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a b s t r a c t

The evolution of High-Performance Computing (HPC) platforms enables the design and execution of
progressively larger and more complex workflow applications in these systems. The complexity comes
not only from the number of elements that compose the workflows but also from the type of compu-
tations they perform. While traditional HPC workflows target simulations and modelling of physical
phenomena, current needs require in addition data analytics (DA) and artificial intelligence (AI) tasks.
However, the development of these workflows is hampered by the lack of proper programming models
and environments that support the integration of HPC, DA, and AI, as well as the lack of tools to easily
deploy and execute the workflows in HPC systems. To progress in this direction, this paper presents
use cases where complex workflows are required and investigates the main issues to be addressed
for the HPC/DA/AI convergence. Based on this study, the paper identifies the challenges of a new
workflow platform to manage complex workflows. Finally, it proposes a development approach for
such a workflow platform addressing these challenges in two directions: first, by defining a software
stack that provides the functionalities to manage these complex workflows; and second, by proposing
the HPC Workflow as a Service (HPCWaaS) paradigm, which leverages the software stack to facilitate
the reusability of complex workflows in federated HPC infrastructures. Proposals presented in this
work are subject to study and development as part of the EuroHPC eFlows4HPC project.

© 2022 Elsevier B.V. All rights reserved.
∗ Corresponding author.
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1. Introduction
High Performance Computing (HPC) plays an increasingly im-
portant role across all scientific fields, and simulation has estab-
lished itself as the third pillar, alongside theory and experiments,
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ostering scientific and engineering advances. This has been rec-
gnized globally leading to ambitious investments in HPC in the
S, China, and Japan. Europe is not different and has created
he EuroHPC Joint Undertaking, which is pooling EU and national
esources in the order of billions of Euros to develop European
ompetitive science and technology, deploying top-of-the-range
xascale supercomputers.
In addition, the recent wide availability of Big Data sources has

atalyzed a data-centric science based on the intelligent analysis
f these data collections and on learning techniques for gleaning
he rules hidden in them. Such data collections may be the result
rom large HPC simulations, raw data from field/laboratory ex-
eriments, measurements of physical phenomena, gathered from
he Web, and in general produced in different scientific and
ngineering fields.
In this sense, the scientific process has been described as

onsisting of three inference steps: abduction (i.e., guessing at
n explanation), deduction (i.e., determining the necessary con-
equences of a set of propositions), and induction (i.e., making a
ampling-based generalization). These key logical elements have
een presented in [1] by the Big Data and Extreme-Scale Com-
uting (BDEC) [2], an international initiative that focuses on the
onvergence of data analytics (DA) and High-Performance Com-
uting (HPC). While the abduction and induction involve the use
f analysis and analytics processes (DA techniques), the deduction
s typically an HPC process. However, the three different steps of
he scientific process have been realized until now with separated
ethodologies and tools, with a lack of integration and common
iew of the whole process. The main BDEC recommendation is
o address the basic problem of the separation between the two
aradigms: the HPC and DA software ecosystems. In addition, cur-
ent international roadmaps, including that of BDEC, advocate for
ombining HPC with artificial intelligence (AI), itself tightly linked
o the DA revolution. An additional observation is that the usage
f HPC resources by scientific workflows is often conducted in a
rute force manner, by submitting a large number of simulations
r modelling jobs, generating a large amount of data which are
hen to be analysed/processed in a decoupled process. There is
hus a need for smarter workflow approaches, able to leverage
PC in a more energy-efficient way but also able to carry out the
ifferent HPC, DA and AI steps in a more integrated form. The
ituation is similar in the context of industrial applications: for
xample, in the area of manufacturing, current technologies based
n Full Order Models (FOM), developed for increasingly complex
esigns, generate a large amount of data that is processed in later
teps to obtain Reduced Order Models (ROM) that can be used
n the construction of digital twins. A more integrated approach
ill streamline the solution of FOM problems, paving the road
oward adaptive algorithms. This, in turn, will allow faster and
ore reliable ROM, reducing the required simulation time and

hus having a positive impact in the industry.
However, creating these new integrated workflows is not an

asy task. Every HPC, DA or AI step of these workflows is often
mplemented as a stand-alone framework designed for a specific
urpose. Developers have to dedicate a considerable effort to
anage the integration of different frameworks in distinct phases
f the workflow lifecycle. In the development phase, develop-
rs have to program the integration of the different workflow
omponents implemented in a variety of programming models.
n the deployment phase, different tools and frameworks must
e deployed in the infrastructure. Finally, in the execution phase,
he execution of all the distinct components must be orchestrated
ynamically and intelligently. While in our approach the task
raph of the workflows is generated at runtime, this is not the
nly source of dynamism. For example, we also consider that the

orkflow may have to adapt according to specific data inputs or d

415
intermediate results; and the workflow may also need to react
to failures or exceptions, cancelling parts of the workflow and/or
spawning new computations on it. By intelligent, we do not only
mean that the workflows include AI elements in their applica-
tion components, but also that the runtime can make intelligent
decisions to improve the workflow execution. These may range
from automating processes to reduce human intervention to task-
scheduling policies that take into account data locality, or that
implement resource elasticity to improve energy efficiency. For
these reasons, new workflow platforms enabling the design of
complex applications that integrate HPC, DA, and AI processes are
necessary.

These platforms should exploit the use of the HPC resources
in an easy, efficient, and responsible way as well as enable the
accessibility and reusability of applications to reduce the time to
solution. To this end, this paper analyses the context of HPC, DA
and AI convergence and presents use cases where these complex
workflows are required. Based on this analysis, the paper exposes
the challenges of delivering a new workflow platform to manage
complex workflows. Finally, it proposes a development approach
for such workflow platform which addresses these challenges.
This platform consist of two parts: a software stack that provides
the functionalities to manage these complex workflows, and the
HPC Workflow as a Service (HPCWaaS) concept, which lever-
ages the software stack to facilitate the reusability of complex
workflows in federated HPC infrastructures.1

The paper is organized as follows. Section 2 presents use cases
where complex workflows integrating different HPC, DA and AI
techniques are required to efficiently solve different scientific and
industrial problems. Section 3 analyses the context of HPC, DA
and AI convergence as well as the related work, and identifies the
main challenges toward efficiently supporting these new complex
workflows. Section 4 presents a novel approach to address these
challenges. Section 5 discusses several key decisions of our so-
lution as well as how they compare to alternative approaches.
Section 6 draws the conclusions from this work and proposes
guidelines for future research directions.

2. Use cases

This section describes three selected use cases from thematic
areas, with high industrial and social relevance, that can benefit
from innovative and a more holistic workflow approach. These
areas target very different users/communities and needs, specif-
ically referring to digital twins in manufacturing (Section 2.1),
climate modelling (Section 2.2), and urgent computing for natural
hazards (Section 2.3).

2.1. Digital twins in manufacturing

Today, the maturity of numerical methods allows the simula-
tion of realistic problems in manufacturing and the definition of
realistic digital counterparts, known as ‘‘Digital Twins’’ of the ob-
ject or process of interest. Simulation-based design can nowadays
largely substitute experimentation in many fields of application.
The predictive value of the numerical models comes however at
the price of a high computational cost. This becomes a blocker in
different practical scenarios, and in particular when the objective
is deploying the Digital Twin as a companion of the manufactured
object for edge computing purposes (for example, on the on-
board computer of production machines). For this application
it is necessary that the simulation model provides its results

1 In this paper, a federation refers to a set of HPC resources geographically
istributed used in collaboration for a workflow execution
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Fig. 1. Main phases in the workflow for the construction of ROM models.

ynchronously with the real world, meaning that it has to in-
orporate input from live sensors and provide immediate results.
urrently this requirement can only be fulfilled by extremely
implified models with very limited capabilities. Information on
patial distribution, which would be necessary to identify critical
ocations such as thermal hot-spots, is out of reach for online
pplications. This limitation can be solved via Model Order Reduc-
ion approaches that allow the definition of ‘‘surrogate models’’,
nown as ‘‘Reduced Order Models’’ (ROM), which present a simi-
ar predictive value but a much reduced computational cost. The
ssential idea at the basis of such approaches is to perform first
campaign of high fidelity numerical experiments (known as

ull Order Models or FOM) in order to collect training data. Such
ata is then analysed in search of the most relevant patterns,
ypically using large-scale Singular Value Decomposition (SVD)
echniques. Finally, the identified patterns are fed back to the
riginal simulation model which exploits them to construct the
arget ROM model. The corresponding workflow is shown in
ig. 1.
The overall outcome is that the ROM model provides a tunable

pproximation (that is, an approximation with a controllable level
f accuracy with respect to the original FOM model) albeit at a
raction of the computational and memory costs required by the
OM. These projection-based ROM approaches can be viewed as a
pecial class of machine learning (ML) techniques, characterized
y an overall workflow that adheres to the classical training
nd inference model. From a computational point of view, the
raining part is particularly challenging since it requires deal-
ng both with the generation of ‘‘experimental’’ data and with
heir analysis via large-scale SVD. The generation of training data
mplies a classical finite element solution, implemented through
he software Kratos [3,4], with a computational cost governed
y the cost of solving linear systems of equations. This step is
ypically addressed within the project by the use of an algebraic
ultigrid solver [5,6]. The computation of the SVD is identified
s a computationally critical kernel in the reduction workflow
s it forms the basis for various of the reduction algorithms as
ell as for the hyperreduction steps. The computation of the

arge scale SVD faces challenges related to both its computational
ost and to the memory requirements. For example a workflow
ncluding 10 million degrees of freedom (dof) and 5000 time steps
ould require 400 GB of memory simply to store the unprocessed
ata, with the memory requirements becoming sensibly higher
or any manipulation of such data. While careful out-of-core ap-
roaches (disk swap) allow overcoming this memory limitations,
hey provide a practical bottleneck to any dynamic workflow due
o the inherently large increase in the computational time (hours
416
instead of minutes). To overcome this challenge, the implementa-
tion of a distributed randomized truncated SVD able to deal with
a large amount of distributed memory while at the same time
reducing the computational time is required.

A complete workflow may also require an iterative refinement
of the training campaign to deal with gaps in the training space.
The effective use of supercomputers requires integrating both
the training and the inference steps within a single complex
workflow that is adapted to the specific needs of the problem
to be addressed. This in practice implies that, while a ‘‘classical’’
workflow would require manual iterations between training and
evaluation, integration within a workflow management system
allows automation of the process with obvious advantages in real
applications.

A practical challenge is the need to deploy the different soft-
ware stacks on multiple hardware configurations. This represents
a nontrivial challenge given the strong dependency on system
libraries, such as the message passing interface (MPI).

Furthermore, the described workflow can also be integrated
with other AI frameworks with the aim of eventually employ-
ing the ROMs as building blocks in the construction of system-
level models. This integration also poses relevant challenges,
particularly regarding the interoperability between the different
modules to be integrated within the same workflow.

2.2. Climate modelling

The study of climate change and related climate phenomena is
extremely challenging and requires access to very high-resolution
data. In this respect, the climate community has been continu-
ously pushing the boundaries to deploy and run model simula-
tions at the highest resolution possible, exploiting cutting-edge
supercomputing infrastructures [7]. The resulting output consists
of large, complex and heterogeneous datasets that require proper
solutions for management and knowledge extraction [8], and
which can take advantage of data-oriented approaches from DA
and AI fields.

Typical end-to-end Earth System Modelling (ESM) workflows
consist of different steps, including input data pre-processing,
numerical simulation runs, output data post-processing, as well
as DA and visualization. Even though they represent different
parts of the same scientific discovery process, their seamless,
ntelligent and efficient integration into HPC environments still
eeds to be addressed at a variety of levels to become a reality.
The methodologies currently available for developing scien-

ific workflows in the climate field are unable to integrate the
hole set of components transparently into a single workflow
he current approach usually relies on non-standard, home-made
cripts to address the operational needs and integrate different
omponents into the ESM workflow. Most often, these efforts
ocus on a specific HPC machine, which makes it extremely hard
o port the same solution to other HPC facilities. To this end,
SM workflows can benefit greatly from enhanced solutions that
ide the underlying technical details of HPC machines and pro-
ide standardized ways to develop and integrate the distinct
SM workflow components, including DA and AI components.
his could lead to improved execution efficiency, along with
n optimized usage of HPC resources and increased research
roductivity.
In this respect, the improvements provided by dynamic access

o the model simulation results at runtime, together with AI
echniques, can be exploited as part of the ESM workflow man-
gement. They can bring forward advanced possibilities for smart
xecution of the workflow, enabling more efficient resource usage
s well as a shorter time-to-solution. One of the typical tasks
n climate modelling is to run ensemble simulations that consist
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f multiple members and can take a significant amount of time.
nsembles are used to assess uncertainty in model results, for
odel tuning, or for exploring different scenarios of particular
vents. In the current workflows, the number of members to run
s usually fixed at the start of the workflows and is constrained
y the available computational resources. Ultimately, not all the
embers may be needed. In this sense, dynamic workflows with

n-memory access to model results, able to adapt simulations at
untime by performing a smart (possibly AI-driven) pruning of
nsemble members, could reduce resource usage and improve
nergy efficiency. One of our major objectives is to determine
hich metrics can be used to prune members without impacting
he quality of the simulation. This requires novel systems able
o adapt dynamically the workflow execution, based on these
untime-computed metrics. In a more general sense, dynamic
ccess to model results allows the implementation of model
iagnostics, especially those that require high temporal frequency
ata without changing the model code and frequent data seri-
lization. This is especially important for very high resolution
limate models, which face I/O and storage limitations.
Data-driven approaches can also play a significant role in en-

ancing knowledge extraction from large climate simulation data,
eading to a better understanding of the climate system. In this re-
pect, Tropical Cyclone (TC) detection and tracking represents an
mportant case study since it requires multiple two-dimensional
ields, such as pressure, temperature, wind velocity, vorticity, at
ifferent time steps (with a frequency of at least 6 h) and from
ery high-resolution General Circulation Model (GCM) data [9],
or example coming from the Coupled Model Intercomparison
roject - phase 6 (CMIP6) [10] or very high-resolution models
e.g. the CMCC-CM3 model).

TC analysis can be very challenging due to the large amount
f data involved, its heterogeneity, and processing complexity.
his is even more critical if data from multiple models are con-
idered in the process. Different detection and tracking methods,
ainly based on statistical methods, are available in the liter-
ture [11], and new emerging approaches are investigating the
se of ML/deep learning (DL) techniques to assess the possibility
f speeding up the process and improving energy efficiency.
urrently, these types of analyses are generally executed offline,
n the data produced by the ESM models, using specialized tools
nd scripts and could benefit greatly from novel solutions able
o include DA and ML/DL technologies in the HPC workflow. The
doption of strongly integrated and data-driven approaches will
nable scientists to tackle considerably larger and more com-
lex problems than are possible today in climate science. In-situ
echanisms will represent another step forward in this direction
y integrating data-driven approaches directly within the model
imulation, delivering an even more efficient solution.
Fig. 2 shows the resulting end-to-end ESM workflow inte-

rating the aforementioned aspects. This can only be possible
hrough new workflow platforms able to integrate HPC, DA and
I components.
The availability of enhanced workflow capabilities will ulti-

ately (i) support transparent integration of simulation-centred
nd data-driven components, (ii) allow scientists to further in-
rease knowledge of the climate system by delivering better data
o end-users for societal challenges, and (iii) democratize access
o these complex end-to-end ESM workflows.

.3. Urgent computing for natural hazards

Urgent Computing (UC) applies HPC/DA during or immedi-
tely after emergency situations, combining complex edge-to-end
orkflows with capacity computing. Early decisions in earth-
uake/tsunami response are typically based on interpretations of
417
Fig. 2. Main phases envisioned in the enhanced ESM workflow. The left side
shows the ensemble members pruning process, while the right side depicts the
feature extraction stages based on HPC, DA & ML/DL techniques.

the best available, yet often limited, data immediately following
the event to estimate its impact. Synthetic maps of ground shak-
ing and/or tsunami inundation can help to assess losses (e.g., for
the insurance sector) or to direct immediate relief (e.g., for civil
protection and first and second responders). Ensemble realiza-
tions are typically required to account for input and model un-
certainties, and have strict time constraints (e.g., two hours in
ARISTOTLE-eENHSP, enhanced European Natural Hazard Scien-
tific Partnership [12]). Given their inherent computational cost
and input data sensitivity, significant HPC resources are needed to
enable high-fidelity large-scale ensemble simulations within the
required time constraints.

Seismic and tsunami UC workflows consist of three main
phases (see Fig. 3):

1. Pre-processing, where an ensemble of possible earthquake
sources (with uncertainty) is based on seismic data.

2. Simulation, where ground shaking/tsunami impact is quan-
tified numerically for each individual scenario.

3. Post-processing, in which simulation results are aggregated
to produce probabilistic estimates including both source
and modelling uncertainty, potentially updated with in-
coming observations from monitoring networks.

Fig. 3 displays the existing workflows and planned development
extensions. In particular, future UC workflows aim at being re-
sponsive to live data streams with dynamically updated scenario
ensembles and hazard analyses. ML-based emulators may be able
to predict outcomes of the HPC-based simulations given sufficient
training sets. The tsunami post-processing currently performed
on local hardware may be improved by being performed on HPC
resources, and a prototype of a database of Earth models will be
developed for the seismic workflow.

2.3.1. Probabilistic tsunami forecasting and faster than real time
tsunami simulations

Probabilistic Tsunami Forecasting (PTF) for tsunami early-
warning requires that a large ensemble of tsunami simulations
are calculated Faster Than Real Time (FTRT), based on source
estimates immediately following an earthquake [13–17]. Uncer-
tainties arise both from model limitations and scarce knowledge
of fault geometry and mechanism. Both are managed in PTF [13].
Ensemble initialization is based on real-time seismic monitoring
tools and simulations are performed with the Tsunami-HySEA
code running on Graphics Processing Units (GPUs). Post-processing
aggregates the individual simulations, managing inherent uncer-
tainty. The following specific steps may improve the operational
level of tsunami forecasting:



J. Ejarque, R.M. Badia, L. Albertin et al. Future Generation Computer Systems 134 (2022) 414–429

n
o
a
s
r
T
c
f
w

r
r
p
w
t
s
(
o

Fig. 3. Main phases in the UC workflows for earthquakes and tsunamis.
Black elements describe the existing workflows and red elements the desired
advances.

1. Revision of the PTF workflow to reach time-to-solution per-
formance targets relevant for UC, with time-management
and failure safeguards.

2. Optimization of ensemble initialization and updating with
dynamically evolving uncertainty quantification, based on
real-time seismic data, tsunami records, and DA.

3. Use of AI for rapid impact estimation (e.g. [18–20]) to ac-
celerate the workflow and potentially integrate ensembles
in real-time.

4. Use of DA and AI tools to enhance event diagnostics and
post-processing analyses including cloud storage of de-
tailed results for subsequent DA processes.

To meet time constraints, the workflow will benefit from a
solution that overlaps multiple phases, avoids global synchro-
nizations, and exploits workflow environments able to perform
dynamic elastic resource management. Fault tolerance is an ad-
ditional requirement, as is an environment able to integrate HPC
phases with DA and AI.

2.3.2. UCIS4EQ
The Urgent Computing Integrated Services for Earthquakes

(UCIS4EQ) workflow has been developed as a Pilot Demonstra-
tor under the ChEESE Center of Excellence.2 UCIS4EQ coordi-
ates the execution of large 3D full waveform simulations to
btain rapid and realistic synthetic shaking estimates following
n earthquake [21]. UCIS4EQ is coupled to state-of-the-art mas-
ively parallel simulation solvers so that, given sufficient HPC
esources, simulations can be completed within minutes to hours.
ypical uncertainties come both from source characteristics that
annot be constrained uniquely (given sparse initial data) and
rom unresolved soil effects which may amplify or reduce seismic
aves.
UCIS4EQ is developed considering not only the functional

equirements, but also to ensure the quality of non-functional
equirements such as robustness, interoperability, availability,
ortability, and maintainability. Each process is encapsulated to
ork as a specialized micro-service, with all components con-
ainerized and ready to deploy as a cloud service. The following
pecific aspects should be upgraded in the UCIS4EQ workflow
under development or not implemented) to bring it closer to an
perational level:

2 https://cheese-coe.eu
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1. An integrated workflow management system, including
workflow monitoring and steering and dynamic resource
management. Currently the components are activated se-
quentially, with HPC jobs submitted simultaneously.

2. Ensemble simulations for uncertainty quantification. A cur-
rent prototype exists for suites of runs without assigned
probabilities.

3. Real-time data assimilation to assess and/or adjust the
ongoing simulations.

4. A prototype database of 3D velocity models.
5. Regression and/or DL models to estimate shaking intensity

maps at time scales of seconds to minutes. Such ML ‘‘twins’’
will enhance uncertainty quantification.

To achieve the use case objectives, the workflow will benefit
from a solution that enables autonomous integrated management
of the multiple HPC and data assimilation phases, with support
for a real-time assessment of the situation to enable a dynamic
adaptation of the simulations.

3. Background and challenges

This section analyses the context of HPC/DA/AI convergence
for supporting the new complex workflows presented in the
previous section. First, we present background and previous work
from several points of view (development, deployment, data
management and computer architecture). Afterwards, we present
the main challenges to efficiently supporting these complex work-
flows.

3.1. Background and related work

3.1.1. Workflows development and HPC
An important aspect in scientific workflows concerns the pro-

gramming structures they provide for the development of sci-
entific applications [22]. Existing approaches in this area can be
broadly categorized based on their level of abstraction model
(high-level versus low-level) and on the type of programming
formalism they support; some of them are based on graphical
interfaces, such as Kepler [23], Taverna [24] or Galaxy [25]; some
on textual interfaces, such as Pegasus [26], Askalon [27] or Au-
tosubmit [28]; and several on programmatic interfaces, such as
COMPSs [29] or Swift [30].

A relevant observation is that scientific communities seem to
stick to one or another solution. For example, Galaxy [31] has
been adopted by the ELIXIR life science research infrastructure
as its main workflow environment, while Cylc [32] was selected,
among others, by the Earth Science community.

Typically, HPC applications are developed using the MPI pro-
gramming model [33], which is the de-facto standard for this type
of applications. It is based on the idea of having a large number
of concurrent processes exchanging messages to solve a large
problem cooperatively. MPI is combined with other approaches
to exploit concurrency inside the potent HPC nodes. The most
popular approach for this is OpenMP [34]. Additional complexity
for the application developers is the appearance of accelerators,
such as GPUs, which require specific programming environments
such as CUDA [35] or OpenCL, among others. HPC programming
models tend to be quite low level and require considerable effort
from the application developer.

3.1.2. Data analysis workflows
DA applications can be conveniently modelled as workflows

combining distributed datasets, pre-processing tools, data mining
and ML algorithms, and knowledge models. Compute and storage
facilities of large-scale HPC systems can be effectively exploited

https://cheese-coe.eu
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o parallelize the execution of workflows composed of dozens to
housands of tasks, to achieve higher throughput and to reduce
urnaround times. This is particularly true in the context of DA
orkflows, in which the data volumes to be analysed are huge,
nd tasks take a long time to complete their execution on conven-
ional machines [36]. Implementing efficient DA workflows from
cratch on HPC systems is not trivial and requires expertise in
arallel and distributed programming. To cope with design and
rogramming issues, high-performance programming models for
ata analysis workflows have been recently proposed [37].
DA workflows allow programmers to express parallelism at

everal levels (i.e., data, task, pipeline parallelism), which can be
xploited at runtime by HPC platforms comprising a large number
f processing and storage elements. In addition, the ability to
euse workflows by modifying the input data or the algorithms
nd tools, combined with the ability to create hierarchical work-
lows where individual nodes can, in turn, be workflows, allow
sers to define and execute a variety of data analysis applications
hat go well beyond the classical scientific applications executed
n HPC platforms.

.1.3. AI workflows
The convergence of AI environments – and more specifically

L libraries – with HPC platforms provide the opportunity for
ajor performance improvements for the effectiveness, reusabil-

ty and reproducibility of the simulation [38]. Usually, models are
enerated by running effective ML algorithms over large datasets
hat are produced from various sources. The generated model
an comprise vectors of coefficients as well as different tree or
raph structures with specific values. These derived models can
ccelerate the development of high-performance DL inference
pplications. Furthermore, pre-trained models also speed up the
roduction deployment process.
Having a model repository enables the tracking of parameters

nd results of trained models to further package with ML libraries
nd codes in a reproducible and reusable manner in a targeted en-
ironment. For HPC and DA convergence, storing, managing, and
haring capabilities of models are key requirements for building
orkflows that make use of ML/DL models. Some efforts towards
utomatic management of ML in HPC systems are Dkube3 or the
ODEX AI suite4

.1.4. Deployment in large infrastructure systems
Due to the widespread number of compilers, library versions,

nd their incompatibilities, every time users want to deploy a
ew workflow in a supercomputer, they have to check the de-
endencies, and install the missing ones taking into account the
ibraries and compiler versions to detect possible incompatibili-
ies. To mitigate these issues, there exist tools such as Spack [39]
r Easybuild [40] that provide mechanisms to deal with these
ssues and automate the installation process of new software in
PC environments. However, they still require an expert HPC
eveloper to create the packages or recipes for these tools and
erify that they work for each supercomputer.
In Cloud environments, virtualization and container technolo-

ies have simplified the portability of complex applications. Hy-
ervisors such as KVM [41] or container engines such as Docker
42] allow running processes in customized environments on
op of computing nodes. These environments can be customized
s normal computers and saved as images, which can easily
e copied to other nodes where the same process can be exe-
uted with the same environment. The main barriers to deploying

3 https://www.dkube.io/products/datascience/hpc-slurm.php
4 https://atos.net/en/solutions/codex-ai-suite-fast-track-artificial-intelligence
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these technologies in HPC are rooted in the requirement of run-
ning hypervisors and engines in privilege mode (root access)
with the security consequences that this implies and the in-
tegration of images with specific HPC hardware such as fast
interconnects drivers. Singularity [43] is a container engine that
tries to overcome these issues by not requiring privileged user
mode to run the container, allowing direct access to the host
drivers to benefit from the special HPC hardware. Cloud Comput-
ing also provides service-oriented abstractions called Everything-
as-a-Service, where a set of services is offered depending on
the usage model. One of the latest proposed service models is
Function-as-a-Service (FaaS). This service enables users to exe-
cute functions in the Cloud in a transparent way with a simple
REST application programming interface (API) call and without
having to deal with the entire deployment, configuration and
execution management overhead. The FaaS platforms, such as
the commercial AWS Lambda, Google Cloud Functions, or open-
source approaches like OpenWhisk [44] or OpenFaaS [45], are in
charge of managing the different function executions, allocating
the computing resources when required, deploying the function
software, obtaining the input data and storing the output results.

3.1.5. Data management/storage aspects
Persistent storage in HPC has traditionally been dominated by

file systems [46]. Applications consuming file-based data need
to open and read the files to load the data into memory, trans-
forming it to the appropriate data structures for efficient manip-
ulation. This process is usually implemented by the programmer
as part of the application unless using specific file formats, such
as NetCDF [47] or HDF5 [48], which provide specific libraries to
facilitate this task. Additionally, scalability problems in file-based
storage systems are well-known [46], which led to different stor-
age solutions based on abstractions other than files (e.g., object
stores or key–value stores, among others) gaining popularity not
only in Cloud but also in HPC environments [49]. These stor-
age solutions can provide more flexibility in accessing persistent
data by enabling data accesses at a finer granularity, as well as
providing efficient access to data during the computation, and
facilitating the implementation of common application patterns
in HPC, DA and AI, such as producer–consumer or in-situ analysis
or visualization.

New technologies blurring the line between memory and stor-
age have recently become available. These technologies, called
persistent memories or non-volatile memories (NVM), such as
Intel Optane DC [50], are similar to memory in speed, similar to
disk in capacity, and are byte-addressable. These features open
the door to computing directly on the stored data without having
to bring it to memory, enabling HPC, DA, and AI applications to
deal with larger volumes of data (i.e., not fitting in main memory)
at high-speed [51].

3.1.6. Computer architecture perspective
The recent trends in HPC confirm that a hybrid architecture

combining CPUs, GPUs, and even customized accelerators has
become the preferred node type for a large range of workloads
of interest for HPC and data centres, including ML, DA, and
scientific simulation. The path to keep increasing performance
while maintaining energy efficiency lies in the use of Domain-
Specific Architectures (DSAs). Indeed, one of the most prominent
and appealing domains for specialization and adaptation of the
system is DL. New accelerator units such as Google’s TPU [52]
offer considerable higher energy efficiency when compared with
traditional architectures (CPUs or even GPUs). Adoption of such
DSAs to workflows becomes significant. In addition, over the last
years, reconfigurable devices, such as FPGAs (field-programmable
gate arrays), are gaining popularity as co-processing devices in

https://www.dkube.io/products/datascience/hpc-slurm.php
https://atos.net/en/solutions/codex-ai-suite-fast-track-artificial-intelligence
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PC and Data centre environments. There are clear past success-
ul examples such as the Catapult project [53]. Moreover, new
roducts based on FPGAs, such as Alveo and Versal boards, target
I applications and the HPC domain.

.1.7. Other related projects
We can find several EU funded projects targeting the con-

ergence between HPC and DA. The LEXIS project [54–56] tack-
es the description and automation of computational workflows
e.g., simulations with subsequent data analysis steps) provid-
ng easy access to federated computing and data systems. It is
uilding an advanced engineering platform and portal leveraging
arge-scale geographically distributed HPC and Cloud computing
esources.

Similarly, the EVOLVE project [57] also proposes a software
tack to integrate HPC and DA environments. It consists of a
ython module for Apache Zeppellin notebook, which is used
o create workflows based on container images deployed and
rchestrated on top of a Kubernetes architecture. It allows to
ransparently deploy applications both in the Cloud and in clus-
ers.

The ACROSS project [58] is a EU funded project that aims at
ombining traditional large scale HPC simulations, high-
erformance data analytics (HPDA) and ML/DL techniques to
oost the performance of the simulation frameworks and/or
mprove the quality of the simulation results without increasing
omputing resources consumption.
The ADMIRE project [59] focuses on satisfying the perfor-

ance requirements of today’s data processing applications by
ddressing the storage bottlenecks in HPC architectures. To this
im, the project proposes to create an active I/O stack that
ynamically adjusts storage resources to the computational re-
ources of jobs, taking advantage of emerging multi-tier storage
ierarchies including persistent memory devices.

.2. Challenges

The context and requirements of the described use cases have
aised a set of challenges in workflow design and management
hat are summarized below.

.2.1. Challenge 1: Enable the openness, reusability, reproducibility
nd accessibility of the workflows and their results
With the introduction of virtualization and containers, porting

pplications into Cloud environments has improved consider-
bly, easing the porting of applications implemented in well-
nown software stacks (e.g., LAMP, MEAN, Hadoop). However,
he complexity of workflows is growing fast, and they are re-
uired to combine multiple HPC, DA, and AI frameworks. Enabling
he portability and accessibility of these workflows to the wide
ariety of HPC systems is still an open challenge. First, cur-
ent workflows require deploying and orchestrating the multiple
rameworks, which must be coupled tightly with the computing
nfrastructure. Moreover, reusing the same tools used in the
loud environments to deploy applications in HPC environments
s not possible due to the security and accessibility requirements
n supercomputers. Therefore, installations and deployments are
sually managed by system administrators to ensure they are
dapted to the supercomputer capabilities.
A similar challenge appears with the workflows results. En-

bling their reusability and reproducibility requires designing
nd implementing a tailored mechanism to make those results
vailable to the users considering the access restrictions of the
PC systems. To overcome this situation, new tools or current
loud deployment and data-sharing tools have to be redesigned,
xtended, and adapted to accommodate the requirements of the
420
new complex workflows and to fulfil the HPC access constraints.
This includes related to user management, security and version
control of the workflow and their components (data, model, code
components) in federated infrastructures.

3.2.2. Challenge 2: Simplify the development of complex workflows
while keeping their capabilities and performance

Traditionally, the HPC software stack has focused on providing
libraries to optimally exploit the target infrastructure. As men-
tioned earlier, existing HPC programming models, such as MPI or
OpenMP, enable the development of parallel applications but they
are still too complex for general scientists, especially if they need
to develop a higher abstraction, complex, workflow. Even more,
existing workflow systems usually do not entail the possibility of
including parallel or HPC tasks (i.e., tasks implemented with MPI
and/or OpenMP).

Also, as mentioned in Section 1, different methodologies have
been proposed for the development of HPC, DA, and AI codes.
In general, current available methodologies for developing work-
flows do not fulfil the requirements of increasingly complex
applications, requiring novel procedures supporting a holistic
workflow composed of HPC simulations or modelling, DA and
AI tasks. To keep performance, the usage of new, powerful, and
energy-efficient heterogeneous computing nodes is a must. For
example, GPUs are very efficient in the DL training phase, but
they require the development of specific code for heterogeneous
devices.

To address these issues, new methodologies that support sim-
pler and intuitive workflow development need to be proposed.
Since our focus is to support workflows that integrate compo-
nents of diverse nature (HPC, AI, and DA), these methodolo-
gies should bridge the gap between the application and the
heterogeneous infrastructure in order to maintain the expected
performance.

3.2.3. Challenge 3: Support for workflow dynamicity
An additional challenge introduced by complex workflows

is dynamicity. Current workflow managers support static work-
flows with very limited dynamicity. This approach fits traditional
workflows that solve problems with simple pipelines or graphs,
repeated loops with different input parameters, or small work-
flow modifications using conditional control flows. However, the
complex workflows considered in this work require support for
high degrees of dynamicity and flexibility in their development
and execution. The workflow programming models and engines
should support applications with dynamic data sources, with
variable input data, producing alterations in the computation
workflow, invalidating the initiated computations and request-
ing new computations. In some cases, the workflow requires
a dynamic adaptation applied in real-time to fulfil an urgency
constraint of the computation. To support this dynamicity, the
workflow manager should be able to react to changes in the input
data and generate new computations on demand.

However, the workflow dynamicity can not only be driven by
the input data. For example, an early analysis of the results can
detect parts of the workflow tending to solutions that are insignif-
icant for the final results. Such computations can be cancelled for
saving resources or dedicating them to extend the search space
or to increase the effectiveness of the solution. In this sense, the
workflow manager should be also able to dynamically modify an
existing workflow by removing already expected computations,
and sometimes adding new ones in reaction to given events.

Finally, the mentioned dynamic workflow support at the de-
velopment and execution level has to be tightly combined with
elastic resource management in order to adapt the computing
capacity with the changing computing demands required by the
workflows, which will make more sensible use of the resources
and save power.
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.2.4. Challenge 4: Enable data management and computation inte-
ration
Current approaches to implement data management usually

iffer between environments that execute scientific applications
nd those that implement DA. However, workflows integrating
oth kinds of computation can improve the productivity of scien-
ists and engineers, as well as the performance of the workflows
hemselves, which could start the analysis of the data before the
ata generation ends. To provide an effective environment for this
ind of hybrid workflows, it is necessary to provide a unique data
anagement strategy that reduces the data movements between
ifferent storage systems, whilst supporting both scientific and
A workloads efficiently. This unique strategy should be able to
rovide the data generation application with a fast data ingestion
echanism, which should not limit the potential parallelism of

he computation (avoiding synchronization points due to data
toring). At the same time, it should be able to provide a simple
nterface that enables programmers to access intermediate results
fficiently.
Datastores for DA usually meet these requirements. However,

evelopers of HPC applications, used to working with files, are
eluctant to adopt them for several reasons. First, the efficient uti-
ization of this type of datastores involves a low-level knowledge
f their design, to tune all the available configuration parameters.
econd, deciding how to organize the data (i.e., defining the data
odel) influences the performance of both reading and writing,
nd obtaining efficient data models also requires a deep knowl-
dge of the execution platform (both hardware and software
tack). Third, enhancing data locality is also a goal of this type
f data store, but once again it is rarely transparent to program-
ers. Finally, changing their traditional approach to storing data

nvolves learning new interfaces that usually change from one
atastore to another.
To overcome this reluctance, it is necessary to add a layer

o the software stack that relieves programmers of these tasks.
his layer should provide automatic and transparent tuning of
he data store and data locality enhancement, automatic data
odelling, and a simple interface independent of the particular
ata store in the system and close to the data structures managed
y the application. These features would allow the programmer
o focus on the problem domain, and at the same time, provide
he required performance and parallelism in collaboration with
he programming model.

In addition, the popularization of persistent memory devices
ffers the possibility of rethinking strategies both on how data is
ccessed and how data is modelled in datastores. By exploiting
he capabilities of these devices in the data management layer,
gain transparently to the programmer, applications will be able
o seamlessly manage larger amounts of data and benefit from a
igher performance in data access.

. eFlows4HPC solution

eFlows4HPC is a EuroHPC funded project which aims at en-
bling dynamic and intelligent workflows in the future European
PC ecosystem. The high-level structure of the project is de-
icted in Fig. 4. We propose integrated solutions to cover the
hallenges presented in Section 3.2. First, eFlows4HPC defines a
oftware stack that covers the different functionalities to sup-
ort the whole lifecycle of the complex workflows introduced in
his paper. Second, it proposes the HPC Workflow-as-a-Service
HPCWaaS) methodology to enable reusability of these complex
orkflows as well as simplifying the accessibility to HPC re-
ources. Finally, the project also works on the workflow kernels
or new heterogeneous architectures.
421
Fig. 4. eFlows4HPC project overall approach.

4.1. eFlows4HPC software stack

The eFlows4HPC software stack comprises existing software
components, integrated and organized in different layers (Fig. 5).
The first layer consists of a set of open repositories, catalogues,
and registries to store the information required to facilitate the
re-usability of the target workflows (Workflow Registry), their
core software components such as HPC libraries and DA/AI frame-
works (Software Catalog), and its data sources and results such
as ML models (Data Catalog and Model Repository). Besides, it
also provides the HPC Workflow-as-a-Service interface, which
allows developers to deploy workflows in the HPC infrastructures
transparently and makes them easily accessible for the final users.
This layer mainly addresses Challenge 1, and the details about
how the components are used to address it are described in
Section 4.2

The second layer provides the syntax and programming mod-
els to implement these complex workflows combining HPC sim-
ulations with DA and AI. A workflow implementation consists
of three main parts: a description about how the software com-
ponents are deployed in the infrastructure (provided by an ex-
tended TOSCA definition [60]); the functional programming of
the parallel workflow (provided by the PyCOMPSs programming
model [61]); and data logistic pipelines to describe data move-
ment to ensure the information is available in the computing
infrastructure when required. The combination of these three
models enables the reproducibility and reusability aspects of
Challenge 1 and focuses on the development aspects of Chal-
lenges 2 and 3. More details about workflow development are
provided in Section 4.3 Finally, the lowest layers provide the
functionalities to deploy and execute the workflow based on
the provided workflow description. On the one side, this layer
provides the components to orchestrate the deployment and
coordinated execution of the workflow components in federated
computing infrastructures. On the other side, it provides a set
of components to manage and simplify the integration of large
volumes of data from different sources and locations with the
workflow execution. This part of the stack addresses the runtime
aspects of Challenges 2, 3 and 4. More details on how these
components interact at execution time are given in Section 4.4

4.2. HPC Workflows-as-a-Service (HPCWaaS)

Currently, one of the main barriers to the adoption of HPC is
the complexity of deploying and executing workflows in feder-
ated HPC environments. Usually, users are required to perform
software installations in complex systems which are well be-
yond their technical skills. Therefore, preparing the workflows

for execution in a supercomputer typically takes a large amount
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Fig. 5. eFlows4HPC Software Stack.

Fig. 6. Overview of the proposed HPC Workflow-as-a-Service model.

f time and human resources. If it needs to be replicated on
everal clusters for reliability requirements or in order to assess
he reproducibility of the results, the required time and resources
ill increase. To widen the access to HPC to newcomers and, in
eneral, to simplify the deployment and execution of complex
orkflows in HPC systems, eFlows4HPC proposes a mechanism to
ffer HPC Workflows-as-a-Service (HPCWaaS) following a similar
oncept as the Function-as-a-Service (FaaS) in the Cloud, but cus-
omizing it to workflows in federated HPC environments. The goal
s to hide all the HPC deployment and execution complexity to
nd-users in such a way that executing a workflow only requires
simple REST web-service [62] call.
Fig. 6 shows an overview of how the proposed model works.

he HPCWaaS is built on top of the eFlows4HPC software stack
n order to provide the required functionality to develop, deploy,
nd execute complex workflows. Similar to the FaaS model, two
ser roles are defined in the HPCWaaS: one for workflow devel-
pers that are in charge of implementing the workflows, and an-
ther for workflow user communities, which are solely interested
n executing the workflow and obtaining the results. To support
hese two roles, the HPCWaaS platform provides two interfaces:
he Developer Interface, to build and register the workflows in the
ystem, and the Execution API which provides a REST interface to
anage the execution of the registered workflows.
At development time, workflow developers are in charge of

uilding the workflow using the information stored in the reg-
stries and the programming models provided by the eFlows4HPC
tack (to be described in Section 4.3). Once the workflow im-
lementation is completed, the workflow is registered in the
PCWaaS platform to make it available to the community of
orkflow users. On one side, the workflow description will be
tored in the Workflow Registry, the description of software
omponents will be stored in the Software Catalog, and the data
422
Fig. 7. Workflow development phase.

sources and outcomes will be registered in the Data Catalog and
Model Repository. Upon a successful registration, the workflow
developer receives a service endpoint from the Execution API,
which can be shared with the workflow users to invoke the devel-
oped workflow. At invocation, the workflow will be automatically
deployed and executed in the computing infrastructure using the
rest of eFlows4HPC stack functionalities.

The proposed HPCWaaS model addresses the reusability, re-
producibility and accessibility of Challenge 1. Once a workflow is
registered to the HPCWaaS, different workflow users can easily
execute the workflow by invoking the workflow end-point that
facilitates the accessibility. Several users can run the workflow
with the same input parameters that will perform the same com-
putation providing the reproducibility capability in the developed
workflows, but they can also invoke the workflow with differ-
ent input data to perform the same computation on different
datasets that also simplifies reusability. Since the workflow and
the descriptions of their software components are stored in public
repositories, they can also be re-used to compose other complex
workflows.

The following sections provides additional details on how
the eFlows4HPC components interact to provide the required
functionality in the phases of the workflow lifecycle.

4.3. Workflow development phase

One key part of the mentioned challenges is the implementa-
tion of complex workflows that combine HPC, DA, and AI frame-
works in a dynamic and reusable way. eFlows4HPC proposes two
mechanisms in order to achieve this challenge, as depicted in
Fig. 7. On the one hand, the software stack provides a set of
open catalogs and repositories, providing workflow developers
with a means to store and share information about the software
components, data and models used by the workflows. These
component are built on top of version control repositories, such
as Git, providing the capabilities to manage different versions of
the stored descriptions and codes:

1. The Data Catalog and the Model Repository store the de-
scription of those datasets and ML models that are available
as input for the workflows or those that are generated by
the workflows. They include information on how to access
or store them, such as the format, location, and protocol
(FTP, WebDAV, etc.). This description is used by the Data
Logistic Pipelines to identify the input and output data and

how to process them.
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2. Similarly, the Software Catalog stores the description of the
software components used by the workflows. It stores the
information about how the software is deployed and how it
is invoked. The first part is included in the workflow TOSCA
description and the invocation description is used by the
PyCOMPSs workflow to simplify the integration of software
executions inside a workflow.

3. Finally, the workflow registry stores the workflow descrip-
tions, which can be retrieved by other users to reproduce
the same workflow in other environments or use them as
templates to create new workflows.

In addition, we propose a description that uses this information to
create complex workflows that combine different software (HPC,
DA, and AI frameworks) which are portable and reproducible. This
description is composed of a combination of an Extended TOSCA
syntax, the PyCOMPSs programming model, and the data logistic
pipelines.

TOSCA is an OASIS standard to describe the deployment topol-
ogy and orchestration of cloud applications. This standard allows
developers to specify the software components and services re-
quired by an application, and the relationships between them. For
each component, TOSCA describes how it is deployed, configured,
started, stopped and deleted. According to their relationships,
TOSCA orchestrators, such as Yorc, generate a set of workflows
to orchestrate the whole application lifecycle (deployment, ex-
ecution, and release). In eFlows4HPC, the TOSCA definition is
extended to support the deployment and execution of workflows
implemented with PyCOMPSs and data logistic pipelines.

The PyCOMPSs programming model provides the logic of how
the different software invocations are performed. PyCOMPSs is a
task-based programming model that enables the development of
workflows that are executed in parallel on distributed computing
platforms. It is based on sequential Python scripts, offering the
programmer the illusion of a single shared memory and storage
space. While the PyCOMPSs task-orchestration code needs to be
written in Python, it supports different types of tasks, such as
Python methods, external binaries, possibly multi-threaded (in-
ternally parallelized with alternative programming models such
as OpenMP or pthreads), or multi-node (MPI applications). Thanks
to the use of Python as the programming language, PyCOMPSs
supports almost all the dynamicity a programming language of-
fers to developers (loops, conditionals, exceptions) and naturally
integrates well with DA and ML libraries, most of them offering
a Python interface.

Finally, in the last part of the workflow description, the Data
Logistic Pipelines allow developers to describe how the workflow
data is acquired, moved and stored during the workflow life-
cycle in order to ensure the data is available in the computing
infrastructure when required. The pipelines are also defined in
Python, which reduces the entry barrier for the development.

Fig. 8 illustrates an example of a workflow description. As
mentioned earlier, it is mainly an extended TOSCA topology defin-
ing the components of the workflow and their relationships. For
instance, this example is composed of two PyCOMPSs workflows,
two data pipelines, and several services. One of the PyCOMPSs
workflows must be deployed in an HPC infrastructure and re-
quires an HPC simulator as well as an ML framework; the other
runs in the cloud and requires a DA framework. Regarding the
data logistic pipelines, one is defined to retrieve data from an
external repository and move it to a shared storage of an HPC
cluster; the other performs movements between the HPC and
Cloud environments. The TOSCA description of the workflow
components provides a link to specify where the code for the
components is stored, and describes how it can be deployed and
executed.
423
Fig. 8. Workflow description example.

As mentioned earlier, the workflow description is registered
nd stored in a workflow registry by means of the Development
nterface. The result of this registration produces a new service
ndpoint in the Execution API that can be later used to invoke
he execution of the workflow.

.4. Workflow invocation phase

Prior to executing the registered workflows, the users have to
onfigure the infrastructure access credentials. These consist in
he usernames and secrets such as public-key certificates, pass-
ords, etc. The users’ certificates are managed by an Execution
PI, as shown in Fig. 9(a). This provides a few methods to register
nd access credentials or generate a new secret, such as a key-pair
hat the user has to authorize by adding them in the authorized
eys of the HPC cluster. The access credentials are stored in
secrets’ storage such as Vault [63]. These credentials will be

dentified by a token attached to the user’s workflow invocation.
his will allow the components involved in the execution to
se these secrets to access the infrastructure on behalf of the
ser, deploy the required components and data, and spawn the
orkflow computations.
Once the credentials are registered, the user only need to

nvoke the endpoint provided at the end of the workflow de-
elopment phase. As a result of this invocation, the deployment
nd execution in federated computing HPC infrastructures is trig-
ered. This functionality is provided, as depicted in Fig. 9, by
he cooperation of several components at different levels. At
he highest level, the Ystia Orchestrator (Yorc) is in charge of
anaging the overall workflow deployment and execution. First,

t retrieves the workflow description (Step 1 in Fig. 9(b)) and
asses the data logistic pipelines to the Data Logistic Service
Step 2 in Fig. 9(b)) to set up the required data movements
uch as the data stage-in and stage-out, or periodical transfers to
ynchronize data produced outside the HPC systems (Step 3b in
ig. 9(b) and Step 2b in Fig. 9(c)). In parallel with the data deploy-
ent, Yorc orchestrates the deployment of the main workflow
omponents in the computing infrastructures and manages their
ifecycle (configuring, starting services) as described in the TOSCA
art in the workflow description (Step 3a in Fig. 9(b)).
This deployment is managed by means of containers that offer

he simplest way to distribute software. However, the creation
nd deployment of the container images will differ depending
n their functionality and target environment. For components
nd software deployed in the Cloud, we follow the traditional
oolchain with images created from generic binary packages pro-
ided by the operating systems. In the case of HPC software, con-
ainers are built according to the target architecture of the HPC
ystem in order to achieve the performance offered by these sys-
ems. In these cases, we propose a combination of the container
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epresent component deployments.
mage build procedures with HPC build systems like Spack [39] or
asybuild [40]. These systems are used to manage the installation
f software for HPC environments facilitating the installation of
he software different compiler tool chains and architectures.
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Introducing them in the container images build procedures will
bring the benefit of the container-based software distribution
while fulfilling the requirements for getting good performance in
HPC systems.
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Regarding resource management, Yorc is in charge of orches-
rating the resource provisioning by contacting the Cloud Man-
ger (such as OpenStack) and deploying the containers as indi-
ated in the TOSCA topology. In the case of HPC clusters, due
o their connectivity and security constraints, the images are
xported to files and transferred to the HPC storage, which will be
eployed as containers at execution time using specialized HPC
ontainer engines such as Singularity [43].
Once the workflow components and initial data have been

eployed, Yorc submits the execution of the main workflow pro-
esses to the HPC infrastructure through UNICORE [64], which is
n charge of managing the federation of HPC compute and data
esources in order to make them available to users in a secure
ay (Step 1 in Fig. 9(c)). At the lowest level, the COMPSs run-
ime [65] will coordinate the invocations of the workflow compo-
ents implemented with the PyCOMPSs task-based programming
odel (Step 2a in Fig. 9(c)). As mentioned earlier, COMPSs sup-
orts several task types which can include HPC simulations, DA
ransformations, etc. The runtime dynamically generates a task-
ependency graph by analysing the existing data dependencies
etween the invocations of tasks defined in the Python code.
he task-graph encodes the existing parallelism of the workflow,
hich can be used to schedule the execution in the resources
lready deployed by Yorc. Based on this scheduling, the COMPSs
untime can interact with the different HPC, DA, and ML runtimes
o coordinate resource usage, deciding which parts can run in
arallel to deliver high overall performance.
However, the performance of the HPC simulations, DA al-

orithms, and/or training or inference DL processes is related
o several input parameters that specify data partitionings and
egrees of parallelism, such as the number of MPI processes,
he data chunk size, and/or training batch. This is usually pro-
ided by the user and their optimal value is decided after a
rial-and-error process. This user decision can be improved by
n AI-assisted system where the optimal configuration (chunk
ize or number of processes) of the different workflow parts is
nferred at runtime based on historical information. Each time a
orkflow is executed, the runtime systems (Yorc and COMPSs)
tore profiling data about the duration and resource usage of
he different workflow tasks. This information, together with
etadata for the dataset and the used execution configuration,
an be used to train an ML model which relates the configuration
o the used resources and the execution time. Then, every time a
ew execution of a workflow is submitted, the runtime systems
an use this model to infer the best workflow configuration for
he given the input dataset and the available resources.

Apart from the dynamic task graph generation, the COMPSs
untime offers several other features that enable different types
f dynamicity in the workflow. For example, it is able to react
o task-failures and exceptions in order to adapt the workflow
ehaviour accordingly [66]. Moreover, it is also able to combine
istinct types of data patterns in the same workflow. For instance,
t supports data streams for communicating multiple tasks, or
etween tasks and the main code. It can be used to create work-
lows, whose computation is adapted to dynamic data sources, or
o track the results of long-lasting computations before finishing
he execution, allowing faster reactions by cancelling unneces-
ary computations or spawning new ones with more relevant
arameters [67].
These functionalities, together with similar features provided

y Yorc at a higher level, enables the possibility of support-
ng workflows with a very dynamic behaviour as described in
hallenge 3.
Finally, with respect to the integration of the data man-

gement and computation, the eFlows4HPC stack provides two

olutions for persistent storage: Hecuba (based on key–value
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databases) and dataClay (object-oriented distributed storage) [68].
These solutions can be leveraged by PyCOMPSs applications to
store application objects as persistent objects in new memory
devices such as NVRAM or SSDs, enabling the keeping of data
after the execution of the application. This changes the paradigm
of persistent storage in HPC, dominated by the file system, to
more flexible approaches. By using persisted objects, applica-
tion patterns such as producer–consumer, in-situ visualization or
analytics, can be easily implemented.

Both solutions, Hecuba and dataClay, implement a common
API that allows programmers to manipulate all the data as reg-
ular Python objects, regardless of whether they are persistent
(stored in disk, NVRAM or similar) or volatile (stored in memory).
They allow decoupling the data view of the user and the data
organization in the storage system, which is defined according to
the underlying storage system and transparently to the program-
mer. In addition, they can execute integrated with PyCOMPSs to
enhance data locality and optimize the mechanism of passing
parameters to tasks. Hence, the proposed data abstraction layer
implemented by Hecuba and dataClay addresses Challenge 4.

4.5. Architectural optimizations within eFlows4HPC

An internal and important aspect within eFlows4HPC is the
actual performance achieved for the execution of the workflows.
Therefore, the project also puts the focus on the identification
and optimization of the time-consuming kernels (understood as
independent pieces of code with a well-defined functionality).
The optimization process takes into account not only raw per-
formance but also performance-per-Watt. Indeed, new energy-
efficient heterogeneous architectures currently being deployed in
HPC and DA ecosystems will be targeted for the workflow appli-
cations. The set of hardware solutions inspected in the project
ranges from pre-exascale systems, such as MareNostrum 5, to
high-end FPGA devices.

As an example, in the field of workflows using AI-specific
components, the project focuses on developing specific kernel
optimizations for heterogeneous architectures. One example is
the optimization of convolution operations for DL training and
inference. In this direction, a dataflow-oriented programming
environment, such as that provided in HLS by Xilinx, enables
the design of a pipeline-oriented kernel where throughput is
maximized, latency is minimized and, in principle, higher energy
efficiency is achieved.

A similar approach is followed in the direction of simulation-
oriented HPC applications: specific kernels can be identified and
optimized for new emerging technologies, such as RISC-V proces-
sors. In that aspect, the European Processor Initiative (EPI) [69]
is taken into account with the deployment of RISC-V architec-
tures, emulated on the Marenostrum Exascale Emulation Platform
(MEEP) [70].

Finally, GPU-based architectures are also considered for
performance improvement of specific AI-related optimizations,
mostly for distributed training as required by the project work-
flows.

5. Discussion

One of they key aspects of our proposal is the concept of
HPCWaaS. It applies the Function-as-a-Service (FaaS) model to
the execution of complex workflows in hybrid HPC-Cloud sys-
tems. FaaS offers the functionality of exposing functions in the
Cloud without dealing with the deployment and execution de-
tails in the Cloud. In this model, a function is registered to
the FaaS platform in the Cloud and other users can invoke it

from anywhere using a REST API. This deployment-execution
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odel is the concept that we port to the HPC environment. How-
ver, there are important differences, such as the computation
ranularity and the complexity in the workflow development
nd deployment. Current commercial or open-source FaaS ap-
roaches, which enable deployment on private data centres, are
ocused on fine-grain computations (duration is restricted to a
ew minutes) and do not support using multiple nodes to host
function execution. Moreover, the HPC environments are re-

tricted environments, and system administrators are reluctant
o install this type of services.

In order to tackle all these constraints, we propose to build
PCWaaS on top of the proposed software stack designed to
perate with HPC environments instead of trying to adapt one
f the existing Cloud FaaS tools.
A similar concept is the Workflow-as-a-Service (WaaS or
faaS). It was initially introduced in [71] and several propos-

ls have been described in [29,72–75]. These proposals focus
n migrating traditional scientific workflows as services in the
loud. This migration has been performed in two ways: one
edicated to integrating the Workflow Management Systems
WMS) with Infrastructure-as-a-Service (IaaS) offerings where
omputations in the workflows are scheduled in VMs; and an
lternative one focused on exposing the WMS features as a
ervice, where users can submit the workflows and the system
chedules its tasks in the available VMs. In our approach, we deal
ith complex workflows that combine the invocation of several
omputational tasks. These computations require the integration
f a variety of frameworks deployed and configured in hybrid
istributed environments which are difficult to express in tra-
itional workflow languages such as CWL or WDL. This is the
eason why we propose a new way to describe workflows at
ifferent levels, where TOSCA is located in the upper level to
pecify the workflows deployment topology. An alternative to
ndicate the workflow deployment with Kubernetes is proposed
n the EVOLVE project [57]. Despite this solution seeming to
over the same deployment requirements as our proposal, this
ontainer environment is rarely deployed in HPC clusters because
t collides with the traditional HPC resource managers and queue
ystems.
TOSCA and one of its orchestrators (Yorc) are also used in

rojects such as LEXIS [55] and ACROSS [58] for similar function-
lities. However, we propose a multi-level orchestration approach
ombining TOSCA with a task-based programming model (Py-
OMPSs) and the Data Logistic Pipelines that allow developers
o describe all the operations involved in a workflow. As ex-
lained in Section 4.3, TOSCA is used for high-level deployment
rchestration, the Data Logistic Pipelines is used to describe data
ollection and integration, and PyCOMPSs for the lower-level
ynamic workflow execution integrating in-situ AI/ML steps. This
ombined description enables the eFlows4HPC components to
erform a reusable and fully automated workflow deployment
nd execution from scratch.
Regarding dynamicity in scientific workflows, this aspect has

een previously addressed with the concept of workflow steer-
ng [76]. It consists of providing users with a kind of interactivity
o perform fine-tune changes in the workflow during its exe-
ution. These changes are done by steering actions that may
ignificantly improve the performance of the system reaching
he same or better resource faster or using less resources. In
ur case, the PyCOMPSs programming model offers to developers
he possibility to program these steering actions as part of the
orkflow and automatically apply them during its execution.
s explained in Section 4.4, PyCOMPSs provides mechanisms for
ndicating failure reaction policies that inform the runtime what
o do with the rest of the workflow when a task fails. It also pro-

ides exception management in parallel distributed workflows,
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which automatically cancels tasks and spawns new ones when an
exceptional event occurs during the execution. Finally, PyCOMPSs
allows streaming communication between different parts of a
workflow that can be used to evaluate intermediate results and
enables the implementation of in-situ optimization algorithms
which can be combined with AI/ML techniques.

Regarding storage, the use of key–value and object store tech-
nologies under an object-oriented Python interface facilitate pro-
grammability of workflows, also avoiding serializations and dese-
rializations to files in order to share data between different steps.
Additionally, adding this data abstraction layer provides the abil-
ity to transparently optimize data access thanks to new storage
devices, such as persistent memories. To add to a workflow al-
ready existing applications that use specific libraries or interfaces
to access structured data (for example, HDF5 or NetCDF), our
proposal is to integrate our storage technologies with these inter-
faces. With this approach, these applications could benefit from
our software stack transparently to the programmer. However, to
support applications with an access pattern that cannot benefit
from our storage technologies, we also allow the utilization of
traditional POSIX file systems, so the utilization of both types of
storage systems can be combined in the same workflow.

6. Conclusions

In recent years HPC, along with DA and AI, has evolved pro-
viding the user community with powerful tools to tackle their
application problems. However, the lack of programming envi-
ronments for the development of workflows that include all three
aspects is limiting their convergence.

We have identified four main challenges that need to be
overcome to achieve this convergence. First, the need for tools
that foster openness, transparency, reusability, and reproducibil-
ity of the workflows and their results. Such tools are available
in cloud environments but cannot be directly used in HPC sys-
tems. Therefore, new tools should be built, or adapted from
existing ones, to offer these functionalities to HPC users, while
complying with the constraints of HPC policies. Second, the de-
velopment of complex workflows should be made easier while
keeping their capabilities and performance. New methodologies
are required to support the development of these workflows
and simultaneously bridge the gap with the current and future
heterogeneous infrastructures. Third, workflow managers must
support dynamicity beyond static pipelines and simple static
graphs. The engines should accommodate dynamic shifts in the
requested computation according to changes in the input data,
computation with urgency demands, and dynamic changes in the
workflow executions due to eager analysis of results, exceptions
or software faults. In addition, the engine should be able to
leverage elastic resource management to deal with changes in
the instant workload of the workflow. The fourth challenge comes
from the data aspects and their integration with the computation.
Similarly to the programming model, HPC and DA have relied
on different solutions to store the data. Solutions that integrate
the alternative data practices and offer an abstraction layer are
necessary. Indeed, with the appearance of new storage devices,
the solutions should leverage and aggregate them in this single
data layer.

Taking into account these challenges, we have proposed an
architecture for a workflows software stack that offers tools to
simplify the development, deployment, and execution of the type
of complex workflows that we have described. In addition to
the software stack, the HPC Workflows-as-a-Service (HPCWaaS)
paradigm has been proposed as a mechanism to enable reuse,
easy deployment, execution and reproduction of the workflow.
The paradigm has been thought as a mechanism to lower the bar-
rier toward the adoption of HPC systems and widen the access to
a larger community of users. These ideas are under development
in the EuroHPC eFlows4HPC project.
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