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A B S T R A C T   

In this work, we exploited the ubiquitous seismic noise generated by energy transfer from the sea to the solid 
Earth (called microseism) to infer the significant wave height data, with the aim of developing a microseism- 
based monitoring system of the Sicily Channel. We used a combined approach based on statistical analysis 
and machine learning by using seismic and sea state data (provided by the hindcast maps), recorded between 
2018 and 2021.Through spectral and amplitude analysis, we observed that microseism was influenced by the 
conditions of the seas surrounding Sicily. Correlation analysis demonstrates that microseism mostly originates 
from sources located up to 400 km from the coastlines. Moreover, employing machine learning algorithms, we 
successfully reconstruct spatial and temporal sea wave distributions using microseism data. Among the tested 
methods, the Random Forest algorithm yields the best results, with an R2 value of 0.89 and a mean prediction 
error of about 0.21 m.   

Software and data availability 

The codes that were used for the analysis of the seismic and sea state 
data using python language (version 3.10) based on ObsPy and scikit- 
learn libraries can be found in Github: https://github.com/VittorioMi 
nio93/shwpredict. This repository was created by Vittorio Minio 
(Email: vittorio.minio@phd.unict.it) in 2023 and contains program 
codes (40 KB). Development environment and code testing were as 
follows:  

● OS: Windows 11 Pro 64-bit  
● CPU: 2 CPU AMD EPYC 7713 64core 225 W 2.0 GHz 
● RAM: 640 GB RAM TrueDDR4 3200MHz (optional memory expan

sion of up to 8 TB)  
● GPU: 2 x GPU A100 40 GB PCIe Gen 40 

The seismic data can be downloaded free of charge from European 

Integrated Data Archive (EIDA; http://www.orfeus-eu.org/data/eida/, 
last access May 2023). Sea state data can be downloaded by using E.U. 
Copernicus Marine Service Information (https://doi.org/10.25423/c 
mcc/medsea_multiyear_wav_006_012, last access May 2023). The 
earthquake catalogue that was used for the analysis can be downloaded 
from the United States Geological Survey (USGS; https://earthquake.us 
gs.gov/fdsnws/event, last access May 2023). 

1. Introduction 

Microseism is the continuous and omnipresent seismic signal on 
Earth, and it is generated by the ocean-solid earth interaction (Tanimoto 
et al., 2015). Considering its spectral content and source mechanism 
(Haubrich and McCamy, 1969), it can be classified as (i) primary 
microseism (PM), (ii) secondary microseism (SM), and (iii) short-period 
secondary microseism (SPSM). 

The PM (period 13–20 s) is generated when ocean gravity waves 
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reach shallow water in coastal regions and interact with the sloping 
seafloor (Hasselmann, 1963). In this case, the wave energy can be 
converted into seismic energy through vertical pressure variations, 
which have periods similar to the incident ocean gravity waves. The SM 
(period 5–10 s) could be explained by the superposition of ocean waves 
of equal periods travelling in opposite directions, generating standing 
gravity waves of half the period (Longuet-Higgins, 1950). These stand
ing waves cause non-linear perturbations that propagate without 
attenuation to the ocean bottom where they are converted to seismic 
energy (Hasselmann, 1963). The SPSM (period 2–5 s) is characterized by 
sources generally linked to local sea state and wave activity (Bromirski 
et al., 2005). 

At temperate latitudes, microseism amplitudes are characterized by 
significant annual periodicity with maxima during the autumn-winter 
seasons and minima spring-summers (Aster et al., 2008). This pattern 
is different in the Glacial Arctic Sea and the Southern Ocean where, 
during the winters because of the sea ice, the oceanic waves cannot 
efficiently excite seismic energy (Aster et al., 2008; Cannata et al., 
2019). 

Several authors have investigated the empirical relationship between 
microseism amplitudes and ocean wave height (e.g., Ardhuin et al., 
2012) to predict the significant wave height along the coastline. Other 
authors have developed physical models of the generation of the 
different types of microseism from the sea state (e.g., Ardhuin et al., 
2015). 

Considering the availability of seismic and sea wave data in the 
Sicilian areas and seas, the relationship between microseism and sea 
waves has been investigated in such areas by some authors. For instance, 
De Caro et al. (2014) studied the spectral content of microseism recor
ded in the Ionian and Tyrrhenian Seas. Cannata et al. (2020) and 
Moschella et al. (2020) explored the microseism recorded along the 
coastline of Eastern Sicily in terms of spectral features, amplitude sea
sonal pattern, source location, and relationship with the sea wave ac
tivity by machine learning-based algorithms able to provide significant 
wave height information from microseism recordings. 

The monitoring of the sea state is a fundamental task for economic 
activities in coastal areas, such as transportation, tourism, and the 
design of infrastructures (e.g., Von Storch et al., 2015; Ferretti et al., 
2018). In recent years, the routine monitoring of wave height for marine 
risk assessment and mitigation has become compelling due to global 
warming that is making sea waves stronger and, hence, the extreme 
wave events more intense and frequent (Reguero et al., 2019). In 
particular, the Mediterranean Sea has been considered one of the most 
responsive regions to global warming, which could favor the intensifi
cation of the Mediterranean Tropical-Like Cyclones, also called Medi
canes, characterized by intense winds, heavy precipitation, and high sea 
waves (e.g., Ivan et al., 2018; Portmann et al., 2020; Lagouvardos et al., 
2022). The last feature, combined with the fact that Medicanes occur in 
a closed basin with a high-density population along the coastlines, can 
potentially lead to severe socio-economic consequences. To reduce the 
impacts of these events, the development of more advanced monitoring 
systems of the sea state becomes necessary. For the first time, the rela
tionship between microseism and Medicanes was taken into account by 
Borzì et al. (2022) who investigated the relationship between SM and 
SPSM and the Medicane Apollo, that occurred in the late-October 2021 
in the Ionian Sea, in a way to locate the microseism source, by using 
array techniques and a grid search method based on the seismic 
amplitude decay. In this context, machine learning (ML) techniques can 
play an important role in improving the existing monitoring systems. 
Indeed, ML techniques are designed to extract information directly from 
data using well defined optimization rules and help unravel hidden re
lationships between distinct parameters, as well as to build predictive 
models (e.g., Kuhn and Johnson, 2013; Kong et al., 2018; Mayfield et al., 
2020; Chen et al., 2021). 

In this work, we will show the results of analyses performed to ac
quire information necessary to develop a monitoring system of the sea 

state, in terms of significant wave height, in the Sicily Channel based on 
microseism. In particular, we will present a comprehensive analysis of 
this seismic signal, including spectral, amplitude, correlation with sig
nificant wave height, and array analysis, aimed to unravel the unique 
features of the microseism and explore its relationship with the state of 
the surrounding seas. By establishing a solid understanding of these 
fundamental aspects, we lay the groundwork for developing a robust 
microseism-based predictive model of the sea state by using ML tech
niques and interpreting the final results. 

2. Data and methods 

2.1. Seismic data 

To study microseism, we utilized seismic signals recorded during 
2018–2021 by the three components of 14 stations belonging to per
manent seismic networks managed by the Istituto Nazionale di Geofisica 
e Vulcanologia, Osservatorio Etneo (INGV-OE) and the Department of 
Geosciences at the University of Malta (see Fig. 1a and b). These stations 
are equipped with broadband three-component seismometers that re
cord at a sampling rate of 100 Hz (refer to Table A1). The stations were 
selected based on three criteria: (i) short distance from the coastlines of 
the Tyrrhenian Sea, Ionian Sea, and Sicilian Channel Sea; (ii) availability 
of continuous recordings during the 2018–2021 period with minimal 
data gaps; (iii) broadband sensors capable of recording the entire 
microseism band. 

Furthermore, for microseism array analysis, we used seismic signals 
recorded by the Mt. Etna monitoring permanent network run by INGV- 
OE, specifically those recorded by 15 stations equipped with broadband 
three-component Trillium 40-s seismometers (Nanometrics™), which 
record at a sampling rate of 100 Hz (see Fig. 1a,c and Table A2). 

2.2. Sea state data 

To quantify the relationship between microseisms and wave height 
time series in the Sicilian Seas, we obtained sea wave data from the 
Copernicus Marine Environment Monitoring Service (CMEMS) for the 
period spanning 2018–2021. Specifically, we used the "MEDSEA_
HINDCAST_WAV_006_012" product, which is the hindcast output of the 
Mediterranean Sea Waves forecasting system. This product has an 
hourly temporal resolution and a spatial resolution of 1/24◦. We focused 
on the significant wave height data, which roughly corresponds to the 
average of the highest one-third of the waves (Steele and Mettlach, 
1993). 

2.3. Spectral and amplitude analysis 

To characterize the spectral features of seismic signals recorded by 
the three-component of 14 selected stations, the short-time Fourier 
transform was performed. This involved moving an 81.92-s-long time 
window along the entire length of the traces and calculating a spectrum 
for each non-overlapping position of the window. To obtain daily 
spectra, all spectra from the same day were averaged using Bartlett’s 
method (Bartlett, 1948). The daily spectra were then collected and 
displayed as spectrograms, which are 3D plots with time on the x-axis, 
frequency or period on the y-axis, and power spectral density (PSD) 
indicated by a color scale. Single spectra were also computed for each 
three-component station as the median of all daily spectra, to obtain 
information on the spectral content of the seismic signals recorded by 
different stations throughout the period of interest. 

Temporal variability of the seismic data was investigated by calcu
lating the daily root-mean-square (RMS; Kenney and Keeping, 1962) 
amplitude of the seismic signal band-pass filtered in 14 different fre
quency ranges: (i) 0.05–0.1 Hz; (ii) 0.1–0.2 Hz; (iii) 0.2–0.35 Hz; (iv) 
0.35–0.5 Hz, (v) 0.5–0.65 Hz; (vi) 0.65–0.8 Hz; (vii) 0.8–0.95 Hz; (viii) 
0.95–1.10 Hz; (ix) 1.10–1.25 Hz; (x) 1.25–1.40 Hz; (xi) 1.40–1.55 Hz; 
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(xii) 1.55–1.70 Hz; (xiii) 1.70–1.85 Hz; (xiv) 1.85–2.00 Hz. In particular, 
the first four frequency bands cover the typical band of microseism. The 
daily sampling of the RMS amplitude time series was chosen to inves
tigate amplitude variations of microseism in the long term. 

2.4. Correlation analysis between microseism amplitude and significant 
wave height 

Following previous studies (e.g., Bromirski, 2001), the correlation 
coefficients between the time series of seismic RMS amplitudes and 
those of the significant wave height were calculated. These coefficients 
were computed for each grid cell of the hindcast maps for the 
2018–2021 period to obtain information about their spatial variability. 
This kind of analysis provides some information about the location of the 
main sources of the microseism recorded by the selected stations. 
Following the idea of Craig et al. (2016), we used the Spearman corre
lation coefficient to explore the non-linear dependence between seismic 
RMS amplitudes and significant wave heights. The Spearman correlation 
coefficient is defined as a nonparametric measure of rank correlation 
(Craig et al., 2016). 

2.5. Analysis of spatial distribution of microseism amplitude 

As one of the major issues in the development of the microseism- 
based monitoring system of the sea state in the Sicily Channel is the 
“noise” generated by sea wave activity in the Ionian and Tyrrhenian 
Seas, we calculated the spatial distribution of the microseism amplitude 
during the time intervals characterized by different sea wave features. 
These time intervals were selected based on one of the following con
ditions: (i) intense sea wave activity in the Sicily Channel but not in the 
Ionian and Tyrrhenian Seas; (ii) intense sea wave activity in the Tyr
rhenian Sea but not in the Sicily Channel and Ionian Sea; (iii) intense sea 
wave activity in the Ionian Sea but not in the Sicily Channel and Tyr
rhenian Sea. To do that, we made use of the significant wave height 
information for the Mediterranean Sea and the 2018–2021 period. In 
this case, we specifically selected days characterized by mean height in 
the first area higher than 90th percentile (2.1 m), and mean height in the 
other two areas lower than 76th percentile (1.4 m). Overall, three days 
turned out to be clearly characterized by these peculiar features: 15 June 

2018, 29 January 2020, and 30 October 2021. 

2.6. Array analysis 

To locate the source of the microseisms in the Mediterranean Sea, we 
utilized fifteen stations from the Mt. Etna seismic permanent network to 
define a roughly circular array (see Fig. 1a,c). We performed array 
analysis (e.g., Rost and Thomas, 2002) to measure the apparent velocity 
and back azimuth of the arriving wavefront of the microseism signals for 
the PM, SM, and SPSM frequency bands. 

Assuming a planar propagation of the wavefront across the array, the 
resolution of the array analysis depends on the geometry and size of the 
array, as well as the relationship between the sensor-source distances 
and the wavelength of the signal of interest (Havskov and Alguacil, 
2016). To ensure the correct processing of the data, three conditions had 
to be satisfied in the spatial configuration of the array. Firstly, the 
aperture of the array should be greater than a quarter of the signal 
wavelength that we want to analyze (Aster and Scott, 1993). Secondly, 
to avoid spatial aliasing, the wavelength of the signal should be at least 
comparable with the array interspacing (Asten and Henstridge, 1984). 
Lastly, distances between the array receivers and the source of the signal 
must be greater than one wavelength (Havskov and Alguacil, 2016). 

To plan the geometry of the array needed to investigate microseism 
signals, the Array Response Function (ARF) was calculated using the 
Beam Pattern Function (Capon, 1969) for the frequency range of the 
microseisms (Supplementary materials, Figure A1). In the slowness 
domain, ARF describes the resolution and sensitivity of a plane wave 
vertically impinging at the array with a slowness of 0 s/km and with a 
specific frequency/wavelength. ARF depends only on the relative posi
tion of the array elements for a given slowness-frequency (Capon, 1969). 
The position and the height of the peaks provide information about the 
capability of the array to acquire a coherent wavefield for a specific 
frequency range. 

In this study, we used the f-k (frequency-wavenumber) analysis to 
locate the source of microseism signals (e.g., Borzì et al., 2022). Array 
analysis on microseism was performed during the time intervals char
acterized by different sea wave features, as shown in Section 2.5. 
Overall, we followed a series of processing steps on the seismic signals. 
First, we applied demeaning and detrending. Then, we filtered the 

Fig. 1. Location of the seismic station used in this 
work. a) Map of part of the Mediterranean sea 
showing the location of seismic stations used for the 
analysis. b) Map of the Sicilian area with a selection 
of the broadband seismic stations available in the 
INGV-OE and University of Malta databases and used 
in the spectral, amplitude, correlation and machine 
learning analysis. c) Map of the summit area of Mt. 
Etna with a selection of the broadband seismic sta
tions managed by INGV-OE and used in the array 
analysis. In (a), (b) and (c), the base maps were 
retrieved from Earthstar Geographics®. In (a), (b), 
and (c), the yellow star represents the roughly posi
tion of the summit area of the Mt. Etna.   
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signals to isolate the frequency band of interest for microseisms. We 
subdivided the data into 120-s tapered windows, and excluded windows 
with amplitude transients, such as volcano-tectonic earthquakes, 
long-period events, very long-period events, and regional earthquakes, 
which were detected using the STA/LTA technique (Trnkoczy, 2012). 
Finally, we applied the f-k analysis to each window using a slowness grid 
search, ranging from − 1 to 1 s/km in the east and north components of 
the slowness vector, with a spacing of 0.05 s/km. 

2.7. Regression analysis by machine learning 

To build models able to predict the sea state using microseism, we 
performed a regression analysis that in the Machine Learning (ML) field 
falls under the so-called supervised learning wherein the algorithm is 
trained with both input features (seismic RMS amplitudes) and output/ 
target values (significant wave height data). It aims to establish a rela
tionship among variables by estimating how input variables affect the 
others in output. 

To provide reliable predictive models, the method we applied is 
composed of three macro-steps (Fig. 2): (i) pre-processing, (ii) training 
and cross-validation, and (iii) testing and evaluation. 

Phase (i) is crucial for optimizing the performance of any ML process 
(Kuhn and Johnson, 2013). This step may involve several actions, 
depending on the type of dataset being used. As input features we 
considered the hourly RMS of the seismic signals filtered in the 
above-mentioned frequency bands for each station and component, thus 
in total 588 features (14 bands for 14 stations). 

First, the input features affected by a great amount of data gaps 
(greater than 14%) were deleted from the dataset. On the contrary, 
when the number of missing data is low, a linear interpolation (e.g., 
McKinney, 2010) was applied for data imputation. Concurrently, an 
earthquake catalogue from the United States Geological Survey (USGS; 
https://earthquake.usgs.gov/fdsnws/event, last access May 2023) data 
archive is used to delete data including teleseisms (with a magnitude 
greater than 7.0) and regional earthquakes (with a magnitude greater 
than 5.5). Indeed, such earthquakes produce strong seismic signals with 
a broad frequency range which include some frequencies similar to those 
of the microseism signals (e.g., Tanimoto et al., 2015; Anthony et al., 
2020). In this way, models can be built without introducing ineffective 
artifacts or reducing the statistical power of the analysis (e.g., Ferretti 
et al., 2018). Then, Box-Cox power transformation (Box and Cox, 1964) 
is applied to features showing high values of skewness. This method can 
optimize the data’s resemblance to a normal distribution, improving the 
accuracy of predictions made using linear regression and facilitating the 
training of ML nonparametric models. Successively, features and target 
data were normalized to avoid different orders of magnitude having an 
impact on the model. In this case, the minimum and maximum values of 
the un-normalized data are used for rescaling (Han et al., 2022). Finally, 
seismic (features) and sea wave state (target) data were randomly and 
temporally subdivided into N non-consecutive chunks composing 
training and testing sets. Indeed, another problem concerns the correct 
sampling of the datasets, especially during the splitting into training and 
testing ones. Considering the input features and targets are time series 
with low autocorrelation function decay, training data sufficiently close 
in time to testing one could affect the model’s capability to generalize to 
an independent/unseen dataset, leading to the development of over
fitting phenomena (e.g., Cook and Ranstam, 2016). To avoid this 
problem, we split the 4 years of data into 40 segments/chunks that were 
combined to form the training (70%) and testing (30%) sets. In addition, 
we prepared the validation set by using about 10% of the available test. 

Concerning step (ii), we used the following three ML techniques to 
build predictive models: random forest (RF) regression, Light Gradient 
Boosting (LGB), and K-nearest neighbors (KNN) regression. 

RF is based on decision trees often used for classification and 
regression (Ho, 1995). It operates by using a bagging method (Breiman, 
1996, 2001) for the aggregation of the results. Indeed, it builds in 

parallel decision trees during the training. To build each decision tree, it 
randomly selects j data points from the training set. The prediction for a 
new data point, in the case of regression, will be the average of the N 
trees predictions for that point. 

LGB is very similar to RF except for the method used to aggregate the 
data, i.e. the boosting (Bauer and Kohavi, 1999; Natekin and Knoll, 
2013). When LGB builds each sequence tree, it uses the histogram-based 
algorithm to create the optimal split point. To reduce the complexity of 
this method, it downsamples the data and features using Gradient-based 
One Side Sampling (GOSS; Ke et al., 2017) and Exclusive Feature 
Bundling (EFB; Ke et al., 2017). GOSS is a novel sampling method that 
downsamples the instances on the basis of gradients. It retains instances 

Fig. 2. Process workflow of the ML analysis. The process is described from 
data collection to the evaluation of the predictive model. 
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with large gradients while performing random sampling on instances 
with small gradients. The EFB serves to speed up tree learning. LGB 
achieves this goal by identifying in the data the features that are 
mutually exclusive, that is, that never take zero values simultaneously, 
and bundling them into a single feature. 

K-nearest neighbors (KNN) is a non-parametric method that can be 
used for both classification and regression tasks (Altman, 1992). In KNN 
regression, the prediction of a new sample is made by considering the 
K-closest samples in the training set (Altman, 1992; Kuhn and Johnson, 
2013). Essentially, the output of a new input is determined by taking the 
average of the values of its K-nearest neighbors in the feature space of 
the training set. 

Before training the model, we performed a grid search to identify the 
optimal hyperparameters for our data (e.g., Larochelle et al., 2007; 
Hinton, 2012). For a specific model, we calculated the best combination 
of all hyperparameters by defining a grid with the values to be tested and 
evaluating the model performance in terms of mean absolute error 
(MAE, Willmott and Matsuura, 2005) on the test sets. To avoid over
fitting, we applied cross-validation (Kuhn and Johnson, 2013), which 
we will discuss later. A resume of the best hyperparameters resulting 
from the application of this technique is reported in the Supplementary 
Materials (Tables A3). 

Step (ii) included also the evaluation of the best ML model by per
forming the k-fold cross-validation (Kuhn and Johnson, 2013, García 
et al., 2019). It implies partitioning the original input and output 
datasets into k subsets and constraining a model for each partition. 
Indeed, the hold-out method (i.e. splitting of the dataset into training 
and testing set) is repeated k times by using a part of the data for training 
the model and a part for testing it. For each time, one of the k subsets is 
used as the testing set and the other k-1 subsets are put together to form 
a training set. The error estimation, which in our case will be given by 
the absolute difference between the predicted wave height and the 
measured one, is averaged over all k trials to get the total effectiveness of 
our model. Thus, every data point gets to be in a testing set exactly once 
and gets to be in a training set k-1 time. In particular, we used this 
technique both in the hyperparameters searching phase, and in the 
training phase of each model. In both cases, RMS amplitude and sig
nificant height wave time series were partitioned into 3 subsets (k = 3). 

For the phase (iii), each model is tested on the testing dataset, which 
is composed of input data unused in the training process. The difference 
between the true output and that predicted by the models allows the 
evaluation of the quality of this according to different metrics. To 
evaluate the goodness of the trained models we used the three metrics:  

● The 99th percentile of the absolute and relative errors.  
● The coefficient of determination (e.g., Draper and Smith, 1998), 

more commonly R2, which is an index that measures the relationship 
between the variability of the data and the correctness of the model 
used. If the R2 score is close to 1, then the model is able to return a 
reliable prediction.  

● The mean absolute error (MAE, Willmott and Matsuura, 2005), 
which is the average of the absolute values of the individual pre
diction errors across all instances in the test set. Each prediction error 
is the difference between the true value and the predicted value for 
the instance.  

● The mean absolute relative errors (MARE). 

Through the metrics described above, we defined the behavior of the 
model for data recorded during sea normal conditions and extreme 
events (e.g., Miglietta, 2019; Faranda et al., 2022). For this purpose, 
during the evaluation phase, we selected the samples of the target var
iable (significant wave height) lower than their 99th percentile to 
extract significant height values in normal conditions. On the contrary, 
samples of the target variable greater than their 99th percentile are 
selected to define sea conditions that are typical of an extreme event. 

Finally, the final model was trained with the whole dataset from 

January 2018–December 2021, except for September–December 2018. 
Indeed, this period composed the validation set and it was used to verify 
the model’s capabilities to predict new entries. 

3. Results 

The spectral analysis has shown that most of the highest peaks were 
focused below 5 s over the whole period (Fig. 3), although smaller 
spectral peaks were recognized above 10 s during brief time intervals. 
Significant changes of the spectral features ranged between 2 and 10 s, 
with higher amplitudes during the winter periods. Indeed, a seasonal 
modulation was observed on the long term, with maxima during winter 
and minima during summer (Fig. 3). It is worth noting that most seismic 
energy was observed in the SPSM frequency band, while the PM or SM 
exhibited smaller spectral amplitudes (Fig. 4). Averagely, the peaks 
between 2 and 5 s (0.2–0.5 Hz) were the strongest among the typical 
frequency bands of microseism activity, as shown in Fig. 4. Indeed, the 
absolute maximum value was observed around the 2 s, while the spectral 
amplitudes decreased for increasing periods (Fig. 4) up to 10 s. A smaller 
peak was focused between 10 and 20 s (Fig. 3). Most of these observa
tions can be also recognized in Fig. 5, which shows the temporal vari
ability of the seismic amplitude in the typical frequency bands of the 
microseism. In particular, the highest RMS amplitude values were 
observed in the SPSM frequency range (Fig. 5c), for which the seasonal 
modulation was more pronounced than the PM (Fig. 5a) and SM 
(Fig. 5b). Indeed, in the PM frequency range, microseism amplitudes 
reached the smallest values. However, high and sudden variations of 
RMS amplitude values were observed in the PM frequency bands 
(Fig. 5a), as also shown in the spectrograms (Fig. 3). 

Regarding the correlation analysis, maps, gathering together the 
correlation values obtained in the nodes of the whole Mediterranean 
Sea, were obtained for the three components of each station and the 14 
different frequency bands (Fig. 6). In particular, the marks shown in 
Fig. 6 represent the barycentres of the areas with correlation coefficients 
greater than 95th percentile. Furthermore, considering the distance 
from the station recording the microseism to the sea grid cell providing 
the significant wave height data, cross-plots showing the frequency in 
the x-axis, the correlation coefficient in the y-axis, and the distance in 
the color of the marks were obtained (Fig. 7). The highest values of the 
correlation factor were observed between 0.2 and 0.5 Hz that repre
sented the frequency band of SPSM (Fig. 6). The portions of the Medi
terranean Sea, showing the maximum value of correlation, were the 
ones closest to the stations (Fig. 7). In addition, Fig. 7 clearly shows a 
decrease in the correlation values with increasing distance from the 
station recording the microseism to the sea grid cell providing the sig
nificant wave height data and with increasing frequency of analysis used 
for the RMS amplitude calculation. 

Considering the criteria described in Section 2.5, an average value of 
RMS amplitude was obtained per each station in the frequency bands of 
the microseism and in each time interval selected. A map showing the 
spatial distribution of RMS amplitude and average significant wave 
height values for each frequency band and per each time interval is 
shown in Fig. 8. These maps highlighted a good match between the 
spatial distributions of significant wave heights and RMS amplitudes, 
especially in the 0.2–0.5 Hz frequency band (see c,f,i panels). In 
particular, when the Sicily Channel was characterized by higher sea 
waves than the Ionian and Tyrrhenian Seas, maximum RMS amplitudes 
were observed along the Sicily southern coastlines (Fig. 8a,b,c). When 
the highest wave heights were observed in the Tyrrhenian Sea, as ex
pected, the highest seismic amplitudes were mostly recorded along the 
Sicily Northern coastlines (Fig. 8d,e,f). On the other hand, when the 
Ionian Sea recorded the highestwave heights, the distribution of RMS 
amplitudes exhibited fewer clear results because of high amplitudes 
observed also along the southern coastlines (Fig. 8g,h,i). 

Concerning the array analysis, the Mt. Etna seismic permanent 
network turned out to be a reliable array to locate the microseism 
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sources in the SM band (Fig. 9b,e,h). Instead, back azimuth and apparent 
velocity values turned out to be sometimes ambiguous (e.g., Fig. 8c) and 
more scattered (e.g., Fig. 9a,d,g) in the SPSM and PM bands, respec
tively. During stormy days in the Sicily Channel Sea, back azimuth 
values, calculated in the SM band, pointed toward the southern coastline 
(Fig. 9b). Alternatively, when the highest significant wave heights are 
observed in the Tyrrhenian Sea, the back azimuth values rotate pointing 
north-westward (Fig. 9e). In addition, when the Medicane Apollo hit the 
Sicilian Ionian coastlines (Fig. 9h), back azimuth values indicate the 

Catania Gulf, pointing south-eastward. As for the apparent seismic ve
locity values, the histograms in Figure A2 show values of ~1.5–2.0 km/ 
s. 

As for the regression analysis, we found the RF algorithm to be the 
most effective approach for generating reliable predictions of the sea 
state in the Sicily Channel (Fig. 10), especially in terms of R2 and errors 
of analysis (Figs. 11 and 12). Although the model’s performance is still 
not optimal for both normal (in terms of relative error, Fig. 10c) and 
extreme (in terms of absolute error, Fig. 10b’ and 10d′) conditions, the 

Fig. 3. Temporal variability of the spectral features of microseism during 2018–2021 period. Examples of spectrograms of the seismic signal recorded by the 
East (a), Vertical (b) and North (c) components of CAVT station located along the Southern Sicily coastlines. 

Fig. 4. Spectral features of microseism. Examples of daily spectra of the seismic signals recorded by the East (a), Vertical (b) and North (c) components of CAVT 
station (grey lines) during 2018–2021 period. For each diagram, the thick black line represents the median spectrum, while the colored boxes refer to the period band 
for the PM (blue), SM (Green), and SPSM (yellow), based on literature concerning microseism (e.g., Hasselmann, 1963; Bromirski et al., 2005). 
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Fig. 5. Temporal variability of the microseism amplitudes during 2018–2021 period. Examples of RMS amplitude time series of the seismic signal recorded by 
the vertical component of CAVT station for PM (a), SM (b) and SPSM (c) frequency bands, based on literature concerning microseism (e.g., Hasselmann, 1963; 
Bromirski et al., 2005). 

Fig. 6. Correlation between seismic and sea state data. Example of correlation maps obtained for the vertical component of all of the stations for the (a) PM, (b) 
SM and (c) SPSM frequency bands and for 2018–2021 period. In (a), (b) and (c) the colored marks represent the barycentres of the areas with correlation coefficients 
greater than 95th percentile and calculated for each station. The colored surface refers to the average of the correlation maps obtained for each station. The black 
contouring refers to the 99th percentile of the significant wave height in meters for the period 2018–2021. d) Maximum Spearman correlation coefficients computed 
between significant wave height and seismic RMS amplitudes for each station (only vertical component) and frequency band for the period 2018–2021. 
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R2 (Fig. 11) indicated that the model can accurately predict sea state 
under any conditions. In particular, the results in Fig. 10 showed that for 
both normal and extreme sea cases the average absolute relative error 
(Fig. 10e,e’) was distributed almost uniformly below unity indicating a 
good average predictive ability of the model in relation to any sea 
condition. Only the Ionian coast had higher average relative error 
values, and this also reflected a distribution of relative error values that 
extended to larger values in the same area, as shown by the 99th 
percentile relative error map (Fig. 10c,c’). In absolute terms, the mean 
errors in the normal sea state cases were at significantly low values 
(below 1 m, see Fig. 10d) with the distribution of absolute errors 
reaching values just above the meter in the western parts of the Sicilian 
Channel (see Fig. 10b). In cases of extreme seas, the mean absolute error 
was mostly below 2 m in the whole area, but the Ionian coast suffered in 
this case from a distribution of absolute errors that reached at the 99th 
percentile even high values of discrepancy (even on the order of 4–6 m, 
see Fig. 10b’). However, it should be noted that not all the regions of the 
Sicily Channel are predicted with the same level of accuracy. Areas with 
the highest prediction errors or lowest R2 values were generally found in 
regions with poor station azimuthal coverage and at greater distances 
(>200 km) from the seismic stations or the coastlines (Fig. 11 and 
Fig. A4). Finally, in the case of RF algorithm, the comparison between 
the observed and predicted significant wave height data during the 
testing period, September–December 2018 (Fig. 13), showed very 
similar values in terms of spatial distribution (Fig. 13a and b) and time 
series (Fig. 13d). It was also confirmed by the low error values (0.21 ±
0.23 m) (Fig. 13c) and the high values of R2 equal to 0.89 (Fig. 13e). 

4. Discussion 

Spectra of the microseism recorded by stations deployed along the 
Sicilian coastline showed very high amplitudes of the SPSM (Figs. 3 and 
4). Considering seismic stations were very close to the sea coastline, 
SPSM was recorded very well due to the presence of nearby seismic 
sources related to local sea state and wave activity (e.g., Bromirski et al., 
2005; Chen et al., 2011; Moschella et al., 2020; Cannata et al., 2020). 

Results obtained from spectral and amplitude analysis indicate a 
clear relationship between microseism and sea state data. The seasonal 

modulation shown in the spectrograms and RMS amplitude time series 
(Figs. 3 and 5) has been observed at temperate latitudes in all areas 
around the world (e.g., Aster et al., 2008; Stutzmann et al., 2009). As 
expected for the Northern Hemisphere, considering the sea was stormier 
in winter, seismic stations showed a clear contamination by microseism 
due to the more efficient energy transfer from the sea to the solid Earth, 
although some sudden changes of PM (Figs. 3 and 5a) on the short term 
may be related to the occurrence of teleseisms or regional earthquakes 
(e.g., Tanimoto et al., 2015; Anthony et al., 2020). 

From the results obtained by performing correlation analysis (Figs. 6 
and 7), a good match between the spatial distributions of significant 
wave heights and RMS amplitudes was shown. It was possible to infer as 
the seismic sources generating microseism were located close to the 
recording stations (at distances up to 400 km), especially for the SPSM 
band. Indeed, being characterized by higher frequency content, the 
SPSM showed a quick attenuation with distance (e.g., Bromirski et al., 
2005), although distant areas may contribute to its generation (e.g., 
Beucler et al., 2015; Becker et al., 2020). As shown in Fig. 8, microseism 
space distribution amplitude was affected by the conditions of the seas 
surrounding Sicily in terms of significant wave height. 

However, the correlation analysis shows only the dominant source 
areas over the whole analyzed time period (2018–2021), and it may be 
affected by the limited temporal and spatial resolution (Essen et al., 
1999). Despite the low correlation values observed in the SM and PM 
bands, we do not exclude the possibility that part of the recorded 
microseism was generated in open sea or nearby the Mediterranean 
coasts. Indeed, the source of the SM can partially be associated with 
wave–wave interaction mechanisms in the deep ocean (e.g., Cessaro, 
1994; Chevrot et al., 2007); while PM can be also generated by remote 
source regions from the seismic stations. For example, Gualtieri et al. 
(2019) performed a global-scale simulation to understand the location of 
the dominant source areas of the PM. For some stations, they observed 
how most of the PM at low frequency (~0.05 Hz) was generated by 
source area located at coastlines thousands of kilometres away from the 
sensors. In particular, they observed that the slope of the bathymetry in 
shallow water plays a key role in the generation and propagation of PM. 

Based on the ARF, the approximately circular array shows a strong 
response for both the PM (Figure A1a) and SM (Figure A1b) cases. This is 

Fig. 7. Results of the correlation analysis. Cross-plots showing the relationship between Spearman correlation coefficient, computed between significant wave 
height and seismic RMS amplitudes for the East (a), Vertical (b) and North (c) components of CAVT station, the distance between the seismic station and the sea grid 
cell and the frequencies of analysis used for the RMS amplitude calculation. 
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because the wavelengths of PM (~26 km) and SM (~10 km) are com
parable to the aperture of the array (~16 km) and the interspacing be
tween sensors (~6 km), particularly if the velocity of the S-waves (Vs) is 
around 2 km/s in the top few kilometers of the crust of Mount Etna (e.g., 
Patanè et al., 1994). Furthermore, if the microseism sources are located 
at minimum distances of approximately 20 km, 45 km, and 100 km from 
the center of the array (distances from the Ionian Sea, Tyrrhenian Sea, 
and Sicily Channel Sea, respectively), the Etna circular array should be 
capable of locating the microseism sources assuming a planar wavefront. 

The Mt. Etna seismic permanent network turned out to be a reliable 
array to locate the microseism sources in the SM band (Fig. 9). It was 
observed that the SM sources appeared to be located in extended areas in 
the Tyrrhenian, the Ionian and the Sicily Channel Seas. Although some 
results may be considered as ambiguous (e.g., Fig. 9c), we also were able 
to locate microseism sources in the SPSM band, especially in areas 
nearby the northern and eastern coastlines (e.g., Fig. 9f,i). The lack of 
information about the SPSM source in the Sicily Channel (Fig. 9c) may 
depend on the great distance between the southern coastline and the 
centre of the Etnean array (~100 km) or the lower depth of the basin, 
causing energy losses by both scattering and transfer to the solid Earth 

(e.g., Bromirski et al., 2013). These factors may reduce the 
signal-to-noise ratio of the seismic signals recorded by the seismic sta
tions, and the array analysis may give ambiguous back azimuths 
pointing toward other areas. For instance, the array may be more 
influenced by nearby seismic sources located in the Tyrrhenian and 
Ionian Seas. At these shorter distances (~20 and ~45 km from the 
Ionian Sea and Tyrrhenian Sea, respectively), the SPSM wavefield may 
be affected by less distortions and energy losses during the path (e.g., 
Bromirski et al., 2005), favouring the tracking of the seismic sources in 
these areas rather than in the Sicily Channel Sea. Instead, the results 
obtained for the PM band (Fig. 9a,d,g) may be related only to the low 
seismic energy observed in this frequency band (e.g., Gualtieri et al., 
2019; Moschella et al., 2020; Cannata et al., 2020), as also shown in 
Figs. 4 and 5. Indeed, seismic signals impinge at the array with a low 
signal-to-noise ratio, affecting the capability of the array to identify a 
coherent wavefield and return accurate back azimuths (e.g., Rost and 
Thomas, 2002). 

Overall, the results of array analysis agree with some previous 
studies demonstrating that the back azimuth of microseism is well- 
correlated to ocean-wave heights (e.g., Chevrot et al., 2007; Chen 

Fig. 8. Spatial distribution of seismic and sea state data. Maps of the spatial distribution of the daily average significant wave height (SWH) and of the daily 
average RMS amplitude values of the seismic signals (colored dots; only vertical component) recorded during (a, b, c) 15 June 2018 (the Sicily Channel has the higher 
wave height), (d, e, f) 29 January 2020 (the Tyrrhenian Sea has the higher wave height) and (g, h, i) 30 October 2021 (the Ionian Sea has the higher wave height). 
The RMS amplitude values refer to the (a, d, g) PM, (b, e, h) SM and (c, f, i) SPSM frequency bands. 
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et al., 2011). Results obtained in the SM band are compatible with Borzì 
et al. (2022), who investigated the microseism recorded in the eastern 
part of Sicily during the Medicane Apollo (25 October–5 November 
2021). In this case, the authors showed a good match between the po
sitions of the Medicane/minor storms and the seismic source of the 
microseism highlighted by array analysis. Concerning the SPSM band, 
the results are also in agreement with Moschella et al. (2020), who 
explored the microseism acquired along the coastlines of Eastern Sicily. 
In their work, the SPSM sources were located in the shallow waters of 
the Catania Gulf and the Northern Sicily coastlines, especially when the 
highest significant wave heights were observed in the Ionian Sea and the 
Tyrrhenian Sea, respectively. Concerning the seismic apparent velocity 
estimated in the SM and SPSM band (Figure A2), the values of ~ 1.0–3.0 
km/s agree with the surface wave velocity, as retrieved by investigating 

the ambient seismic noise in the coastlines of the Sicily (Moschella et al., 
2020; Borzì et al., 2022), in the northeast of the Netherlands (Kimman 
et al., 2012), in the New Zealand (Brooks et al., 2009) and in the Valley 
of Mexico (Rivet et al., 2015). 

Finally, ML techniques were reliable to reconstruct maps of signifi
cant wave height by using microseism recorded by distinct seismic sta
tions and in different frequency bands. Specifically, such methods 
allowed us to predict the significant wave height in the Sicily Channel 
with fairly low error (Fig. 10) by using microseism recorded at distinct 
seismic stations in different frequency bands. Choosing the most 
appropriate model has played a crucial role in our study. Through the 
use of cross-validation, we were able to identify the model that would 
best generalize to an independent dataset. In particular, the RF algo
rithm represents the ML technique showing the best performance, 

Fig. 9. Results of the array analysis. Average hindcast maps showing the significant wave heights (in m) during the period of the most intense sea wave activity in 
(a, b, c) the Sicily Channel (15 June 2018), (d, e, f) the Tyrrhenian (29 January 2020) and (g, h, i) Ionian Seas (30 October 2021). The rose diagram, located at the 
center of the Etna seismic permanent network (see Fig. 1c), shows the distribution of the back azimuth values computed by f–k analysis for the (a, d, g) PM, (b, e, h) 
SM and (c, f, i) SPSM frequency bands. 
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especially in terms of R2 and relative errors (Figs. 11 and 12). This can be 
related to some factors, such as: (i) RF’s performance is less affected by 
parameter selection (e.g., Li et al., 2011; Kuhn and Johnson, 2013); (ii) 
the RF algorithm is less sensitive to outliers and noise (e.g., Breiman, 
2001); (iii) RF learner is able to deal with input and output data char
acterized by a non-linear relationship, such as in the case of the 
microseism amplitude and the significant wave height (e.g., Essen et al., 
2003; Craig et al., 2016); (iv), RF algorithm uses an ensemble of decision 
trees avoiding as better as possible the overfitting phenomena (e.g., Li 
et al., 2011). 

Not all the regions of the Sicily Channel show the same level of 
prediction accuracy (Fig. 11 and Fig. A4). The results may be affected by 
the different distances between the seismic stations and the points in 
which the significant wave height is measured. Indeed, the ML model 
can provide accurate predictions up to 200 km from the coastlines, as 
shown in Figure A4. As SPSM showed the highest amplitude values 
among the microseism frequency bands (Figs. 3, 4 and 5) and its sources 
are located in the waters nearby the Sicilian coastlines (Figs. 6 and 7), 
microseism mostly contains information for the sea state reconstruction 
about areas located close to the seismic stations,as described in the 
literature concerning SPSM (e.g., Bromirski et al., 2005; Chen et al., 
2011; Gualtieri et al., 2015; Moschella et al., 2020; Cannata et al., 2020). 
However, further regions from coastline may contribute to the predic
tion of sea state, where SPSM may be generated in deeper waters (e.g., 
Beucler et al., 2015; Becker et al., 2020). Results may be affected by the 
spatial distribution of the SWH values especially in areas very close to 

the coastline, such as the Ionian nearshore. Indeed, in this area 
(Fig. 10a), the average value of SWH is about 0.49 m in spite of the 
higher values observed in the same region but at greater distances from 
the coastline (average SWH of about 0.79). This difference, in terms of 
average SWH, may reduce the level of prediction accuracy in the Ionian 
Sea, as shown in the spatial distribution of the relative errors (Fig. 10c,e, 
c’,e’) and R2 (Fig. 11 and Fig. A4). Indeed, considering the minimum 
distance between the coastlines (Figure A4b) or the seismic stations 
(Figure A4c) and the sea grid cell, small values of R2 can be recognized 
up to ~40 km from the Ionian coastline. Coastal areas are often char
acterised by complex wave interactions due to bathymetry, topography, 
and nearshore processes (e.g., Holman, 1995; Heege et al., 2016; 
Davidson-Arnott et al., 2019; Gaeta et al., 2020). Therefore, these dy
namics may introduce challenges in accurately predicting SWH values, 
particularly near the coastline, and may require the use of local mete
orological conditions and measured wave parameters from a local buoy 
to improve the wave prediction (e.g., Callens et al., 2020; Cutroneo 
et al., 2021). 

Considering the comparison between the observed and the predicted 
significant wave height data (Fig. 13), RF algorithm provides reliable 
prediction of the output data for new data entries. Indeed, it may slightly 
overestimate the predicted values under normal conditions of the sea 
state (Fig. 13d,e). However, it may underestimate the predicted values 
for extreme conditions of the sea (Fig. 13d,e), as observed during the 
evaluation phase (Fig. 10). This reduced ability to track extreme wave 
cases well may be due to the imbalanced training data set. Indeed, the 

Fig. 10. Maps of errors for sea normal and extreme conditions. They were obtained through the difference between the observed and the predicted values. In this 
case, the RF algorithm is used to build the final model. a) Space distribution of the 99th percentile of the SWH calculated in the testing period. b) 99th percentile of 
the absolute errors for sea normal condition. c) 99th percentile of the relative errors for sea normal condition. d) MAE for sea normal conditions. e) MARE for sea 
normal conditions. a’) Space distribution of the 99.99th percentile of the SWH calculated in the testing period. b’) 99th percentile of the absolute errors for extreme 
events. c’) 99th percentile of the relative errors for extreme events. d’) MAE for extreme events. e’) MARE for extreme events. 
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extreme cases, as defined here, represent only 1% of the data set (Sup
plementary materials, Figure A3). In addition, the underestimation of 
the predicted values may be related to the lack of meteorological pa
rameters in the predictive model, as shown in Cutroneo et al., (2021). 
Obtaining an accurate prediction of such phenomena represents a big 
challenge and has become an active contemporary topic in applied 
mathematics (e.g., Viotti and Dias, 2014; Zhang et al., 2022) and in deep 
neural networks (e.g., Krawczyk, 2016; Liu et al., 2016; Lagerquist et al., 
2019; Xiao et al., 2019). Therefore, for future developments, we do not 
exclude the use of further machine learning strategies to improve the 
ability to track extreme cases. 

The results obtained through ML techniques may be potential to 
improve existing marine monitoring systems, which employ various 
instruments and technologies to capture and analyze key oceanographic 
parameters. Our proposed ML model based on seismic signals may offer 
several advantages. Indeed, seismic networks provide continuous 
recording of seismic signals, and have a much higher temporal resolu
tion than radar altimeters and synthetic aperture radar (e.g., Moreira 
et al., 2013; Orasi et al., 2018; Quartly et al., 2021). Seismic stations 
have also lower costs of installation and maintenance and a better 
spatial coverage with respect to most of the instruments routinely used 
to monitor the sea waves through situ measurements, such as wave 
buoys (e.g., Fu and Cazenave, 2000; Holthuijsen, 2010). In contrast, the 
development of a reliable ML model based on seismic signals may pre
sent some challenges. As shown in this work, a considerable amount of 

data may be required for training an appropriate ML technique over a 
wide range of sea conditions. 

The integration of seismic data with existing marine monitoring 
systems may present a valuable opportunity to enhance sea state pre
diction and its implications across multiple domains. In particular, the 
incorporation of seismic data can contribute to more accurate wave 
resource assessments (e.g., Hashemi and Neill, 2014) and provide 
valuable insights for coastal zone planning, protection, and manage
ment, including the evaluation of energy resources (Wandres et al., 
2017). Furthermore, it may play a crucial role in ensuring maritime 
safety, especially in areas where the interplay between strong currents 
and wind-generated waves is prominent (e.g., Ardhuin et al., 2017). 
Large-scale oceanic currents have the potential to generate hazardous 
sea states that pose substantial risks to navigation, people, in
frastructures, and buildings (e.g., Diakakis et al., 2023). Therefore, 
future research should focus on refining the model’s accuracy, 
addressing technical integration challenges, and conducting compre
hensive validation studies to establish the reliability and practical utility 
of the microseism in marine monitoring applications. 

5. Conclusions 

The results of analyses described in this work provide information 
necessary to develop a monitoring system of the sea state, in terms of 
significant wave height, based on microseism. We retrieved the spatial 
and temporal features of the microseism recorded along the Sicilian 
coastlines. By using array analysis, it was possible to locate microseism 
sources in the Mediterranean Sea. We demonstrated how it is possible to 
predict sea state data for the Sicily Channel by using ML methods and 
microseism. For these purposes, we used the microseism recorded be
tween 2018 and 2021 by 14 seismic stations, located along the Sicilian 
coastlines, and the sea state data provided by CMEMS. 

These are the main results: (i) by correlation analysis, we showed 
how the SPSM recorded by the considered stations was well correlated 
with the sea state in the Sicilian seas, reaching the highest correlation 
values at frequency 0.2–0.5 Hz; (ii) in the SPSM frequency band, the 
correlation coefficient reached the highest values for distances up to 
400 km, showing how the SPSM was mostly generated by sources 

Fig. 11. Map of the coefficient of determination (R2). It was produced using 
k-fold cross-validation and RF algorithm. a) Overall R2 computed between the 
predicted and the observed data. b) R2 computed for sea normal condition data. 
c) R2 computed for sea extreme condition data. 

Fig. 12. Comparison of the model performances. They were estimated by 
using k-fold cross-validation for sea normal and extreme conditions. a) Average 
coefficient of determination (R2) computed between predicted and observed 
values. b) Average of the 99th percentile of the relative errors. c) 
Average MARE. 
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located close to the stations; (iii) space distribution amplitude and source 
position of microseism were affected by the conditions of the seas sur
rounding Sicily in terms of significant wave height; (iv) Random Forest is 
the best method used to build the predictive model, with a value of R2 

equal to 0.89 and mean prediction error of about 0.21 ± 0.23 m; (v) 
Random Forest is able to provide accurate results for regions located at 
maximum distance of about 200 km from the coastlines and from the 
seismic stations; (vi) ML methods are useful to develop a system 
providing a near real-time prediction of the sea state; (vii) our model 
may have the potential to augment existing marine monitoring systems. 

Author contributions 

V.M., F.C and A.C. designed the research; V.M., S.S. and F.C. per
formed the machine learning analysis; V.M., S.A., A.M.B., A.C., G.D. and 
S.D. performed the seismic analysis; V.M., A.M.B. and S.S. wrote the 
paper; V.M., S.A., G.L. and D.C. dealt with the new seismic installation; 
G.C. lead the main project funding this research and helped to interpret 
the sea data; all the authors discussed the results and edited the paper 
under the supervision of F.C. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data are open-access and available on E.U. Copernicus Marine Ser
vice Information, United States Geological Survey, and European Data 
Archive databases. 

Acknowledgments 

The authors would like to thank Prof. Daniel Ames for his comments 
on preliminary versions of this manuscript, as well as the two anony
mous reviewers of this paper, whose comments have helped to improve 

its quality significantly. The authors thank the i-waveNET “Imple
mentation of an innovative system for monitoring the state of the sea in 
climate change scenarios” project, funded by the Interreg Italia-Malta 
Programme (https://iwavenet.eu/; notice February 2019 Axis 3; proj
ect code C2-3.2-106). A.M.B. thanks the PON “Ricerca e Innovazione 
2014–2020 Azione IV.5 - Dottorati su tematiche green”. This study has 
been conducted using E.U. Copernicus Marine Service Information 
(https://doi.org/10.25423/cmcc/medsea_multiyear_wav_006_012, last 
access May 2023) and an earthquake catalogue from the United States 
Geological Survey (USGS; https://earthquake.usgs.gov/fdsnws/event, 
last access May 2023). 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.envsoft.2023.105781. 

References 

Altman, N.S., 1992. An introduction to kernel and nearest-neighbor nonparametric 
regression. Am. Statistician 46, 175–185. https://doi.org/10.1080/ 
00031305.1992.10475879. 

Anthony, R.E., Ringler, A.T., Wilson, D.C., Bahavar, M., Koper, K.D., 2020. How 
processing methodologies can distort and bias power spectral density estimates of 
seismic background noise. Seismol Res. Lett. 91 (3), 1694–1706. https://doi.org/ 
10.1785/0220190212. 

Ardhuin, F., Balanche, A., Stutzmann, E., Obrebski, M., 2012. From seismic noise to 
ocean wave parameters: general methods and validation. J. Geophys. Res. 117, 
C05002 https://doi.org/10.1029/2011JC007449. 

Ardhuin, F., Gualtieri, L., Stutzmann, E., 2015. How ocean waves rock the Earth: two 
mechanisms explain microseisms with periods 3 to 300 s. Geophys. Res. Lett. 42 (3), 
765–772. https://doi.org/10.1002/2014GL062782. 

Ardhuin, F., Gille, S.T., Menemenlis, D., Rocha, C.B., Rascle, N., Chapron, B., Gula, J., 
Molemaker, J., 2017. Small-scale open ocean currents have large effects on wind 
wave heights. J. Geophys. Res. Oceans. 122, 4500–4517. https://doi.org/10.1002/ 
2016JC012413. 

Asten, M.W., Henstridge, J.D., 1984. Array estimators and the use of microseism for 
reconnaissance of sedimentary basins. Geophysics 49, 1828–1837. https://doi.org/ 
10.1190/1.1441596. 

Aster, R.C., Scott, J., 1993. Comprehensive characterization of waveform similarity in 
microearthquake data sets. Bull. Seismol. Soc. Am. 83, 1307–1314. https://doi.org/ 
10.1785/BSSA0830041307. 

Aster, R.C., McNamara, D.E., Bromirski, P.D., 2008. Multidecadal climate-induced 
variability in microseisms. Seismol Res. Lett. 79, 194–202. https://doi.org/10.1785/ 
gssrl.79.2.194. 

Fig. 13. Comparison between the observed and 
the predicted significant wave height values for 
the period September-December 2018. a) Space 
distribution of the 99th percentile of the observed 
SWH calculated in the validation period. b) Space 
distribution of the 99th percentile of the predicted 
SWH calculated in the validation period. c) MAE 
related to the relative errors for the values shown in 
(a) and (b). d) Observed (blue line) and predicted (red 
line) significant wave height time series referring to 
the red marks (Longitude 13.61◦E, Latitude 35.50◦N) 
shown in (a), (b), and (c). e) Cross plot showing the 
observed versus the predicted significant wave 
heights shown in (d). The red dashed line in (e) is the 
y = x line. The value of the determination coefficient 
(R2) is also reported in the bottom right corner of the 
diagram.   

V. Minio et al.                                                                                                                                                                                                                                   

https://iwavenet.eu/
https://doi.org/10.25423/cmcc/medsea_multiyear_wav_006_012
https://earthquake.usgs.gov/fdsnws/event
https://doi.org/10.1016/j.envsoft.2023.105781
https://doi.org/10.1016/j.envsoft.2023.105781
https://doi.org/10.1080/00031305.1992.10475879
https://doi.org/10.1080/00031305.1992.10475879
https://doi.org/10.1785/0220190212
https://doi.org/10.1785/0220190212
https://doi.org/10.1029/2011JC007449
https://doi.org/10.1002/2014GL062782
https://doi.org/10.1002/2016JC012413
https://doi.org/10.1002/2016JC012413
https://doi.org/10.1190/1.1441596
https://doi.org/10.1190/1.1441596
https://doi.org/10.1785/BSSA0830041307
https://doi.org/10.1785/BSSA0830041307
https://doi.org/10.1785/gssrl.79.2.194
https://doi.org/10.1785/gssrl.79.2.194


Environmental Modelling and Software 167 (2023) 105781

14

Bartlett, M., 1948. Smoothing periodograms from time-series with continuous spectra. 
Nature 161, 686–687. https://doi.org/10.1038/161686a0. 

Bauer, E., Kohavi, R., 1999. An empirical comparison of voting classification algorithms: 
bagging, boosting, and variants. Mach. Learn. 36, 105–139. https://doi.org/ 
10.1023/A:1007515423169. 
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