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Earthquake forecasting and prediction have long and in some cases sordid histories but recent work has 
rekindled interest based on advances in early warning, hazard assessment for induced seismicity and 
successful prediction of laboratory earthquakes. In the lab, frictional stick-slip events provide an analog 
for earthquakes and the seismic cycle. Labquakes are also ideal targets for machine learning (ML) because 
they can be produced in long sequences under controlled conditions. Indeed, recent works show that ML 
can predict several aspects of labquakes using fault zone acoustic emissions (AE). Here, we extend these 
works with: 1) deep learning (DL) methods for labquake prediction, 2) by introducing an autoregressive 
(AR) forecasting DL method to predict fault zone shear stress, and 3) by expanding the range of lab 
fault zones studied. The AR methods allow forecasting stress at future times via iterative predictions 
using previous measurements. Our DL methods outperform existing ML models and can predict based on 
limited training. We also explore forecasts beyond a single seismic cycle for aperiodic failure. We describe 
significant improvements to existing methods of labquake prediction and demonstrate: 1) that DL models 
based on Long-Short Term Memory and Convolution Neural Networks predict labquakes under conditions 
including pre-seismic creep, aperiodic events and alternating slow/fast events and 2) that fault zone stress 
can be predicted with fidelity, confirming that acoustic energy is a fingerprint of fault zone stress. Our 
DL methods predict time to start of failure (TTsF) and time to the end of Failure (TTeF) for labquakes. 
Interestingly, TTeF is successfully predicted in all seismic cycles, while the TTsF prediction varies with the 
amount of preseismic fault creep. We report AR methods to forecast the evolution of fault stress using 
three sequence modelling frameworks: LSTM, Temporal Convolution Network and Transformer Network. 
AR forecasting is distinct from existing predictive models, which predict only a target variable at a specific 
time. The results for forecasting beyond a single seismic cycle are limited but encouraging. Our ML/DL 
models outperform the state-of-the-art and our autoregressive model represents a novel framework that 
could enhance current methods of earthquake forecasting.

© 2022 Published by Elsevier B.V.
1. Introduction

Earthquake forecasting and prediction have long been of in-
terest because of the obvious practical and societal implications. 
While research has waxed and waned with many failed direc-
tions, recent work on early warning systems, hazard assessment, 
and precursors has provided renewed interest (Allen and Stogaitis, 
2022; Ben-Zion and Lyakhovsky, 2001; Beroza et al., 2021; Wang et 
al., 2021; Denolle et al., 2014; Kohler et al., 2020; Kong et al., 2018; 
Pritchard et al., 2020). Laboratory work has fuelled this interest 
via: 1) the discovery that machine-learning can predict several as-
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pects of lab earthquakes (Rouet-Leduc et al., 2017, 2018; Johnson 
et al., 2021) and 2) recent work on the mechanisms of precur-
sors to labquakes that adds to earlier studies (Shreedharan et al., 
2021; Bolton et al., 2021; Dieterich, 1978; Scholz, 1968; Dresen et 
al., 2020; Scuderi et al., 2016; Hedayat et al., 2014; Acosta et al., 
2019; Johsnon et al., 2013; Main et al., 1989, 1992; Thompson et 
al., 2005; Passelègue et al., 2017).

Recent works show that acoustic emissions can be used to pre-
dict labquake failure time, fault zone shear stress, and labquake 
stress drop (Rouet-Leduc et al., 2017, 2018; Lubbers et al., 2018; 
Hulbert et al., 2018; Bolton et al., 2020). Existing works also show 
that seismic radiation from lab faults scales with time to failure 
and that its recent history can be used to predict the current fault 
zone stress state (Bolton et al., 2019; Corbi et al., 2019; Jasper-
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son et al., 2021) with both active and passive seismic monitoring 
of the fault zone (Shreedharan et al., 2021; Shokouhi et al., 2021). 
These studies show that both passive signals coming from the fault 
zone and active acoustic signals passing through the fault can be 
used to predict failure. The active source signals record changes 
in fault properties prior to failure and thus offer the possibility of 
incorporating physics-based models (i.e., of asperity contact me-
chanics) in the ML/DL algorithm. Other studies show that ML can 
be used to connect lab AE events with fault zone microstructure 
(Chaipornkaew et al., 2022; Trugman et al., 2020; Ma et al., 2021) 
and that ML methods can be augmented by directly incorporat-
ing physics into the prediction models (Raissi et al., 2019). Here, 
we extend this approach to investigate the use of DL methods and 
also to introduce a new approach based on autoregressive fore-
casting. The AR methods are distinct because they predict future 
time horizons using present and past values rather than the cur-
rent time based on previous values.

Recent lab studies have also identified reliable precursors to 
failure in connection with labquake prediction. These include 
strong relations between acoustic transmissivity, elastic proper-
ties and fault strength (Schubnel et al., 2006; Nagata et al., 2008; 
Scuderi et al., 2016; Tinti et al., 2016; Shreedharan et al., 2020, 
2021; Bolton et al., 2021; Rivière et al., 2018). Other previous 
studies provided insight on labquake nucleation processes and the 
evolution of frequency-magnitude (b-value) statistics during the 
seismic-cycle prior to failure (Dresen et al., 2020; Rivière et al., 
2018; Scholz, 2015; Goebel et al., 2017; Kwiatek et al., 2014; La-
tour et al., 2013; Shreedharan et al., 2020; Johnson et al., 2021; 
McBeck et al., 2020; McLaskey and Lockner, 2014). These stud-
ies provide a framework for understanding rupture nucleation and 
therefore how machine learning can predict labquakes using statis-
tics of the continuous AE signal emanating from lab faults (Hulbert 
et al., 2018). Previous works have used ML to predict geodetic 
signals of episodic tremor and slip and other data from tectonic 
faults (Hulbert et al., 2020; Johnson et al., 2020; Wang et al., 2021; 
McBrearty et al., 2019).

The majority of existing ML studies of labquakes use decision-
tree-based algorithms and a gradient boosting framework (e.g., 
XGBoost model). In such studies models are built and errors are 
minimized by gradient descent methods using multiple learning 
algorithms that iteratively improve predictive performance beyond 
that of a single classical learning algorithm. These studies show 
that it is possible to successfully predict labquakes with reason-
able accuracy. The success of the original approaches was based 
on continuous records of AE events broadcast from the lab fault 
zones. These AE represent a form of lab microearthquakes. AE are 
also detected during stable frictional slip. In this case, their ori-
gin is less clear, as they could represent microfracture events or 
micro-instabilities that do not impact the macroscopic strength 
(and therefore they do not appear as a stress drop).

Despite the dramatic recent advances in lab earthquake pre-
diction our understanding of how and why these methods work 
is far from complete. Simple questions remain such as how the 
AE signal scales with labquake timing and magnitude and how AE 
signal characteristics encode fault zone shear stress even during 
aperiodic failure. Here, we address these questions by exploring a 
wider range of ML/DL methods. We also address the open discus-
sion regarding the predictability of earthquakes and if faults slip 
deterministically or stochastically.

We explore two different problems and three families of Neu-
ral Network (NN) architectures. The two problems refer to two 
different tasks: prediction and forecasting. The former has been 
addressed in previous works (Hulbert et al., 2018; Rouet-Leduc et 
al., 2017), and the main goal is how to predict the present value 
of target variables (e.g., shear stress) given past information and 
some memory of sequence evolution. With the second problem we 
2

introduce a novel autoregressive (AR) forecasting approach to pre-
dict not only the present value of the target variable, but also its 
step-by-step future evolution.

The three families of NN architectures adopted in this paper are 
Long short-term memory (LSTM), Temporal Convolutional Network 
(TCN), and Transformer Network (TF). LSTM is a Recurrent Neural 
Network (RNN) designed to capture long-range data dependencies 
in time series and sequential data (Hochreiter and Schmidhuber, 
1997). RNNs are Deep Neural Networks (DNNs) that recursively 
update an internal status (this may represent the current status of 
the fault) from which predictions are made. This approach provides 
the capability of modelling sequences of events. LSTM is designed 
to solve gradient vanishing problems of RNN’s for long-term pre-
diction. LSTM has shown great potential for modelling seismic time 
series (Johnson et al., 2021). TCN, one of the simplest NN architec-
tures for sequence modelling, is a Convolutional Neural Network 
(CNN) with adjustments that allow longer sequences by addressing 
the relation between the depth and the length of the considered 
input sequence. Because it involves convolution, TCN may be ap-
plied to sequences of variable length. The TF architecture is the 
most recent and it has shown promising results for earthquake 
detection (Mousavi et al., 2020). It’s based on mechanisms of self-
attention and is effective in capturing long-term dependencies in 
a variety of sequence modelling tasks (Vaswani et al., 2017). One 
notable weakness of TF is its complexity and that it requires sig-
nificantly larger datasets to be trained than other architectures.

2. Laboratory earthquake experiments

We use data from experiments conducted in the double-direct 
shear (DDS) configuration with a biaxial deformation machine (see 
Fig. 1). The DDS experiments consist of two identical fault zones 
sheared simultaneously between three loading blocks. Two station-
ary side blocks are supported from below and a central block is 
driven between them to impose shear.

Our experiments were performed following a standard pro-
cedure that was developed to obtain highly reproducible results 
(Karner and Marone, 1998; Bolton et al., 2020). First, fault normal 
stress was imposed with a servo-controlled hydraulic system and 
maintained at a controlled value throughout shear. Then, fault zone 
shear was imposed by driving the central block of the DDS config-
uration at a constant displacement rate, thus imposing a constant 
shear strain rate within the fault zone. Fault zones were composed 
of granular materials that began as 3-mm thick layers of nomi-
nal contact area 10 × 10 cm2. We use data from two types of lab 
fault zones: 1) glass beads (experiment p4581) and 2) quartz pow-
der, (experiments p4679 and p5198). The glass beads range in size 
from 100-150 μm and for these experiments the normal stress is 
held below 10 MPa so that grain fracturing is minimal (e.g., Mair 
et al., 2002). The quartz powder has a mean particle size of 10 μm 
(Bolton et al., 2020) and a power-law particle size distribution that 
does not change significantly with shear for the stresses of our 
experiments. The fault normal stress was 7 MPa for experiment 
p4679 and it ranged from 6 to 11 MPa in experiment p5198 and 
from 2 to 8 MPa in p4581. These experiments exhibit a range of 
stick-slip behaviours from fast to slow (Leeman et al., 2016) and 
have seismic cycles that range from highly periodic to complex and 
aperiodic.

We study a range of frictional sliding behaviours from stable 
sliding to highly unstable slip. In the framework of rate-and-state 
friction this range of behaviours is understood in terms of the ra-
tio of loading stiffness to a critical rate of fault weakening with 
slip, which scales with normal stress (Leeman et al., 2016). Each 
experiment includes hundreds of lab earthquakes (Fig. S1). By ad-
justing the loading stiffness and/or the fault normal stress, the 
same fault gouge can host slow-slip events, fast lab earthquakes, 
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Fig. 1. Left: schematic of the double direct shear configuration used for the experiments. Granular layers simulate an earthquake fault and are sheared between rough surfaces. 
Acoustic signals are recorded with Piezo-Electric Transducers (PZTs) embedded in the loading blocks. Faults are loaded with a normal stress that is maintained constant via 
servo control. The central block is driven downward at constant displacement rate to produce frictional shear. Acoustic emission (AE) data are recorded continuously at a 
sampling rate of 4 MHz. Right: typical data for shear stress and AE coming from the fault zone. Zoomed window above shows data from a lab earthquake. Note that the 
acoustic signal differs for the large labquake compared to the smaller event that follows (near 4459 s).
Table 1
Results for DL prediction of using the continuous lab seismic signal. For each target 
we show goodness of fit (GOF) in terms of the coefficient of determination R2 and 
the root mean square error RSME. Shear stress is reasonably well predicted for each 
experiment. Of the three targets, TTsF is the hardest to predict. Experiment p4581 
is the hardest one to predict.

Target GOF p4581 p5198 p4679
Glass Quartz Quartz
beads powder powder

Shear Stress R2 0.9254 0.9884 0.9574
RMSE 0.0670 0.0305 0.0519

Time To Start Of Failures R2 0.6317 0.9313 0.8229
RMSE 0.15844 0.0728 0.1087

Time To End Of Failures R2 0.8721 0.9697 0.9200
RMSE 0.0972 0.0476 0.0723

or complex, quasi-periodically events (Leeman et al., 2016; Scud-
eri et al., 2017; Mele Veedu et al., 2020). Mechanical data of stress 
and strain are recorded at 1 kHz and acoustic signals are recorded 
at 4 MHz using lead-zircon-titanate piezoceramic sensors embed-
ded in the DDS (Fig. 1) (Rivière et al., 2018; Bolton et al., 2020). 
A high-precision signal is used to synchronize the mechanical and 
acoustic data.

In the lab three stages of the seismic cycle can be identified: 
an initial –interseismic– stage of stress increase, a stage with pre-
seismic slip and then a last stage with a co-seismic stress drop 
(Figs. 1 and 2). The interseismic period of the lab seismic cycle is 
identified from the initial, linear-elastic portion of the curve, where 
load increases in proportion to stiffness. Pre-seismic slip is marked 
by a deviation from elastic loading. This typically corresponds to a 
relatively short time interval preceding failure and seismic energy 
release. Pre-seismic slip is part of the labquake nucleation pro-
cess. We study data from three experiments chosen to represent 
a range of lab earthquake behaviours. In some cases the events are 
quasi-periodic, as for experiment p5198 (Fig. 2 a), and in others, 
as for experiment p4679 (Fig. 2 d) they are aperiodic with alter-
nating slower and faster events. Experiments like p4679 often have 
complex stress evolution throughout the lab seismic cycle. Some of 
this complexity can be seen at the scale of the whole experiment 
(Fig. S1) and other aspects of it are visible only at a larger scale 
(Fig. 2). In the case of p4581, the pre-seismic phase of the seis-
mic cycle is characterized by almost no pre-slip prior to failure. 
The acoustic emission record for this type of experiment is dis-
tinct because the signal variance is quite low until just prior to the 
labquake (Fig. S2). Nonetheless there is still AE activity before the 
3

main labquake. In contrast, experiment p5198 shows significant 
pre-seismic slip before the peak stress and failure (see Fig. 2). Both 
of these experiments show somewhat regular, quasi-periodic seis-
mic cycles (Figs. 2 and S2). The third experiment (p4679) shows 
aperiodic seismic cycles that are much more challenging to pre-
dict. For each experiment we focus on a data segment of 30 to 50 
events shown in the red boxes in Fig. S1.

3. Prediction and forecasting models

We use DNNs by adopting three of the most well-known se-
quence modelling approaches: LSTM (Long short-term memory) 
(Hochreiter and Schmidhuber, 1997), TCN (Temporal Convolutional 
Network) (Bai et al., 2018) and TF (Transformer Network) (Vaswani 
et al., 2017). Figs. 3 and 4 and Appendix 9.1 provide a summary of 
our models.

3.1. Input, output and model performance

We use measurements of fault zone shear stress and radiated 
elastic energy from AE as ML features. Model input consists of sta-
tistical measures of the continuous seismic data generated from AE 
(for the prediction task, see Section 3.2) or the lab measurements 
of shear stress (for forecasting, see Section 3.3). The model outputs 
(different for prediction and forecasting) are compared to the input 
measurements of ground truth. Because we are dealing with time 
series of physical processes it is inappropriate to shuffle data in 
time. This limitation holds for both our prediction and forecasting 
tasks.

As in Rouet-Leduc et al. (2017), we consider the variance of the 
continuous acoustic signal as the most important ML feature for 
the prediction task. An example of raw data for the acoustic signal 
and shear stress is shown in Fig. 1 while the variance is shown in 
Fig. 2.

For the ML prediction task, our model predicts as output, often 
called target, the Shear Stress and/or the Time To Failure (TTF), de-
fined as the time remaining before the next labquake, derived from 
the shear stress time series. We predict both the time of start of 
failure (TTsF) and end of failure (TTeF). The former derives from 
the time of maximum shear stress preceding labquakes (Fig. 2, or-
ange line). That is, TTsF is 0 at the maximum shear stress and 
it increases backward in time within the lab seismic cycle. TTeF 
is derived from the minimum shear stress after an event (Fig. 2, 
red line). TTeF is 0 at the stress minimum and it increases back-
ward in time within the lab seismic cycle. We show both TTsF 
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Fig. 2. Data for a series of labquakes showing the training and testing phases. (a) Quasi-periodic events during experiment p5198. Panels (b) and (c) are zooms of (a) and 
(d), respectively, but also show time to the start of failure TTsF (i.e. time of maximum shear stress preceding labquakes) and time to the end of failure TTeF (i.e. time of 
minimum shear stress after events). (d) Labquakes from experiment p4679 showing complex behaviour including period doubling and both fast and slow events. For Panels 
(a) and (d), variance of the continuous seismic data is plotted above shear stress. Note that we just plot the variance of Channel 1’s AE; the variance of Channel 2 is similar. 
Gray and pink shading show examples of training and testing data split (note that we use a different split for prediction vs. forecasting). (For interpretation of the colours in 
the figure(s), the reader is referred to the web version of this article.)
and TTeF along with shear stress and the variance of the contin-
uous AE record for several lab seismic cycles in Fig. 2. Note here 
the stepwise nature of TTsF and TTeF as linear functions that our 
models are designed to predict. Note also the differences in the 
seismic cycles for our experiments: p5198 shows a somewhat pe-
riodic sequence of labquakes with lower acoustic energy compared 
4

to p4679, which has complex seismic cycles and greater acoustic 
energy release (Fig. 2 and S2).

To calculate AE statistics and determine features for our ML al-
gorithms, we use a moving window on the continuous data which 
were acquired at 4 MHz (Table S1). We adjust this window for 
each experiment based on the seismic cycle duration (Fig. 2), so as 
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Fig. 3. Schematic model of our combined LSTM and CNN architectures. LSTM scans the input to produce an embedding (lowest level above input). The LSTM layer is followed 
by three successive CNN layers (see far left) that make the predictions. The input for each layer is the output of the previous layer. The LSTM representation (centre and 
right side) is unrolled in time, which means that each ẑt (hidden state z at time t) is predicted by considering information coming from the whole sequence from 0 to t. 
Thus, the LSTM output starts from k, which represents the LSTM memory length. Further information, as well as discussion about best k value selection, are in Section 4.1.1. 
The convolutional layers are used to extract features from the input signal (z in this case). The mathematical operation of convolution is performed between the input signal 
and a convolutional sliding filter of dimension 2. Here, the output of each layer is called a feature map, which gives information about the signal features. Red and pink 
denote input; green denotes output. Blue denotes hidden states and orange denotes the connections and components inside hidden states. Further details are provided in the 
Supplementary Section 9.1.
to preserve all of the shear stress evolution while not losing small 
differences between various cycles. In particular, we adopt win-
dow lengths similar to those used previously (e.g., Rouet-Leduc et 
al., 2018; Hulbert et al., 2018) so that we can make reliable com-
parisons of model performance.

In previous work they use a so called “subwindows” procedure 
to address non-single valued functions. This means that one com-
putes the ML features from the continuous seismic signal in two, 
slightly offset time windows. This is done because the targets (both 
shear stress and TTF) are symmetric in time within the lab seismic 
cycle. By using two subwindows the algorithm is able to differ-
entiate between the loading and the slipping part of the seismic 
cycle. However, our DL models provide a more robust solution to 
this problem and one that has much more transportability. We do 
not need subwindows because the LSTM layer carries information 
about where we are within the seismic cycle. Thus we just use one 
window for each AE recording.

For our forecasting work we use shear stress measurements, 
with past data as input and future times as target output. For fore-
casting, we do not use TTF data but rather forecast shear stress and 
therefore failure events directly from the shear stress. We smooth 
the signal in this case too, using a running average window. Then 
we reduce the resolution to make the length of the sequences 
suitable for our ML models (details in Table S1). In particular, we 
sub-sample the signal by a factor of 100 (upon smoothing to limit 
aliasing).

A typical ML protocol requires at least two subsets of data, one 
for training, to learn the model parameters, and one for testing, to 
measure the generalizability of the results to unseen data (Figs. 2
and S2). We also use a validation dataset to evaluate and optimize 
the model fit during training and to avoid overfitting. Validation 
is done with a small portion of data (generally 10%) not used for 
training nor for testing. The split among the three segments pre-
serves the statistical properties of the dataset.

A misfit (loss) function is required to build the ML algorithm 
and optimize the model parameter weights. We use a root mean 
squared error (RMSE) loss function to compare output prediction 
and ground truth data. From this comparison, we iteratively ad-
just model parameters (weights and biases) to minimize the loss. 
5

Table 2
Results for autoregressive forecasting of fault zone shear stress showing a compar-
ison for each experiment and three models. The goodness of fit (GOF) values are 
averages computed for all the segments in the testing data. The GOF values vary 
among the segments as described in the text.

Model GOF p4581 p5198 p4679
Glass Quartz Quartz
beads powder powder

TCN R2 0.3935 0.9419 0.8273
RMSE 0.1245 0.0549 0.0732

LSTM R2 −4.5193 0.8021 −0.2704
RMSE 0.1521 0.0904 0.1634

TF R2 0.1172 0.8914 0.7940
RMSE 0.1460 0.0707 0.0738

Features and target are generally normalized because their ranges 
typically vary widely and because normalization helps DL algo-
rithms converge with better results. The final performance of our 
ML/DL models is evaluated with respect to ground truth in the 
form of our lab data (Table 1 and 2). For evaluation metrics we use 
both the coefficient of determination R2 and the RMSE. Summariz-
ing, RMSE is used as loss, following common practise in ML, but 
also as a test metric representing the discrepancy between model 
output and ground truth.

3.2. Prediction

3.2.1. Problem definition
Our goal is to predict the present value of shear stress or TTF, 

as target variables (e.g., yt where t is the present time) given cur-
rent information about AE, as an input variable, (e.g., xt ) and its 
recent history (e.g. from xt−k to xt−1). We note that the tempo-
ral evolution of the AE signal during the lab seismic cycle differs 
for our range of experiments, in particular during the creep phase 
preceding labquakes (Figs. 2 and S2). Previous works have ob-
served that AE statistics (in particular signal amplitude variance 
and higher-order moments) are highly effective at predicting lab-
oratory earthquakes (Rouet-Leduc et al., 2017). Thus we begin by 
following this approach. However, whereas previous works focused 
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Fig. 4. Schematic showing how TCN, LSTM and TF are used for our forecasting models. In each case, red denotes input, green denotes output, blue denotes hidden states, and 
orange denotes the connections and components within hidden states. These models are autoregressive (AR). Thus, the inputs are prediction x̂T +1, coming from the previous 
iteration. Further details are provided in the Supplementary Section 9.1.
on data from only one acoustic sensor, we use data from two sen-
sors, one on either side of the DDS assembly (Fig. 1). This was 
done by simply using each data stream as a separate input for 
the continuous seismic signal. Using multiple sensors will clearly 
be valuable when these techniques are applied to tectonic faults 
and/or to event location. We did limited testing of the lab data 
and did not see dramatic improvement over what one would ex-
pect by having additional data to constrain the model loss during 
training.

We consider for the ML process two channels of AE variance 
x as input, from time t − k to time t , and we predict the tar-
6

get y (shear stress or TTF) at time t using the input variable 
and its recent history. We want to learn the ideal function f that 
maps our input x into the desired output y. With ML we can ap-
proximate that function with f̂ , leveraging input data, and then 
approximating the variable of interest ŷ. In particular, the estima-
tor f̂ (xt−k, ..., xt) makes predictions for sample yt . The quantity k
determines the length of the input sequence (k + 1 in this case) 
and represents the LSTM’s memory in the internal state. We chose 
the hyperparameter k using an ad hoc iterative approach (Sec-
tion 4.1.1).
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3.2.2. Deep learning model
We use a DL model based on the implementation of Levin-

son et al. (https://www.kaggle .com /c /LANL-Earthquake -Prediction /
overview https://www.linkedin .com /pulse /my-team -won -20000-
1st -place -kaggles -earthquake -corey-levinson/). This model, from 
Team “The Zoo,” won the Kaggle competition for lab earthquake 
prediction (Johnson et al., 2021). We optimize the model for 
our purposes, including varying hyperparameters and other mi-
nor changes, i.e. we adapt the model to allow it to predict one 
or more targets, as desired. The modified hyperparameters are: 
1) using misfit (loss) of ‘mean squared error’ instead of ‘mean 
absolute error’, 2) in model.compile(): we disregard the parame-
ter loss_weights, that is set to “none”, because our model doesn’t 
use a multitarget approach, and 3) in callbacks: monitor=’val_loss’, 
mode=’min’ instead of monitor=’val_regressor_mean_absolute_er-
ror’

As shown in Fig. 3, our architecture is a combination of an 
LSTM layer, which scans the input sequence and produces an em-
bedding, and three stacked convolution (CNN) layers (Fig. 3). This 
LSTM + CNN architecture extracts the patterns of the sequence and 
predicts the target. We predict the target for each time t separately, 
not as a sequence. Therefore, it is sufficient to specify the number 
of targets and thus we predict N targets for each time step. The 
model has a total of 421277 parameters. We implement the model 
in Keras (https://keras .io/), an open-source software library that 
acts as an interface for the TensorFlow machine learning library 
(https://www.tensorflow.org /about). We used Keras to be consis-
tent with the work of Levinson et al.

3.3. Forecasting

3.3.1. Problem definition
Autoregressive forecasting methods are distinct from existing 

predictive models. They predict not only the current state of the 
target (e.g. yt , where t is the present time), but also future steps 
(e.g. from yt+1 to yt+N , where N is the length of the sequence 
to predict) given past information (e.g. from xt−k to xt−1). In par-
ticular, in the forecasting problem the input and output variables 
need to be of the same nature; that is, we can input shear stress 
data from time t − k to t − 1 and predict shear stress in the future 
from time t to t + N . This type of DL model uses an autoregres-
sive technique (AR) in which regression-based training occurs on 
the input variable itself. Autoregressive models predict their own 
input features one step at a time and keep predicting longer-
term future horizons by using the previous output as input for the 
next step (Fig. 4). The estimator f̂ (xt−k, ..., xt−1) makes predictions 
for samples x̂t from measurements of the target xt−k, ..., xt−1 and 
continues predicting autoregressively x̂t+1, ̂xt+2, ..., ̂xt+N , using the 
previous outputs x̂t , ̂xt+1, ..., ̂xt+N−1.

This proceeds iteratively as:

STEP 0 : f̂ (xt−k, ..., xt−1) = x̂t

STEP 1 : f̂ (xt−k+1, ..., xt−1, x̂t) = x̂t+1

...

STEP i : f̂ (xt−k+i, ..., xt−1, x̂t, ..., x̂t−1+i) = x̂t+i

where i = 0, ..., N . During AR training we apply the Teacher forcing 
technique. Teacher forcing is known to introduce a so-called expo-
sure bias (He et al., 2019), since the training procedure focuses 
on predicting the next step, while at inference the model predicts 
from history and from its own (auto-regressive) predictions. How-
ever, it has been shown that the exposure bias may effectively be 
neglected in most cases (He et al., 2019).
7

With our use of teacher forcing, the prediction at time t + 1
uses ground truth at t rather than the prediction of t , and proceeds 
iteratively as:

STEP 0 : f̂ (xt−k, ..., xt−1) = x̂t

STEP 1 : f̂ (xt−k+1, ..., xt−1, xt) = x̂t+1

...

STEP i : f̂ (xt−k+i, ..., xt−1, xt, ..., xt−1+i) = x̂t+i

Thus, we introduce and accept differences between the train 
and test protocol (i.e., applying the “teacher-forcing” during train-
ing) but we still leverage the full data set. This training is more 
efficient because data are more informative than the predicted 
values. Model validation and testing are done without teaching-
forcing, because we lack ground truth in those cases. The AR ap-
proach has several advantages. First, it is self-supervised and does 
not require labelling. This also extends to TTF: in fact, TTF is com-
puted from the actual stress time series. So it is computed from 
the actual sequence of stress values for the (self-supervised) train-
ing and it is computed from the forecast stress values at test. Since 
TTF is a quantity that is manually built, this may be prone to am-
biguity due to pre-processing. Also, AR has the potential to predict 
beyond the TTF estimates, by predicting multiple cycles into the 
future.

For AR training we set the time interval for input history k
(from xt−k to xt−1) as the “steps in” variable. Then to establish 
the prediction time (from yt to yt+N ) we use length N as the 
“steps out” variable. The values of k and N for training are also 
used for validation and testing. While it is possible to increase N
and extend the forecast horizon, we expect a deterioration in per-
formance for values greater than the N used for training, and we 
explore such work below. We implemented the AR work in Py-
torch, an open source machine learning library based on the Torch 
library (https://pytorch .org/). Additional details of the procedure 
are provided in the Supplement.

3.3.2. Forecasting with LSTM
A key component of an LSTM (Fig. 4a) is the memory cell that 

regulates information flow using three gates (i.e., Forget gate, Input 
gate, Output gate). The Forget gate deletes useless information by 
not releasing it to the next stage. The Input gate regulates new in-
formation into the network. The Output gate decides which part of 
the memory to output from the cell. During the training process, 
inputs and model weights pass to all gates, which in turn are con-
nected to the self-recurrent memory cell (Fig. 4a). Our model has 
3 stacked layers with size 300, for a total of 1808701 parameters 
(see Supplement 9.1.2 for details).

3.3.3. Forecasting with Temporal Convolutional Networks (TCN)
Temporal Convolutional Networks (TCN) (Fig. 4b) are Convolu-

tional Neural Networks (CNN) that have been adopted for sequence 
modelling because of their performance (Dessì and Baroni, 2019). 
TCN consists of causal and dilated 1D convolutional layers with 
the same input and output lengths (Bai et al., 2018). Here, the 
term causal refers to the fact that convolution is applied only with 
the present and past elements but not the future. The term dila-
tion in the context of a convolutional layer refers to the distance 
between the elements of the input sequence that are used to com-
pute one entry of the output sequence: this increases the receptive 
field in each layer, making it possible to model long temporal pat-
terns. In sequence modelling, TCN can be viewed as the process of 
sliding a 1D-window over the sequence to predict the part of the 
sequence with the length of the receptive field, using the chosen 
kernel. Such predictions are passed to the subsequent layers and 
the procedure continues until the receptive field has the size of 

https://www.kaggle.com/c/LANL-Earthquake-Prediction/overview
https://www.kaggle.com/c/LANL-Earthquake-Prediction/overview
https://www.linkedin.com/pulse/my-team-won-20000-1st-place-kaggles-earthquake-corey-levinson/
https://www.linkedin.com/pulse/my-team-won-20000-1st-place-kaggles-earthquake-corey-levinson/
https://keras.io/
https://www.tensorflow.org/about
https://pytorch.org/
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the input sequence. The convolutions in TCN can be parallelized at 
training, because the filter that extracts the features, used in each 
layer, can be computed jointly. RNNs instead need to be unrolled 
during backpropagation and can not be parallelized.

We adopt a model composed of three convolutional 1D layers 
and scan the sequence in a causal fashion, with dilation=1. Our 
models have a hidden size of 64 in the first layer and 256 in the 
second layer. The last layer has the dimension of the output, which 
is 1 in this case (because the model forecasts the next step). The 
model has a total of 29761 parameters, which is 2 orders of mag-
nitude less than what we use for LSTM.

3.3.4. Forecasting with Transformer Network
Our Transformer Network (TF) consists of a modular architec-

ture with an encoder and a decoder that contains three blocks: 
attention modules (self-attention and encoder-decoder attention), 
a feed-forward fully-connected module, and residual connections 
(Fig. 4c). The network’s capability to capture sequence non-
linearities lies mainly in the attention module. TF maintains the 
encoding output (memory) separate from the decoded sequence, 
which means that training is parallelizable. TF is parallelizable also 
because of the absence of the internal status (as in LSTMs), so in-
teractions between input and output are direct and do not need 
recursion for loops of backpropagation.

The model we adopt is based on the work of Giuliari et al. 
(2020). This model has dmodel=128, 2 layers and 4 attention heads, 
for a total of 663938 parameters. We use RMSE and train the net-
work via backpropagation with the NoamOpt optimizer; dropout 
value of 0.1 (Supplementary Material 9.1.3).

Although TF is often favoured for its high performance, a weak-
ness is the need for huge training datasets. This explains the poor 
performance of TF for our experiments. Thus to improve TF we 
pre-trained using a sine function as input. This allows the model to 
learn the oscillatory behaviour of the experiments. We used a pre-
training dataset of 1e7 rows to describe a long set of sine waves 
with the same resolution of our lab data. The sine function roughly 
matches our lab data with amplitude equal to one frequency of 0.1 
Hz and sample rate of 1000 Hz. This approach shows that 1 or 2 
epochs are enough (an epoch is one complete pass of the training 
dataset through the algorithm) to pre-train (Section 9.1.4). After 
pre-training, we fine-tune the model using training data for each 
experiment.

4. Results

4.1. Prediction

Shear stress and time to failure are reasonably well predicted 
by the LSTM+CNN architecture (Fig. 3). The predictions match 
ground truth with an accuracy > 93% (Table 1). Fig. 5 shows model 
predictions and indicates that long term memory length is a key 
hyperparameter.

4.1.1. Best length for the past memory of LSTM
We investigate LSTM long term memory duration k using both 

RMSE and R2 to assess performance. The optimum length for k is 
about one seismic cycle (Fig. S3). Note that the red lines show the 
optimum k. For experiments p4581 and p5198 we adopt a lower 
resolution because of event periodicity and because we compute 
variance every 0.1 seconds (see Section 3.1 and Table S1). Thus, 
one seismic cycle corresponds to about 100 data points and the 
best length for the observation is k = 70 or 7 seconds. For p4679 
we adopt a higher resolution, 0.003 s, to describe both fast and 
slow events. Here, one seismic cycle corresponds to about 1700 
data points, and the optimum value of k = 2000 (∼ 6 seconds) for 
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predicting shear stress (Fig. S3). For predicting TTF, the optimum 
value of k = 1100 (∼ 3 s).

We found high R2 values for all three experiments using an 
observation length of about one seismic cycle. This suggests that 
there is a saturation of performance at one seismic cycle, so this 
may be sufficient to understand the signal. After one cycle there 
is a decrease in performance, due to experiment aperiodicity and 
LSTM memory limitations.

LSTMs struggle to learn long-term trends. The presence of slow 
and fast events in p4679 requires higher resolution to calculate AE 
variance. Compared to sequences of quasiperiodic events, p4679 
requires about a factor of 10 more data. Long seismic cycles with 
rapid stress drops represent challenging conditions for LSTM. The 
problem arises because of observation lengths and the fact that 
Forget gates tend to remove too much information.

4.1.2. Prediction dataset split
We train and validate with 70% of the data and test with 30%

(Fig. 2). Validation data were chosen randomly from the first 70%
of the data and this value (10%) was removed from the training 
set. Thus the final division was: 63% for training, 7% for validation 
and 30% for testing. Details in Table S2. We normalized our data 
using: Xnorm = X−min(Xtrain)

max(Xtrain)−min(Xtrain)
.

4.1.3. Prediction results
Fig. 5 and Table 1 summarize prediction results. Black lines 

show measurements and the coloured lines (green, yellow and red) 
are predictions for shear stress, TTsF and TTeF, respectively. Note 
that the predictions are quite accurate. The model is able to ac-
curately predict shear stress, with R2 > 0.9. Also TTF predictions 
are accurate (R2 up to 90%), even if noisy in a few cases. We ob-
serve a general trend of better performance for TTeF than TTsF. 
Also the performance is better for experiments p5198 and p4679 
than for p4581. Fig. 2 shows that TTeF is maximum where shear 
stress is minimum and variance is maximum. The peak variance 
scales directly with stress drop amplitude, with smaller values of 
peak variance preceding labquakes with smaller stress drop. As 
a consequence of smaller stress drop the time to reach a critical 
failure stress is smaller for constant loading rate. Indeed, the max-
imum shear stress and the slope of the restrengthening phase are 
quite similar in all the seismic cycles. In contrast, the values of 
TTsF derived from maximum shear stress show greater variability 
–possibly because of creep prior to the stress drop.

We used only AE variance as model input to predict shear stress 
and TTF and found the same result for data from each AE sensor. 
Our model performance for each experiment exceeds the state-of-
the-art (Table S3) as defined by existing works (Rouet-Leduc et al., 
2017, 2018). While this suggests that we could further improve 
model performance, by using more complex statistical features, 
rather than just variance. However, we did not pursue this direc-
tion and instead focused on new DL models.

4.2. Experiments on forecasting

Autoregressive forecasting models provide a method to pre-
dict shear stress variations based on past observations. We test 
AR models using our three DNN architectures: LSTM, TCN and TF. 
We analyzed all experiments but focus here on p4679 because of 
its complex behaviour and aperiodic seismic cycles. For this task, 
we decimated shear stress data to dt = 0.1 s and we apply an 
average running mean (Table S1). Although this reduces the origi-
nal data resolution, downsampling is necessary for computational 
load and to limit the size of the step-in hyperparameter, which is 
particularly important for representing multiple seismic cycles. To 
establish the AR models we use k = 200 (20 seconds) which is a 
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Fig. 5. Results of the model predictions for three experiments. Black lines show lab measurements (ground truth) and coloured lines are ML predictions. Note that shear 
stress (green lines) and time to end of failure (red lines) are well predicted in all the experiments (see also Table 1). Predictions of time to start of failure (orange lines) are 
also quite good in general, excepting a few sections of p4581. For p4679 we can see that, even if the prediction seems a bit noisy, the behaviour of the function is always 
well predicted.
value that both describes seismic cycles and fits GPU memory lim-
itations.

Our data include many seismic cycles but this number is ac-
tually quite small for training DL models. Thus, we forecast using 
overlapping windows. To compare performance of our DL archi-
tectures (LSTM, TCN and TF) for each experiment, we set up the 
model to predict 100 data points (10 seconds), which corresponds 
to 1-2 seismic cycles depending on the experiment. See Fig. 6 for 
a sketch of these overlapped sequences. Shear stress forecasting is 
possible, although prediction accuracy varied between the DL mod-
els.

4.2.1. Forecasting dataset split
Our AR work used the same normalization as for prediction 

model, described above, while the division into train / validation/ 
test subsets is different. The training set consists of the first 70%
of the data and the testing set consists of the last 20%. Model val-
idation was done with the remaining 10% of the data. Details in 
Table S2. Model performance was evaluated for future predictions 
in each window (Fig. 6). We also do an average among windows to 
measure overall performance (Table 2). Different data segments re-
sult in different performances, thus in Fig. 6 we show predictions 
for a range of different starting locations within the data stream. 
Note that AR models perform well for a range of starting times and 
data segments.

4.2.2. LSTM forecasting results
LSTM models generally produced the poorest predictions of fu-

ture stress states (Fig. 7). Our AR forecast results are reasonable 
for only p5198, which has the least complex seismic cycles. For 
the other experiments LSTM did not provide accurate predictions. 
While LSTM is generally good for time series forecasting, because 
of its flexibility and optimization, it has trouble with data from our 
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experiments because of the data density, even if significantly deci-
mated (dt = 0.1 s), and seismic cycle length (of order 10 s). LSTM 
works well with fewer data points. For example, in the work of 
Giuliari et al. (2020) they have 8 data points in input and 12 data 
points in output, whereas we have 200 in input and 100 in out-
put. In essence, for our experiments the LSTM network “forgets” 
the past too quickly and does not predict accurately the signal in 
the future.

4.2.3. Temporal Convolution Network forecasting results
While TCN is the simplest of our models, it produced some of 

the best AR results. The TCN models provide the best compromise 
between training complexity and the number of parameters re-
quired. TCN requires only one tenth of the parameters needed for 
LSTM and TF. From Table 2 and Fig. 6 we can appreciate the TCN 
capability for forecasting. Results for experiment p5198 are quite 
good as are those for the more complex case of p4679. For p4581, 
TCN is the best of the tested models based on average forecast ac-
curacy. However this experiment turned out to be challenging for 
each of the AR models as none of the forecasts were very good 
(Fig. 6), possibly due to the lack of appreciable preseismic creep in 
this experiment.

4.2.4. Transformer Network forecasting results
TF is the second best model, after TCN. It is not the best on 

average in any experiment, however with the flexible attention fo-
cusing it captures higher order variations of the data. For the same 
reason it does not forecast well the average behaviour of the signal, 
as a simpler model like TCN does. TF is the most complex among 
the tested models for optimization and training, and it is also the 
most flexible, because of its complex connections. It requires a 
lot of data to start working, and for this reason we designed a 
pretraining stage in which we fed the model sine waves with a 
frequency similar to our data, as described in 3.3.4.
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Fig. 6. Results of the autoregressive (AR) forecasting models for three experiments. Forecasts vary throughout the experiment, so for each experiment we show three time 
windows for the forecast. In each case red lines show stress measurements used as model input, black lines show ground truth future stress and coloured lines show model 
output forecasts. Forecasts are poor for experiment p4581 and the accuracy varies significantly from one window to another. For p4581, TF does better than LSTM and TCN 
at times. The forecasts are best for p5198, where all models predict the target quite well. Experiment p4679 shows a complex set of large and small events and is the most 
challenging. Forecasts here are quite variable depending on the time interval. However the models are able to predict reasonably well, especially TCN and TF. In each case, 
LSTM provides the poorest fits.
In several segments of p4581 TF is capable of detecting irreg-
ularities in the seismic cycle (Fig. 6). However, in other places TF 
tries to predict irregularities that are noise rather than signal. One 
example of this occurs close to the local maxima in Fig. 6 for 
p4581. Noise features like this caused trouble for TF. On the other 
hand, TF did well to forecast the aperiodicity of p4679 (Fig. 6). 
For p5198, TF did well, possibly because the behaviour is quite pe-
riodic. This is an indication that data overfitting during training 
may be a problem. We note that the improvement based on sim-
ple pre-training using a periodic signal provides some interesting 
future direction.

4.2.5. Forecasting results: model comparison and analysis
A key comparison between our AR models is how they perform 

with respect to the longer term temporal variations of the seismic 
cycle. Thus we evaluate results for several different data segments 
within the test set (Fig. 7). Note that the performances in Table 2
are averaged for the entire test set. In Fig. 7 we plot results for 
windows starting at several positions within the data. We can see 
that all the models have high variability depending on the tested 
window, hence the capability of the model in predicting the signal 
10
depends on the shape and level of irregularity of the input-output 
window. As expected from our summary of general results, LSTM 
produced the worst AR forecasts. The other three models are in 
general able to forecast the signal with quite low variability. We 
note also that for p4581 the performance decreases with time in 
some areas simply because the signal becomes more challenging, 
for example where there are irregularities before peak stresses as 
seen on the left in Fig. 7.

An important question for the AR forecasting is that of how 
far into the future these models can predict and in particular if 
they can predict beyond a single seismic cycle. Fig. 8 summarizes 
such testing. Here we plot the average of all the performance val-
ues for each forecast time in the future. Our models are trained to 
forecast 100 data points in the future (white section), however we 
extended these to forecast 200 data points in the future (grey sec-
tion). LSTM simply gets worse as time is extended. TCN decreases 
in performance slowly, whereas TF has a peculiar behaviour. For 
forecasting times from 0 to 100, TF is similar to TCN, while after-
wards it becomes suddenly worse. This is because in the training 
phase TF forecasts from 0 to 100, but the behaviour is somewhat 
different in the next seismic cycle – from [101, 200]. This is per-



L. Laurenti, E. Tinti, F. Galasso et al. Earth and Planetary Science Letters 598 (2022) 117825

Fig. 7. Results of the AR forecasting shown as performance variation with respect to present time. Red and black sections represent input for the firsts windows and ground 
truth for the lasts windows (respectively). Blue sections are times when model predictions are compared to data, with performance shown below (stars in Fig. 6). Note that 
R2 metric is not shown below −1 and RMSE is not shown above 0.22. For TF we show a smoothed version of the original, noisier data because TF is the most complex 
model with the largest variation in performance.
haps surprising given that TF is renowned for generalization. Here, 
it is possibly the result of data complexity. This is clearly an im-
portant question for future work.

5. Discussion

The first part of our work was devoted to evaluating DL models 
based on a combination of LSTM and CNN. Compared to the state-
of-the-art based on existing works we find that DL models perform 
well. As suggested by previous works, we used the variance of 
the continuous acoustic emissions emanating from the laboratory 
faults. The DL models work reasonably well for all tested exper-
iments, however results are better when creep occurs before the 
mainshock (i.e. as in p5198 and p4679). This is perhaps not sur-
prising given that creep represents fault slip which could result in 
micro fracture and breakage of frictional asperity contacts. More-
over, the shear stress curves reflect creep and AE via the gradual 
reduction in the rate of increase prior to reaching a peak at the 
onset of a labquake (Fig. 2). In the absence of creep, such as in 
p4581 (Fig. S2), the acoustic variance is initially very low and in-
creases suddenly at the onset of failure. As a result the DL models 
struggle to identify the exact time of the drop in shear stress. This 
appears to be part of the reason why Time To Start of Failure (TTsF) 
is always more challenging to predict than Time To End of Failure 
(TTeF), because the former is zero when the variance is beginning 
to grow, while the latter is zero right after the variance has first 
increased and then decreased.

The limitation of TTF is that it represents the time remaining 
for just one event. Moreover this quantity is not recorded directly 
during the experiment in the laboratory. Therefore we manually 
labelled a suitable dataset for it, before the model training phase. 
The autoregressive models solve this problem nicely because they 
are designed to forecast.
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Our autoregressive forecasting procedure allows one to predict 
future values of shear stress during the lab seismic cycle. To the 
best of our knowledge, this is the first time such an AR approach 
has been used for lab earthquake data. Here, the innovation is that 
we can indefinitely forecast into the future without the need for 
labelling because we use the same feature (shear stress) for both 
model input and output.

We tested several DL networks for the AR forecasting. All of 
the models work at some level. The LSTM network produced the 
poorest results. In time series forecasting, LSTM is one of the most 
common models, because of its flexibility, but in our application 
it has memory problems due to the considerable length of the 
sequences. TCN is the simplest model in terms of number of pa-
rameters and structure, and it performed better, perhaps because 
the target (shear stress) during the lab seismic cycle is somewhat 
periodic. TF is also flexible but it is the most complex for opti-
mization and requires a lot of data to initiate a reasonable model 
because of the huge number of parameters to be trained. We dealt 
with that problem by pretraining the TF models with sine waves, 
however that represents another step in the processing.

Of the experiments we evaluated, p5198 was fit best by the DL 
models. Experiment p4679 was challenging because of its aperiod-
icity and the presence of slow and fast events. However our TCN 
and TF models were able to forecast reasonably well. The forecasts 
for p4581 were more challenging, perhaps because of the lack of 
appreciable fault creep and/or because of noise in the data. Further 
work is needed to resolve these issues.
Overall, DL is capable of understanding the behaviour of the sig-
nal and this opens new perspectives in seismology research with 
the use of AR methods. First of all, this confirms that there are 
some patterns in the signal that the model is able to recognize in 
most of the cases. Moreover, the model after training, just needs 
a limited knowledge about the past of a specific window to fore-
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Fig. 8. Data showing how AR model performance evolves using a 20 second window 
for forecasting. Note that the lab seismic cycle is variable but typically < 10 sec. 
(Fig. 6). Performance values are the RMSE of the average of all the i-th at each time 
predictions compared with the i-th time ground truth value, in all the windows 
in the test set. We use only RMSE because it is not possible to compute R2 point 
by point. White section is for times from present to present+10 s (100 steps in the 
future). Gray section is for times from present+10 s to present+20 s (from the 100th 
to the 200th step in the future). The model has been trained to predict 100 steps in 
the future, so this is just a test to investigate the generalizability of the procedure.

cast reasonably the future. This provides insight on the physical 
processes and their deterministic nature.

One good way to advance our work would be to apply the 
method on real fault data. This would require measurements of 
shear stress, which are not available. The idea could be to use seis-
mograms directly prior to or during an earthquake and infer the 
shear stress using the prediction method, such as we did with AE 
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in the lab. This would allow forecasts of the shear stress for future 
time steps, using the forecasting method. This procedure has the 
limitation that labquakes are simplistic compared to earthquakes, 
and this is one of the reasons why it is important to improve our 
understanding of ML methods for prediction and forecasting. An-
other approach would be to simply predict the temporal evolution 
of the seismogram based on the initial part of the signal. A key 
question here is then, are lab AE signals uniquely relatable to fault 
shear zone stress and if so, would that transfer to tectonic faults? 
Yet another approach would be transfer learning from lab earth-
quakes to real fault data.

6. Conclusions

We used Deep Neural Networks to predict and forecast labora-
tory earthquakes and lab measurements of fault zone shear stress 
based on seismic signals emanating from lab faults. Previous work 
showed that using the variance of lab seismic signals (from fault 
zone acoustic emissions) it is possible to predict fault shear stress 
and the time to failure. We systematically tested a range of DL 
models with a variety of lab faults and found that our models 
significantly outperform the state-of-the-art. Moreover we proved 
that it is possible to forecast future fault zone shear stress based 
on the previous history of stress values. This result has signifi-
cant potential because shear stress is representative of the state 
of the fault and forecasting it in time means implicitly to forecast 
the timing of the future failure states. To our knowledge, this is 
the first application of a forecasting procedure with the goal of in-
ferring autoregressively the future shear stress knowing the stress 
itself in the past.
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