Section 4 below,
even though we have already underlined how the analysis covers the 1 year long series,
and gives the necessary yearly average results.

3.2. The Komogorov Entropy K2 for vTEC

Let us now present the findings for what K2 is concerned. The Grassberger and
Procaccia formulation, which leads to the recipe (10), is applied as in the K2 expression in

(13) to the time series data. In particular, considering the correct value of m def
= dimV to

be the one after which the dynamical properties of the reconstructed evolution Y(t) out
of y(t) become stable, it is believed to be safer to use the ratio Cm(r)

Cm+1(r)
instead of Cm−1(r)

Cm(r) in

(10): so, we have used C3(r)
C4(r)

instead of the C2(r)
C3(r)

in (13). Considering the dependence of this
C3(r)
C4(r)

on r for the two time series, it is possible to evaluate the value of K2 as the logarithm

of the intercept limr→0
C3(r)
C4(r)

of the plot with the vertical axis, divided by τs; these plots

are reported in Figure 6. The inverse K−1
2 of the Kolmogorov entropy rate has been stated

to represent the time after which the uncertainty on the trajectory location Y(t) ∈ V has
grown at least 1 bit, i.e., the predictability horizon. The values calculated for the vTEC time
series y2001(t) and y2008(t) read:

K−1
2 (2001) · bit ' 5.32′, K−1

2 (2008) · bit ' 8.49′. (15)

Regarding the results (15), one may comment that the trajectory location ignorance growth
appears to be slower in the year of Solar Minimum, i.e., the variability of the vTEC seems
to be more predictable in 2008, as its predictability time horizon K−1

2 is longer. All in all,
apparently, the stronger influence of Solar Wind sudden impacts at Solar Maximum renders
the local ionospheric evolution less predictable, again on a yearly average basis.

The values in (15) appear to suggest that the vTEC is predictable within a time of some
minutes, slightly shorter in the year of Solar Maximum, but of the same order of magnitude.
Despite this, one has in mind that the local vTEC evolution does have quasi-periodic
patterns determined by the main source of ionization, i.e., insolation [10]: from day to day,
one can still be sure of the local time interval during which the vTEC shows a minimum
and a maximum, a growth and a decrease. Moreover, the gross behaviour of the vTEC
with seasons is also rather well known. The daily “recurrence” of the vTEC behaviour
with local time is clearly shown when the plot of y(t) is zoomed in, for instance as done in
Figure 7. In that figure, six days of vTEC of the year 2001 are shown, with a time resolution
of 1 h for legibility: the periodic pattern due to the sunlight drive is clearly evident. Such a
quasi-periodicity appears to invoke a predictability of 1 day, at least in the shape of the regular
part of the T(ϕ0,λ0)

vert (t). This apparent contradiction between the short values of K−1
2 in (15)

and the 24 h-quasi-periodicity of the vTEC will be discussed in Section 4.
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Figure 6. The ratio C3(r)
C4(r)

Grassberger–Procaccia calculated for the two time series y2001(t) in blue and
y2008(t), in green and plotted against r in log-log scale; see the text for details. This determines the

value of K−1
2 for the two embedded evolutions, considering that C(2001)

3 (0)
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Figure 7. A low resolution version of six days of the time series y2001(t), in which the quasi-periodicity
of the vTEC evolution , due to the sunlight driver, may be appreciated. See the text for details.
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4. Conclusions, Issues, and Future Research

The ionospheric medium undergoes different mathematical representations as a dy-
namical system, ranging from the fluid mechanical FRIM to kinetic theories. In this paper,
a data-driven approach is used to sketch a geometrical representation of the local iono-
spheric evolution as a finite dimensional dynamical system. In particular, we have constructed
a finite dimensional phase space V through which the state of the local ionosphere X moves:
this was done by reconstructing an equivalent state evolution Y(t) via the embedding proce-
dure, starting from a 1 year long vTEC time series y(t), with 30 s resolution. To give some
more physical taste to this construction, and to confront it against what we expect from a
gross knowledge of the geospace physics, two years of vTEC data were analysed, on the top
of the same mid-latitude GNSS station Matera: the Solar Maximum year 2001 and the Solar
Minimum year 2008, working on the series y2001(t) 7→ Y2001(t) and y2008(t) 7→ Y2008(t).

The embedding dimensions of the two phase spaces V2001 and V2008 are rather small,
and equal: dimV2001 = dimV2008 = 3, yet enough to host “chaotic” trajectories. As com-
mented before, it is already significant that the local ionospheric medium shows the same
dimension, for its phase space, in the Solar Maximum and Minimum year: in principle, this
suggests that the vTEC dynamics are produced by a physical autonomous system (2) of three
dynamical variables. Of course, the practical construction of those three quantities X1, X2,
and X3, e.g., as functions of the quantities describing the FRIM or kinetic theories, is all a
different problem, and is definitely not dealt with here. Yet, our analysis ensures that the
helio-geophysical conditions of the years 2001 and 2008 reduce the infinite-dimensional
functional spaces of the FRIM, or of the kinetic theories, to some effective V de facto similar
to R3.

In order to measure how chaotic and how predictable the two evolutions Y2001(t) and
Y2008(t) are, their correlation dimension D2 and the Kolmogorov entropy rate K2 have been
computed: D2 is a measure of the Hausdorff dimension of the attractorA ⊂ V containing
the trajectory Y(t) (treated as a probabilistic evolution with ergodic motion within A);
K−1

2 is the time after which the uncertainty on Y(t) grows at least 1 bit, becoming strictly
unpredictable.

The remarkable result is that there are no sensible differences between the Solar
Minimum and Solar Maximum yearly vTEC evolutions, either in the m = dimV or in
the Hausdorff dimension of the attractor D2 = dimA. As announced in Section 3, this is
a little bit surprising, more for dimA than for dimV. During a year of Solar Maximum,
many more magnetic storms take place, and we expect that the three variables X describe
topologically different trajectories in their V during geomagnetically quiet or disturbed periods.
This latter fact must be true, as we see that the degree of turbulence and irregularity in the
ionospheric medium is different in a quiet period or during a storm.

The question is: why is the variability of dimA with geomagnetic activity not evident in
our results?

The fact is that both in the Solar Maximum year 2001 and Solar Minimum year 2008,
geomagnetic storms took place, even though in a different number, but here the time
series y2001(t) and y2008(t) are simply one-year long time series, adding together the quiet
and stormy periods. We should then intend D2 = 〈dimA〉, i.e., a one-year average of the
time-local dimension of A, and most likely the total amount of stormy time in 2001 to be
negligible, to this extent, almost the same as the amount in 2008. To check whether and
how much the attractor characteristic dimA changes from the geomagnetically stormy to
the quiet dynamics, one should make an analysis separately for stormy and for quiet times,
including shorter time series that contain severe geomagnetic activity periods. More time-
local analyses will be performed in our future work, focusing on the possible differences
due to day-time and night-time conditions.
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The calculation of K2, with its inverse values (15), points towards a slightly better
predictability of vTEC during the Solar Minimum than during the Solar Maximum (the
predictability time horizon is 1 min longer, namely 8.49′ versus 5.32′): this indicates that
the Solar Wind impacts on the geospace are able, during the Solar Maximum, to render a
more irregular, and hence slightly less predictable, local ionospheric medium.

For the forecast time horizons (15) applied to the vTEC evolution, an observation has
arisen at the end of Section 3, i.e., regarding the interplay between the forecast horizon of
a few minutes and the apparent presence, in the vTEC time series, of a quasi-periodicity
of about 24 h (not to mention the seasonal quasi-periodicities). Looking at the vTEC
dependence on local time, as shown in Figure 7 in some detail, clear 24 h recursive
patterns show up. Recursivity (quasi-periodicity) introduces some predictability: one
can expect the vTEC to be growing the next morning until the local noon, while in the
local afternoon an approximate decrease will take place, and this may be stated with
great confidence. Yet, the results (15) state that, analysing what is precisely the behaviour
of y around a certain time t, the dynamics allows one to infer what y(t + δ) will be at most
for δ ≤ 8.49′ for the year of Solar Minimum, and δ ≤ 5.32′ for the year of Solar Maximum,
which is much less than the 24 h period of the repetitive patterns. The questions are,
then, why does this kind of recursive pattern not appear in our calculated K−1

2 , and how
can one recognize the amount of predictability that the recursive patterns introduce, if
any. The point is that the whole construction of D2 and K2 includes the full time series,
with all its time-local different conditions, and one uses these data to give some very
local information in V, as the Hausdorff dimension dimA. The predictability horizon
is calculated in the same way, i.e., by making all the values {y(t)} participate in the
calculation of a K2 value that will take into account all the history of the vTEC analysed.
The inputs of such an analysis are all the values of y at every t along the year at hand,
and all the possible single time-scale components composing the vTEC variability (as a
practical example of vTEC scale decomposition, see the empirical orthogonal functions
used in Ref. [24]): looking at the plot in Figure 7, one may indeed distinguish that the local
time dependence of the vTEC shows a rather smooth “background” 24 h quasi-periodic
behaviour, on which smaller amplitude fluctuations, taking place on shorter timescales,
are superimposed (these fluctuations are not shown in Figure 7, in which only the
24 h-quasi-periodic “trend” is reported). The quasi-periodicity, induced by the insolation
driver, is clearly influencing the daily scale component of y(t). Let us call it y(24 h)(t):
one could guess that this y(24 h)(t) is a much more predictable evolution than the whole
y(t), with some much smaller K(24 h)

2 , and longer forecast time horizon. The guess at this
point is that indeed the predictability due to the quasi-periodic patterns in y(t) appears
only when one analyses the components y(`)(t) relative to the time scale `, comparable with
the period of those patterns. This guess makes the authors plan to repeat the analysis,
performing some time-scale analysis (e.g., via an empirical mode decomposition) of the
vTEC y(t) = ∑` y(`)(t), to see how the single component K(`)

2 , and D(`)
2 as well, varies

with the scale `. Such an analysis will be performed in future works.
As a final point, we want to stress that all the work in this paper pertains to the

mid-latitude location of Matera, during one year of Solar Maximum and one of Solar
Minimum. In order to understand which physical agents determine the complexity and
(un)predictability of the local ionosphere, it will be necessary to extend this investigation
to different locations (different magnetic latitudes and longitudes) and different magnetic
activity periods, always taking care to distinguish the different time scales. Such future
studies would be worth comparing with the results obtained for example by Ref. [8] and
Ref. [9], who investigated at middle and low latitudes, respectively, the deterministic
chaos present in shorter periods of TEC using Lyapunov exponents and surrogate tests,
finding higher values for periods of geomagnetically disturbed conditions than for the
quiet ones.
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Finally, a very ambitious theoretical issue is to explicitly write the m-dimensional
system (2) for the local ionosphere: a much more physical and mathematical effort, and a
detailed study of the very large series of data available, will be necessary for this purpose.
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