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Abstract: Mt. Vesuvius is a high-hazard active volcano surrounded by a densely populated area.
Since human activities generate high levels of seismic noise, recognizing low-amplitude seismic
events in the signals recorded by the local seismic monitoring network operating at Vesuvius is very
difficult. Here, we describe an automatic procedure applied to continuous data with the aim of
finding low-amplitude–low-frequency events hidden in the recorded signals. The methodology is
based on the computation of two spectral parameters, central frequency Ω and shape factor δ, at
selected sites, and the coherence of the seismic signal among different sites. The proposed procedure
is applied to 28 months of recordings from 2019 to 2021, tuning the search parameters in order to
find low-frequency signals similar to those occasionally observed in the past at the same volcano.
The results allowed us to identify 80 seismic events that have the spectral features of low-frequency
earthquakes or tremor. Among these, 12 events characterized by sufficiently high signal-to-noise
ratio have been classified as deep low-frequency earthquakes, most of which are not reported in
the catalog. The remaining events (more than 60) are characterized by similar spectral features but
with an extremely low amplitude that prevents any reliable location of the source and definitive
classification. The results of this work demonstrate that the low-frequency endogenous activity at Mt.
Vesuvius volcano is more frequent that previously thought.

Keywords: low-frequency earthquakes; signal detection; volcano seismicity; spectral parameters;
coherence analysis

1. Introduction

The automatic or semi-automatic techniques for the detection of seismic events in
active volcanic areas are challenging issues for a more detailed understanding of the volcano
dynamics. Signal detection methodologies have considerably increased in number and
improved in performance in recent years. This is due to the availability of huge amount
of data that are not directly manageable by analysts through a visual inspection of the
signal waveform. Therefore, many efforts have been made during the last decades to
implement very sensitive detection algorithms. Methodologies based on spectral energy
in a specific frequency band and STA/LTA filter [1], wavelet analysis [2], signal cross-
correlation techniques [3] and neural networks [4,5] are the most notable cases. The
development of new signal detection procedures can be of great help for monitoring
and surveillance purposes especially when they are designed to identify small-amplitude
events that occur in areas characterized by high background noise. This is the case in
densely populated volcanic areas where the identification and the classification of low-
amplitude seismic events becomes a very difficult task. High levels of background seismic
noise and low-amplitude seismic events are, in fact, the typical impediments that reduce
the ability to detect and analyze seismicity in urbanized volcanic areas with classical
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methodologies [6]. Active volcanoes are characterized by a variety of seismic events that
produce signals which differ in amplitude, waveform and spectral content. The most
common are volcanic tremor, low-frequency (LF) earthquakes, long-period (LP) events,
hybrid events, and volcano tectonic (VT) earthquakes [7–10]. In this work, we refine
and test an automatic detection procedure to identify LF earthquakes in the continuous
seismic data recorded at Mt. Vesuvius by the seismic monitoring network managed by
INGV-Osservatorio Vesuviano.

The seismicity of Mt. Vesuvius is characterized by VT earthquakes of small magnitude
(MD < 3), mostly located at depths between 0 and 2 km below sea level (b.s.l.) and
sometimes occurring as low-energy swarms. During the last decade, the average rate of
this seismicity has been of about 900 VT earthquakes per year [11]. LF events characterized
by low amplitude and deeper localization than VT earthquakes (between 5 and 7 km depth)
have been identified in the seismic signals, sometimes as single sporadic events and in
other cases as volcanic tremor consisting of low-frequency swarms [12]. The source of
this LF seismicity was studied in another work [13], where the authors hypothesized the
involvement of fluids in the genesis of these deep earthquakes. Over the past 10 years,
the use of high-dynamic instrumentation, broadband sensors, and seismic arrays for
surveillance, monitoring and research purposes has permitted the collection of high-quality
data appropriate for automatic analysis. This facilitated the development of effective
machine-learning techniques for analysis and classification of seismic signals recorded in
active volcanic areas. For instance, an unsupervised technique based on a neural network
approach for the detection and classification of seismic signals recorded at Mt. Vesuvius
is provided by Esposito et al. [14]. Previously, Scarpetta et al. [15] provided automatic
classification of seismic signals for the same volcano through neural networks. They
introduced a new method for feature extraction, based on the combination of a waveform
parametrization in the time domain, and an LPC (linear prediction coding) algorithm that
provides a compressed and robust representation of the data in the frequency domain.
More recently, the authors of the present work have used the statistical moments in the
frequency domain to characterize the seismicity of Vesuvius [16].

Following this latter work, the detection procedure we provide in the present paper
is based on the coherence and statistical moments of seismic signals and turns out to
be more empirical than many modern approaches that are quite articulated and based
almost entirely on neural networks. Our main objective is the detection of deep LF events
occurring beneath Mt. Vesuvius at depths greater than the predominant VT seismicity [12].
The aim of improving the analysis of recorded seismic signals is to identify and classify in
a semi-automatic manner the occurrence of LF events, possible signals due to landslides
and other phenomena such as thunderstorms, in order to distinguish them from seismic
signals associated with events arising outside the volcano, such as regional earthquakes
and transient signals of artificial origin. To this end, the proposed approach focuses on the
analysis of the spectral content of seismic signals using two techniques jointly, one based
on the spectral parameters analysis through the computation of statistical moments, and
another based on the coherence analysis. The effective detection of low-amplitude seismic
signals such as LF events and volcanic tremor is the first step toward the detailed analysis of
their source and driving mechanisms, which is of fundamental importance for assessing the
eruptive potential of volcanoes [17]. In the work of Galluzzo et al. [16], spectral parameters
were used for earthquake classification. In the present paper, the innovative aspect lies
in the application of statistical moments for detection purposes and the additional use
of coherence as a multichannel technique. The newly designed procedure was tested on
continuous seismic signals recorded at Mt. Vesuvius from 2019 to 2021. After a brief outline
of used data and methodologies, the main results are illustrated and discussed in the final
part of the paper.
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2. Data and Methods

The seismic monitoring network operating at Mt. Vesuvius comprises a permanent
network, whose signals are transmitted in real time to the monitoring center for surveillance
purposes [18], and an offline mobile network [19], whose data are characterized by a better
continuity of signals and are mainly used for monitoring and scientific research. The
dataset used in this work consists of continuous signals recorded in the years 2019, 2020
and 2021 by stand-alone seismic stations. The latter consisted of three-channel MarsLite
Lennartz digitizers equipped with Guralp CMG40T broadband seismometers (60s). For
our analysis, we selected those with the lowest seismic background noise (Figure 1), i.e.,
those installed at high altitude (BKSG, BKWG) and in less-populated areas (SVAG). Once a
possible seismic event has been identified by our automatic procedure, we also take into
account signals recorded by the other seismic stations available in the area (BKE, VBKN,
etc.; Figure 1) and catalogs of local and regional earthquakes. In the present work, two
analysis methodologies operating in the frequency domain have been used jointly: (a) the
spectral analysis obtained with the statistical moments and (b) the coherence analysis. A
brief description of the two adopted techniques is given in the following two sections.

Figure 1. The seismic monitoring network operating on Mt. Vesuvius during the last years. The
green triangles indicate the position of stand-alone seismic stations, while the blue symbols show the
position of permanent network stations. The green symbols with a ticker border (BKWG, BKSG and
SVAG) are the stations used in this work.

2.1. Spectral Parameters Analysis

The spectrum of a seismic signal can be parametrized by using the statistical moments
of the power spectrum [20]. The statistical moments λn of the seismic power spectrum G
were evaluated using the relation, Equation (1):

λn =
∫ f2

f1

G · f nd f (1)

where the index n corresponds to the n-th moment of the seismic power spectrum G. The
integration is evaluated in frequency domain in the range f 1–f 2. For a single spectrum, the
first three statistical moments λ0, λ1 e λ2 were used to evaluate the two spectral parameters,
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i.e., central frequency Ω and shape factor δ, following the relationships (Equations (2) and
(3) respectively):

Ω =

√
λ2

λ0
(2)

δ =

√
1 −

λ2
1

λ2λ0
(3)

The central frequency Ω is a measure of the frequency where the signal power is
higher, while the shape factor δ indicates the dispersion of the power spectral density
around the central frequency [21]. The latter takes values between 0 and 1, with higher
values corresponding to larger bandwidths. The power spectrum G and then the spectral
parameters were calculated on adjacent 30 s signal windows for the continuous seismic
signals. For any seismic station, the power spectrum parameters in Equations (2) and
(3) were evaluated, respectively, for each component of ground motion, and then the
average central frequency and the average shape factor among the three components
were computed. In this way, for a given time window, we obtained a pair of values
Ω and δ for each seismic station. A duration of 30 s corresponds approximately to an
earthquake of MD = 1.3. We considered this window size a good compromise between
the minimum detectable earthquake and the calculation cost of the procedure used. In
particular, statistical moments were evaluated through Equation (1) in the frequency band
1–40 Hz. The lower integration limit was set at 1 Hz to reduce the effects of low-frequency
seismic noise, which is often quite high at a frequency below 1–2 Hz in broadband signals,
while the upper integration limit is given by the upper frequency limit of the flat bandwidth
of the analyzed data. The calculation of the statistical moments was carried out on the
continuous signals recorded at the BKSG, BKWG and SVAG sites for the years 2019, 2020
and part of 2021. In order to highlight potentially interesting signals for the search of
LF events, signal windows were selected according to the results obtained by Galluzzo
et al. [16]. Specifically, signal windows characterized by a central frequency Ω and a shape
factor δ in the ranges 3 Hz ≤ Ω ≤ 6 Hz and 0.45 ≤ δ ≤ 0.65, respectively, were considered
in the present study. With this procedure, we obtain independent values of Ω and δ for any
analyzed seismic stations.

2.2. Coherence Analysis

The coherence γij between two signals i and j provides a measure of the similarity of
their respective spectra in a specific frequency band, Equation (4):

γij(ω) =
lF∗

i (ω) Fj(ω)l√
lFi(ω)l2 lFj(ω)l2

(4)

where Fi(ω) and Fj(ω) are the spectra of the signals i and j, respectively, and Fi
*(ω) is the

conjugate of Fi(ω). A smoothing on a chosen bandwidth is necessary to obtain values
between 0 and 1, where higher values correspond to signals with very similar spectral
characteristics [22]. The coherence defined in Equation (4) can be extended to more than two
signals through the computation of the cross-spectral matrix, and thus, it is a multi-station
analysis method. In our work, we used the signals recorded by the three stations BKSG,
BKWG, and SVAG, which were utilized for the computation of spectral moments. As
described above, we adopted adjacent 30 s signal windows to apply the coherence analysis
to continuous data. The calculation was performed with a smoothing parameter of 20 and
focused on a frequency of 4 Hz, in agreement with the spectral features of low-frequency
events observed at Vesuvius by La Rocca and Galluzzo [12]. The result of coherence analysis
provides one value that is the coherence of the seismic signals among the three sites. Since
low-amplitude LF events are almost always characterized by emergent onset and unclear
waveforms in the time domain, the coherence provides more robust information than other
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mathematical tools in the time domain (such as cross-correlation) because it is based on the
spectral characteristics of the analyzed signals. The coherence was computed on the vertical
component of ground motion, and more than 28 months of continuous data have been
analyzed. The results show that most of signals, at the selected frequency, have a value of
coherence less than 0.4. Moreover, we have observed that the signals with coherence ≥ 0.45
are characterized by spectral amplitude higher than the background noise. On the basis of
this observation, we set as a coherence threshold the value of 0.45.

3. Results

The methodological approach followed in this work consisted of three steps: (a)
first, the two methods (statistical moments and coherence) described in Section 2 were
applied separately; (b) the obtained results were inspected and the signal windows that
simultaneously exceeded the predetermined thresholds for both methods were consid-
ered; (c) the seismic signals from the selected time windows were visually inspected and
their timing was searched in the seismic catalogs available online [23]; “www.ov.ingv.it;
www.emsc-csem.org/ (accessed on day December 21, 2022)” looking for local and/or
regional earthquakes. A synthetic flow diagram of the proposed procedure is shown in
Figure 2. Following the calculation of the spectral parameters, all signal windows character-
ized by shape factor δ and central frequency Ω values typical of LF events (see Section 2.1)
were selected in order to identify such possible seismic events.

Figure 2. Flowchart of the detection procedure proposed in this work. The three identified signal
windows are: 1. 2020 05 02 02:12 UTC, 2. 2020 05 02 12:49 UTC and 3. 2020 05 02 23 50 UTC.

www.ov.ingv.it
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The analysis of the continuous signal showed that most of the analyzed windows
are characterized by spectral parameters and coherence values typical of random seismic
noise. In particular, with regard to spectral parameters, most of the signal windows show
central frequency Ω around 10 Hz and shape factors δ greater than or equal to 0.6, as
found for noise records by Galluzzo et al. [16]. As an example, we consider the spectral
parameters and coherence analysis performed for May 2, 2020 (Figures 3 and 4). Figure 3
illustrates the results obtained for the three stations, BKWG, BKSG and SVAG. Plots in the
top row of the figure show the results of shape factor vs. central frequency (blue points)
for the three sites. Most of the dots are characterized by a central frequency greater than
6 Hz (histograms in the second row plots) and by a shape factor mostly greater than 0.5
(histograms in the bottom row plots). It is noteworthy that the three sites have different
spectral features from each other, particularly with regard to the bimodal distribution of
the shape factor at BSKG. Different results were expected because the spectral features of
the background seismic signal are locally modified by site effects. In order to identify the
windows that potentially contain signals associated with LF events, we need to inspect the
results in the time domain. Figure 4 shows the two spectral parameters (central frequency
and shape factor) for the BKWG station, the coherence and the average spectral amplitude
vs. time evaluated for 2 May 2020. In this case, the three larger yellow symbols identify
the windows that simultaneously have the features of LF events at the three stations and
coherence values ≥ 0.45.

Figure 3. Shape factor and central frequency evaluated on one day of continuous signals recorded
on 2 May 2020, at BKSG, BKWG and SVAG mobile seismic stations. In the upper part of the figure,
the graphs of the shape factor vs. central frequency are shown, while in the central part and in
the lower part, the histograms of the aforementioned spectral parameters are shown for the three
selected stations.
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Figure 4. Central frequency, shape factor, coherence and average spectral amplitude versus time for
the signals recorded on 2 May 2020. Central frequency and shape factor (blue circles) are shown
only for BKWG station. Coherence and average spectral amplitude (black circles) were evaluated
and focused at 4 Hz for the signals recorded at BKWG, BKSG and SVAG. The yellow circles identify
the signal windows that satisfy the features of LF events. Small yellow circles mark windows for
which only one condition between spectral features (yellow and blue circles) and coherence threshold
(yellow and black circles) is satisfied. Larger yellow circles with red border show the windows that
satisfy all the characteristics (spectral features and coherence) of LF events.

Figures 5–7 show the seismic signals within the selected windows. Three local earth-
quakes are recognized in the seismograms of the first window (Figure 5). On the three
components of ground motion, the direct P and S waves are identifiable only after appro-
priate filtering, and the time difference Ts − Tp = 1.3 s can be estimated for the BKSG and
BKWG stations. The spectral content features are consistent with LF spectral parametriza-
tion. In this case, the three events have been classified as deep LF earthquakes. The second
selected window contains signals with spectral features similar to those of local LF events,
but in this case, they are generated by a regional earthquake (20200502 12:51:05 UTC Mw6.6
Crete, Greece) (Figure 6). Visual inspection and examination of seismic catalogues revealed
that the selected signal did not correspond to a local LF event. The third window selected
from the automatic detection is summarized in Figure 7. Seismograms of some stations
of the monitoring network are shown in Figure 7a. There appears to be no signal with a
signal-to-noise ratio clearly observable in the seismic records. However, after filtering the
seismograms in the frequency band of interest (2–8 Hz), a low-amplitude seismic event is
visible at all the stations of the monitoring network. This is the case of a very low amplitude
event, with spectral characteristics typical of LF events and recorded by the whole seismic
network. It is not possible to identify any particular phases in these seismograms due to
the emergent onset and the low amplitude of the signals and, for these reasons, the source
of this event cannot be localized. Considering the spectral and shape characteristics, this
event has been classified as an LF volcanic tremor.
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Figure 5. (a) Three low-frequency events characterized by low amplitude as recorded at BKSG and
BKWG sites. (b) Seismograms filtered between 2 Hz and 6 Hz of the first LF earthquake visible in
plot (a), where it is identified by vertical blue lines.

Figure 6. Regional earthquake (20200502 12:51:05 UTC, latitude 34.14◦ N, longitude 25.70◦ E, depth
10 km, Mw6.6 Crete, Greece) recorded by BKSG, BKWG and SVAG stations.
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Figure 7. (a) Seismic waveforms (vertical components in red lines, no filtered data) recorded from
eight seismic stations installed at the top of the volcano (Figure 1). At first sight, these seismograms
show only seismic noise. (b) The same seismograms after filtering in the 2–8 Hz frequency band (in
blue lines) show a very small amplitude signal with onset just before 30 s, visible at all stations of the
monitoring network.

Further examples of LF events detected by our procedure are shown in Figures 8–10.
The two events shown in Figures 8 and 9 are recognizable by visual inspection of the
seismograms, but those of Figure 9 are not easily identifiable and classifiable through a
simple visualization because of their very low signal-to-noise ratio. In Figure 10, we show
the spectrogram of LF event 202009071932. Most of the frequency content is included in
the 2–6 Hz band for both the small initial event and the subsequent larger one. In both
cases, the spectral and coherence analysis provides parameters fully compatible with LF
earthquakes. Specifically, our analysis applied to the selected dataset (years 2019, 2020 and
part of 2021) highlighted the presence of 80 seismic signals potentially classifiable as LF
events. Visual inspection of the seismograms and catalogue examination allowed us to
recognize at least 12 LF earthquakes, a few LF tremors and 62 events not clearly classifiable
in the LF category because they have extremely small amplitudes, almost undistinguishable
from the background noise even in the filtered signals. The 12 LF events discovered by our
analysis and shown in Table 1 do not appear in the catalog of Vesuvius seismicity.
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Figure 8. Two low-frequency earthquakes recorded at stations BKSG and BKWG.

Figure 9. Two low-frequency earthquakes recorded at stations BKSG, BKWG and SVAG, characterized
by very low signal to noise ratio.
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Figure 10. Spectrogram of 202009071932 LF seismic event evaluated on north–south component of
BKSG seismic station.

Table 1. LF seismic events detected with the proposed procedure applied to continuous seismic
signals recorded at Mt. Vesuvius over a 28-month time span.

n. (yyyymmdd hh:MM s) Seismic Signal Type

1 2019 01 29 10:49 32.66 LF seismic event

2 2019 11 25 00:01 31.55 LF Swarm

3 2020 05 02 02:10 58.33 LF seismic event

4 2020 05 02 02:12 14.01 LF seismic event

5 2020 09 07 19:23 12.22 LF seismic event

6 2020 09 07 19:32 34.03 LF seismic event

7 2020 09 07 19:33 55.25 LF seismic event

8 2020 11 16 05:58 24.58 Two LF seismic events

9 2020 11 16 05:59 39.68 LF seismic event

10 2020 12 04 23:05 35.47 LF seismic event

11 2021 04 02 15:29 46.04 LF Swarm

12 2021 04 02 15:30 33.85 LF Swarm

4. Discussion and Conclusions

To automate the detection and classification of seismic events, methodologies based on
neural networks or even the use of time domain templates are often used to identify seismic
events in the recorded signals. In the present work, we proposed a detection methodology
based on the parametrization of spectral shape and coherence of the seismic signals among
selected stations. The procedure, tuned for low-frequency earthquakes, was applied to
continuous signals recorded at Mt. Vesuvius over a 28-month time span. The results
highlighted 80 signal windows with spectral features compatible with LF events. For about
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12 of these events (Table 1), those with the higher amplitude and signal-to-noise ratio, the
filtered seismograms allowed the recognition of P-S wave pairs that permit a rough location
and unambiguous classification of these events as deep LF earthquakes, very similar to
those reported by La Rocca and Galluzzo [12]. In contrast, very low amplitude events are
visible with a low signal-to-noise ratio only in filtered signals recorded at the lowest noise
sites. Although they have spectral characteristics compatible with LF events, we could not
provide a reliable classification because the lack of identifiable P-S wave pairs prevents any
possible location of the source. These events constitute the majority of the detected signals
(more than 80%). The hypothesis of an endogenous source is very reasonable because these
events are visible only at the sites in the central area of Vesuvius and not at the seismic
stations around the volcano, at a higher distance from the crater. A better investigation
of these seismic events would be feasible with higher quality data, such as dense array
recordings [24] or deep borehole recordings.

In summary, the results of our analysis show that:

(1) The joint use of spectral parameters and coherence applied to a few selected stations
of the seismic monitoring network operating at Mt. Vesuvius, which are characterized
by low background noise, allowed for the detection of signals classifiable as LF
earthquakes or LF tremors.

(2) The detected LF events reveal an amount of deep LF seismicity at Vesuvius much
larger than that reported in the catalog.

(3) The applied procedure also detects a large number of low-amplitude events hidden
in the background noise that have the characteristics of LF events, but their effective
classification requires further investigation and possibly higher quality seismic data.

(4) The overall outcomes suggest that the proposed procedure could be appropriate for
real-time applications aimed at LF signal detection, but its suitability must be further
investigated.

The analysis procedure applied in this work is strongly focused on the detection of LF
events characterized by spectral features in narrow ranges, as observed for events detected
in the past years at Vesuvius. It must be pointed out that the use of narrow ranges for tuning
parameters can lead to failure to detect seismic events with spectral characteristics different
from those observed previously. The application of the proposed automatic detection
procedure to other volcanic areas is feasible, but it could require a revision of the search
parameters to be effective.
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