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Field lines of gravity, their curvature
and torsion, the Lagrange and the
Hamilton equations of the plumbline

Erik W. Grafarend
Department of Geodesy and Geoinformatics, University of Stuttgart, Germany

Abstract

The length of the gravitational field lines/of the orthogonal trajectories of a family of gravity equipotential sur-
faces/of the plumbline between a terrestrial topographic point and a point on a reference equipotential surface
like the geoid — also known as the orthometric height — plays a central role in Satellite Geodesy as well as in
Physical Geodesy. As soon as we determine the geometry of the Earth pointwise by means of a satellite GPS
(Global Positioning System: «global problem solver») we are left with the problem of converting ellipsoidal
heights (geometric heights) into orthometric heights (physical heights). For the computation of the plumbline
we derive its three differential equations of first order as well as the three geodesic equations of second order.
The three differential equations of second order take the form of a Newton differential equation when we in-
troduce the parameter time via the Marussi gauge on a conformally flat three-dimensional Riemann manifold
and the generalized force field, the gradient of the superpotential, namely the modulus of gravity squared and
taken half. In particular, we compute curvature and torsion of the plumbline and prove their functional rela-
tionship to the second and third derivatives of the gravity potential. For a spherically symmetric gravity field,
curvature and torsion of the plumbline are zero, the plumbline is straight. Finally we derive the three La-
grangean as well as the six Hamiltonian differential equations of the plumbline, in particular in their star form
with respect to Marussi gauge.

Key words field lines of gravity — plumbline — soidal heights, into heights in gravity space,
orthometric heights namely the orthometric heights/the length of
the plumblines with respect to the geoid. The
field lines of gravity/the orthogonal trajectories
of a family of gravity equipotential surfaces/
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precision geometric positioning of points of the plumbline .Wlth t.he vertical fleld/no.rmal field
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cording to the celebrated Marussi gauge
(Marussi 1979, 1985; Hotine 1986, 1991). The
arc length squared ds* = || grad w ||? (dx* + dy* +
+dz*) has been represented in terms of confor-
mal coordinates/isometric coordinates (e.g.,
Caputo, 1959) with the modulus of gravity
squared || j/||2 =|lgradw|* = A? as the factor of
conformality squared A°. In particular we suc-
ceed in proving that the second order differen-
tial equations of the plumbline establish a
geodesic in a three-dimensional Riemann man-
ifold {M?, g}, notably in the form of a New-
ton dynamical equation if the matrix gy, of the
metric is «conformally flat», g, = A2 (x) &, as
restricted to the Marussi gauge. In order to de-
termine the departure of the plumbline from a
straight line, we compute its curvature and tor-
sion on the basis of the Frenet derivational
equations. We aim at the proof that the curva-
ture of the plumbline is a functional of the sec-
ond derivatives of the gravity potential, its tor-
sion of the third derivatives of the gravity po-
tential, while straight if the gravity field was
spherically symmetric. Section three is devoted
to establishing the three Lagrangean differen-
tial equations of second order as well as the six
Hamiltonian differential equations of first or-
der, in particular in Marussi gauge. In contrast
to Moritz (1994) we succeed in constructing
non-degenerate «star Lagrangean» and «star
Hamiltonian».

2. Curvature and torsion of the field lines
of the gravity field, the plumbline

At the beginning let us set up the differen-
tial equations of the plumbline/the orthogonal
trajectory with respect to a family of equipo-
tential surfaces by means of Box I. The quality
between horizontal and vertical fields estab-
lishes the first order differential equation (2.1)
of the plumbline: The normalized tangent vec-
tor of the plumbline is identical to the normal-
ized surface vector of an equipotential surface
pointwise. The normalized surface vector of an
equipotential surface agrees with the negative
gravity vector, the gradient of the gravity vec-
tor. As soon as we differentiate the identity of
the horizontal field of the plumbline and the

vertical field of an equipotential surface once
more, we arrive at (2.2), the second order dif-
ferential equation of a plumbline of inhomoge-
neous type. The inhomogeneity is generated by
the quadrupole moment in gravity space. As
soon as we introduce the parameter ¢ in order
to replace the curve arc length S via the
Marussi gauge (2.3) (Marussi 1979, 1985) we
are led to the first order differential eqs. (2.4)
and the second order differential eqs. (2.5),
(2.6) of a plumbline/orthogonal trajectory of a
family of equipotential surfaces. With respect
to the Marussi gauge, the second order differ-
ential equations of a plumbline in {R>, §,} co-
incide with the second order differential equa-
tions of a geodesic in Newton form in the
Marussi manifold {M?, y%(x) §,} with y%(x) as
the factor of conformality. Gravity squared
taken half operates as a potential, according to
a proposal by Chandrasekhar er al. called su-
perpotential: The gradient of the superpotential
y%2 operates as the force field balanced by the
acceleration vector x**.

Indeed we have to explain better the duality
between a curve in {R?, §,}, where the Kro-
necker 6 relates to the canonical metric in a
three-dimensional Euclidean space, and a curve
in {M?, y*(x) 8,}. {M?, y*(x) 8,} is an abbre-
viated notation for a three-dimensional Rie-
mannian space parameterized by three confor-
mal coordinates/isometric coordinates, whose
canonical metric is given by the product of the
factor of conformality y2 the modulus of grav-
ity squared, and the Kronecker &,,. Such a Rie-
mann manifold {M?*, y%(x) §,} will be called a
Marussi manifold. Indeed there are many
Marussi manifolds dependent on the various
representations of the gravity field of the Earth.
While the differential equations of second or-
der (2.6) generate a curve in the chart
{R?, 84}, at the same time this curve can be
considered as a geodesic in the Riemann mani-
fold in terms of special coordinates, the ones of
conformal/isometric type. This conception of
the curve as a geodesic will become clearer in
the next chapter. We should mention that the
duality described earlier has already been ap-
plied by Goenner et al. (1994) in order to inter-
pret Newton mechanics as geodesic flow on a
Maupertuis’ manifold.
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Field lines of gravity,

their curvature and torsion, the Lagrange and the Hamilton equations of the plumbline

Box L. Duality between horizontal and vertical fields in {R3, & ;1 equipped with a Euclidean
metric &;.
Normalized tangent vector of the plumbline is identical to the surface normal vector of an equipoten-
tial surface
Ist order differential equations
—:—gradw/”gradwlhdik:—ak w/\/5’”’8,w8 w 2.1)
ds as "
2nd order differential equations
A AT
+ = (y*0" - )=0 2.2
57t (r vy (2.2)
LT ﬂ _ ¢ -ly.e
ll* |l =l grad wl, as St x (2.3)
Ist order differential equation of the plumbline in Marussi gauge
2.4)
2nd order differential equation of the plumbline in Marussi gauge
X == @y = @Y ow = @rH ¥ 2.5)
Lx"kh _;Tak,yl(xm) = 04J
(2.6)

Secondly we are going to derive the Frenet
equations of the plumbline, a curve in
{R3, 6y}, a three-dimensional Euclidean space
completely covered by one chart of Cartesian
coordinates {x!, x*, x*}. As outlined by means
of Box II, we establish by (2.7) the Frenet
frame {normalized tangent vector, normalized
normal vector, normalized binormal vector}
called {f}, f,, f;} (x), which is subject to the
coupling to the gravity field (2.8), thanks to
the first order differential equations of the
plumbline in Marussi gauge (2.4). The deriva-
tional equations of the Frenet frame (2.9),
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(2.10), (2.11) are built on the celebrated anti-
symmetric Q-matrix which contains as struc-
ture elements the curvature k (2.12i) and the
torsion 7 (2.12ii), also called first and second
curvature of the plumbline. A straight-forward
computation of curvature and torsion of the
plumbline subject to the coupling of the grav-
ity field (2.8), namely with respect to the rep-
resentation (2.12), leads to (2.13) and (2.14).
Here we took advantage of the cross product
identity axb =||a |l |b]? - (a|b)* where ||a||
indicates the Euclidean norm of the vector a as
well as (a|b) the Euclidean scalar product/
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Box II. Curvature and torsion of the plumbline in {R, &; j+ equipped with a Euclidean metric §;;.

The Frenet frame as the natural triad of the plumbine

x‘

flx** 1l

- (2.77)

= (x*ffh ..
= (2.7i)
B e e Al !

. XX - (L) fo (2.7iii)
le*s = (e L i (xR A :

subject to
; i i oo voi 1 2 O Y XY 1 2 j
@ x=-y', (()x =EY‘“ (i) x =—E‘){,-j’y’
(2.8)
The derivational equations of the Frenet frame
f*=xS*f, (2.91)
f=-kS*fi+71S* f; (2.9ii)
f=-18*f, (2.9iii)
] [0 . o][A
£ =-on 0 O3] | S (2.10)
Lf3: L 0 —Wy3 0|5
(] [ o «xs*  o][r
£ =]-xs* 0 8* || /i (211
I.f3'_ | o -75°* 0 |lfs
Curvature x and torsion T
* *e * . L X4
oo x* xx ll, _{xtxttxxtt) 2.12)
llx* 1P fle® xx** |
_ _1_\/ 2 d V22 — 2\2
K= 27 vllgrad y*|F — (vl grad y*) (2.13)
N+ B+ 1+ 70+ V)= 1+ 1+ 175s)°
2(rt+ 3+ 13"
_ Yy i) + VY - n) + Vs n e - vy ) 214
Y82 vh = (8 P .
Corollary
Ko=0, 70=0, if wy(x,y, 2) =wy ()
0 0 o0 (%, ¥ o ( 2.15)
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inner product of two vectors @ and b. Obvi-
ously the curvature x of the plumbline is pro-
portional to gravity gradients or second deriva-
tives of the gravity potential. This can be seen
by means of (2.13) as soon as we apply (2.21),
namely grad y72, 0,7%)/2 = 0% + 10,1 +
+730c % = 0, w00, W + 0, wd, D, w + 03 W0, 03 W.
In contrast, the torsion 7 of the plumbline
is proportional to the second derivatives of
the gravity vector or the third derivatives of
the gravity potential. Such a result is motiva-
ted by the identity y2,,/2 =y, ; v+ Vi Vi ;=
= (0;0;0,w) O w + (9;0, W) (9;0,w). Finally as a
corollary we report the result that curvature
and torsion of the plumbline amount to zero if
the gravity field has spherical symmetry. Or
we may say that k, =0, 7, =0, if the gravity
field wy (x, y, z) = wy () depends only on the
radial coordinate r. This result gave the moti-
vation for a decomposition of curvature and
torsion K= Ky + 8K, T= 1y + 87 subject to K, =
= T =0 in terms of the gravity field y= 7, + ¥,
the normal gravity field ¥ = % (r) and the dis-
turbing gravity field 6 (A, ¢, r) which depends
on the lateral variation of lengthy spherical coor-
dinates {longitude A, latitude ¢}. Since the repre-
sentations Ok, OT are lengthy, we drop them here.

Instead, thirdly, we compute by means of
Box III the plumbline in a spherically symmet-
ric gravity field subject to Marussi gauge. Let
us depart from the first order differential equa-
tions (2.18) of a plumbline subject to Marussi
gauge. Indeed by means of (2.17) we restrict
the gravity field to be spherically symmetric:
the gravity potential w (x, y, z) = f(r) has been
chosen to be a function of the radial coordinate
only. The appropriate coordinate system in
which to solve the first order differential equa-
tions is the spherical coordinate system
{4, ¢, r}. By means of (2.19)-(2.29) we have
used the forward transformations «Cartesian
coordinates into spherical coordinates» in order
to represent the first order differential equa-
tions of the plumbline subject to Marussi
gauge in spherical coordinates, to prove (2.27)
A*=0, (228) ¢* =0 and (2.29) r* = —f(r), a
result collected in the corollary (2.30). Finally
as an example we have chosen the potential
and the gravity field (2.31)-(2.35) of a homo-
geneous, massive sphere in the inner zone

A and the outer zone B in order to solve the
ordinary differential equation of the radial com-
ponent of the plumbline by means of (2.37)
gm

I (r—10)
(2.37) is a representation of the solution of
(2.30iii)) 7*=—f(r) in case 1, R>r, while

r= 3\/r8 +3gm(t—1y) in case 2, R<r. For
R = r, both solutions agree with each other. gm
denotes the product of the gravitational con-
stant g and the mass m of the homogeneous,
massive sphere.

Finally we illustrate by fig. 1 the solution of
the first order differential egs. (2.30) of the
plumbline subject to Marussi gauge, namely
the bundle of straight lines with the mass cen-
ter as the focal point for a spherically symmet-
ric gravity field. For a more realistic gravity
field in the crust of the Earth, Svensson in
Grafarend (1986) has computed a sample
plumbline in the Alpes by a Runge-Kutta nu-
merical computation of the solution of the first
order differential equation of the plumbline
(24) in Marussi gauge and a gravity field
given by a set of homogeneous massive

and (2.38). The function r = r, exp

Fig. 1. A set of plumblines for a spherically sym-
metric gravity field y; straight lines with the mass
centre of the Earth as a focal point.
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Box III. Computation of a plumbline in a spherically symmetric gravity field. Marussi gauge.

o__Ow
ox
x*=—gradw & y’=—a—w (2.16)
dy
oo _ow
¢ 0z

spherically symmetric gravity field

w(x, y, z) = f(r) subject to r?=x2+y%+z? (2.17)
_dwor _, xt - df
akW—Ww—f ", f(r)'_E (2.18)

forward transformation: Cartesian coordinates into spherical coordinates

A = arctan (y/x) + (~%sgn ) - %sgn (y) sgn (x) + l)n:, Ae{R|0 < A< 2m} (2.19)

¢ = arctan (z/\x?+y?), pe{R| -n/2< p< +1/2} (2.20)

representation of the 1st order differential equation of the plumbline in spherical coordinates

2,.2 _
dtand=""2 g3 - ydx";my @21
X X
1 r?
dtan ¢ = W—((x2+y2) dz — zxdx — zydy) = x2+y2d¢ (2.22)
x* =~ () xIr
k
=o' (DG e |y = Oy 23)
7* = _f/ N or
At = TR (=yx* +xy*) (2.24)
X4y
- m%ﬂxx‘—w' +xeyhzt) 225
r = %(xx‘ +yy* +zz%) (2.26)
A= A G Oxlr—xf (D) =0 @27
X*+y
= (x2+1yz)3/_z % @xf' (xlr+2yf (N ylr= >+ yHf (Nzlr) =0 228)
Pt =@ O+ Y2 () + 2 (1) = =2 () (2.29)
At=0, ¢*=0, r*==f(r), if wxy, 2)=£0) (2.30)
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Box III (continued).

Example: massive sphea

2R

2
s (3— r—)VOSr<R: zone A
R?
wy (r) =

gm

—— VR <r<eo: zoneB

or
in terms of the Heaviside function H (R, 1)

2
wy (1) =H(R—r)§—2(3* #)+H(r—R)g

gm
——3rVOSr<R: zone A

grad wy (1) = —e, om
=5 VR <r<eo: zoneB
-

or

g§m gm

grad wy (r) = ~e,H(R—r) =—r—e,H(r— R) >—
R r2

—akW0=H(R—r)g—mxk+H(r—R)g—mxk=x’k
R’ e
Corollary
A0=0, ¢*=0, rrt=r2HR-r) 2 s H—R) ™
R r

if wx, y, 2)=wy ()

: R>r:r’=gr:£=g_mt N
I TR

gm
= Inr— Inr0=7€3—(t~t0) =
gm
= Inriry = F(z—to) =
r gm
= r—Q:exp;}—(t—to) =

gm
r=ry exp F([—t())

m
Case 2|: r>R:r‘=g—2:r2dr=gmdt =
r

r3 r03
= ?—?=gm(t—to) =
= ir3=lr3+gm(t—t) =
3 370 o

r=%ri+ 3gm(t—1y)

I

]

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)
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s

Y65, 500

Ysg 225

Fig. 2. Computation of a realistic plumbline at a
mountain point in the Alpes according to Svensson
in Grafarend (1986).

spheres around the plumbline representing the
local gravity field. Reference is made to fig. 2.
In addition, by fig. 3 we illustrate the computa-
tion of a realistic plumbline at the Swiss high
mountain point «Jungfraujoch» performed by
Hunziker (1960). An alternative procedure for
the gravitational field in the crust is outlined in
Engels and Grafarend (1993), Engels et al
(1996) and in Grafarend et al. (1995). Finally
we refer to Grossman (1974, 1978) for the fo-
cal point of plumblines.

3. The Lagrangean portray versus
the Hamilton portray of the field lines
of the gravity field, the plumbline

First, let us derive the second-order differ-
ential equations of the plumbline from a gen-
eral Lagrange functional. According to Box IV
we look for a stationary functional (3.1) which
varies the arc length between two fixed
points in the three-dimensional Riemann mani-

~Nord
%
5
10 mm
9
500

P P
30 mm EEIIN .v 3000
/500 0 2500

2 oo

Fig. 3. Computation of a realistic plumbline at the mountain point «Jungfraujoch» at the Swiss Alpes by
Hunziker (1960, p. 151), departure from a straight line projection onto the reference figure 12.2 mm/30.8 mm

in the North/West direction.
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Box IV. The field lines of the gravity field as geodesics, the general Lagrange portray.

«The stationary functional»

5fds_5_[V2L2dr BJ.\jgk,——dT 0 3.1)

(fixed boundary points)
=
T, T,
dx 1 dx" dx
rx2x)=1sf dr= 3.
‘Sj (xdr)Z (gdd)ro ©-2)
T 7

(fixed boundary points)

subject to a general Lagrangean of a conformally flat metric whose factor of conformality coincides
with the modulus of the gravity squared.

2 k 1
212 (x, ‘;—’T‘) S M (3.3)
gu (x™) = 22 (x™) O (3.4

«the gravity eiconal»

EAZ (™) = y2(x™) = M 9w, w 1

3.5)
Vk, I, me {1, 2,3}
«The general Lagrangean»
2 2\2 3\2
2L2<x, -‘;—’;) A2, X% x ){( dr) +(%—) +(%) } =
1\2 2\2 3\2
R TR, (LX) . (d_X) . (d_x)
dt dt dat
(3.6)
«The Euler-Lagrange equations»
T
5JL(x, ﬂ) dt=0 3.7
dt
Tl
4oL 1_9L_, (3.8)
o |dr a(dxk) ox
dr
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Box 1V (continued).

R S N \ri+ s+ r dx* 390
a(dx") a(dxk) \/(dxl)z (dxz)z (dxz)z dt
— - — ) +|—=] +|—=
dt dt dt dt dt
dx'\2  [(dx*? (dx*V
2 (d_r) o) ")
zOL _ L oL® _ Lo2am (3.9ii)
k '
o " 2L s Ve e 2
«transformation from the parameter 7 to the parameter s (affine parameter)»
p
dx* _ _dxds _ ,ds
dr  ds dr dr N (3.10)
ds _ \/ dxt dx! 3.11)
i 8u (x™) i dr
x4+ [kl, mlx"%"™=0
sux+ il (3.12i)
Yacke @y x k- y23k72=0 (3.12ii)

fold {M?, y*(x) §,}, the Marussi manifold,
whose metric is chosen conformally flat,
gu () = 22 (x) §,. Tts factor of conformality
() = *(x) = $'§wSw as the gravity eiconal
(3.5) is fixed to the modulus of gravity squared
where gravity is represented as the positive
gradient of the scalar gravity potential. Accord-
ingly, the standard Euler-Lagrange egs. (3.8),
(3.9) lead to the general differential equations
of second order characterising the plumbline
with respect to the length of arc via (3.10),
(3.11) and (3.12).

Secondly, we are going to derive the second-
order differential equations of the plumbline
from a special Lagrangean L* which is subject
to Marussi gauge according to Box V. The
star Lagrangean functional (3.13), namely
L*:=ds/dt, leads us via (3.15) to the represen-
tation (3.16) when implementing the metric of
a conformable flat Riemann manifold (3.4), the
Marussi gauge (3.15) as well as the factor of

conformality (3.16), called here the gravity
eiconal. Based upon the star Lagrangean func-
tional (3.17) first order variation via (3.18),
(3.19) gives us the differential equations of
second order (3.20) of the plumbline, namely
as a geodesic in Newton form, where the gradi-
ent of the modulus of gravity squared and
taken half appears as the gradient of the super-
potential y%2. Finally (3.21) offers a represen-
tation of the gradient of the superpotential in
terms of first and second order gradients of the
gravity potential. The transformation of the
general Lagrangean into the star Lagrangean,
forward as well as backward, is given by
(3.22).

How can we derive the Hamiltonian por-
tray, in particular the Hamiltonian equations of
the plumbline, which have to appear as six dif-
ferential equations of first order? Thirdly, Box
VI outlines the procedure: As soon as we have
defined by means of (3.23) the generalized mo-
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s t
5J.ds=5

0 21

subject to a Lagrangean of a conformall
modulus of gravity squared as well as

15}

L

o

2
J.L*dt=6

d oL*
dt gy*k

2

4

L*::%:lz(xm)

8 (x™) = A2 (x™) §,

ok ol

L*=%5,dx x*

5JL* xx)dt=0

)

jl(x’")\/ﬁklx’kx‘ldt =0

their curvature and torsion, the Lagrange and the Hamilton equations of the plumbline

Box V. The field lines of the gravity field as geodesics, the Lagrange portray with respect to
Marussi gauge.

«The stationary functional»

(3.13)

(fixed boundary points)

y flat metric whose factor of conformality coincides with the
to the Marussi gauge.

(3.14)

3.4)

«the Marussi gauge»

12 — 6klx0kxol

(3.15)

«the gravity eiconal»
2 my _ a2¢0.m\ _ Skl — Ski
M=y am =6 Y ¥i= 60w, w
Vk, I, me {1, 2, 3}

(3.5)

«the star Lagrangean»

1
5 A% (3.16)

«The Euler-Lagrange equations»

3.17)

oL

ox*

(3.18)

]

mentum as the general velocity vector pro-
Jected into the cotangent space * T.M? at point
x of the Riemann manifold {M?, g}, its metric
via (3.4) is given as conformally flat. In particu-
lar, the differential arc length squared ds® = A2
[(@x)* + (dx*)* + (dx*)*] up to the factor of
conformality A? (x) looks like the metric of a
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flat space. As soon as we use (3.5) as the
proper representation of the factor of confor-
mality as the modulus of gravity, we gain
(3.24) as the attached generalized momentum.
The standard Legendre transformation (3.25)
helps us to define via the general Lagrangean
squared the Hamiltonian H (x (1), y(7) in
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Box V (continued).

L _ wk

d OL* _ 4

o LA (3.190)

%
% ) %aklz @)= %aﬂz(xm) (3.19ii)
x”k — %akYZ(xm) (320)

potential»

gradients».

«the differential equation of the plumbline as a geodesic in Newton form; y%2 is called super-

«representation of the gradient of the factor of conformality/superpotential in terms of gravity

1 m
58ky2(x )= 0 MY R = NN+ BBV OB =

=0, W0, O\ W+ 0w Jyw + 3w 0y O3 W

(3.21)

«The transformation of the general Lagrangean to the star Lagrangean subject to Marussi gauge»

217 1 = o dxFdx!
L¥=— % o L=-AL*§, <2 3.22
dx dx! 2 “dr dr (3:22)
Kkl —, T,
dr dt

the parameter 7. The general Hamiltonian H =
= g*y,y, should be compared with the degener-
ate Hamiltonian proposed by Moritz (1994).
Implementing the metric (3.4), we are led to
the elegant form of the non-degenerate Hamil-
tonian (3.26) and by the standard Hamiltonian
variational calculus (3.27)-(3.29) to the six
Hamiltonian equations (3.30) of first order.
The six Hamiltonian equations become
much simpler as soon as we introduce the
Marussi gauge. According to Box VII we in-
troduce the «Marussi gauged momentum» y*
which coincides via (3.31)-(3.34) with the vec-
tor x* with respect to the parameter ¢, namely
the negative gradient of the gravity potential.
in the Hamilton portray y* =—gradw intro-
duces the «action function» w, also called
«Wirkungsfunktion», which plays a dominant
role in the theory of refraction, wave fronts and

rays. The surfaces w = const correspond to
wave fronts, their orthogonal trajectories, the
plumblines to rays, Roemer (1994). Enjoy the
experience to derive the star Hamiltonian
H*(x (), y*@®), (3.35) from the star La-
grangean via the star Legendre Transformation,
namely (3.36), the starting point for the stan-
dard Hamiltonian calculus (3.37): The star
Hamiltonian egs. (3.38), six in number, appear
symmetrical. The time derivative of the confor-
mal/isometric coordinates x* equal the star mo-
mentum y;, the time derivative of the star mo-
mentum equals the gradient of the superpoten-
tial A* (x', x*, X*)/2 = y*(x', x*, x*)/2. Finally
by means of (3.38) we offer the transformation
of the general Hamiltonian into the star Hamil-
tonian, of course, forward and backward. The
elegant six Hamiltonian equations of first order
have already been interpreted in phase space
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Box VI. The field lines of the gravity field as geodesics, the general Hamilton portray.

«generalized momentumy»

oL? dx* 3
1= =gu—e*T, M 3.23
Ve St 8u - (3.23)
at
subject to conformally flat metric whose factor of conformality coincides with the modulus of gravity
squared

8 (x™) = A? (x™) 0y (3.4)
2 (x™) = y2(x") = §¥y 9 = 6 oW O, w (3.5)

k
= 22m LT (3.24)

T

«Legendre transformation, the general Hamiltonian H (x (1), y(7)) as the dual of the Lagrangean

L? (x, ii)ﬁ)»
dt dx

k
1
H@x(D), y(0):=y, == - L*= < gMy,y, (3.25)
dr 2
subject to
m m m 1
8u (™) =A% (x )6 = g (x™) = PYPN & (34
A% (x™)
1 2.2, 2
H= 270 OF+y:+y3)
v (3.26)
«The general Hamiltonian equations»
)
k
5 f(yk & H)) dr=0 (3.27)
dt
T
=
dx* _oH
= % _ 3.28
4z " oy, & (3.28)
dye __9H _ 1 dg™
==y 3.29
e ak 2 g (3.29)
subject to a conformally flat metric
gl 1 40 (3.4)

e yi+¥i+yl g 1

dr 2 oxk 22 (!, x2, x3)

(3.30)
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Box VII. The field lines of the gravity field as geodesics, the Hamilton portray with respect to
Marussi gauge.

«Marussi gauged momentum»

L. oLx _dx! dx 1
Yk~—W—gkla—gle§ (3.3D)
dr dt

subject to conformally flat metric whose factor of conformality coincides with the modulus of gravity
squared as well as to the Marussi gauge

gu (™) = 22 (x™) 8y 24
2 (= y2™) = 3yy,= 840w ow 2.5)
ds = A2dt (3.32)

* d k *
Yi= S =xtt = 0w (3.33)
y*=x*=—gradw (3.34)

«the Marussi gauged momentum coincides with the gradient of the gravity potential (Wirkungsfunk-
tion, action function)»

«Legendre transformation, the star Hamiltonian H* (x(f), y (f)) subject to the Marussi gauge as the

dual of the star Lagrangean L* (x, ﬂ)»

dt
. dx*
H* (x (@), y(®):= ar -L* (3.35)
H* =Lty L (3.36)
2 k1 2 .

«The Hamilton equations with respect to Marussi gauge»
t;

2
k
5I(y;; (L —H*) dt=0 (3.37)
dt
L
@t _oHr_su
dr gy !
(3.38)
dyx 0H* 1 0 2,1 2 3
- E 5@/1 (x, x% x7)
«The transformation of the general Hamiltonian subject to Marussi gauge»
H A dx* dx’)( ,12)
Hf=—— - "o H=|0y— — || H*+ = 3.39
it dx! 2 ( “dr dr 2 (5:39)
"t dr
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by Grafarend and You (1995, formulae (1.9)-
(1.12)) on the basis of a six-dimensional phase
space {MS, Q}. It would be tempting to solve
the six Hamiltonian equations of first order for
a spherically symmetric gravity field, but space
restrictions do not allow us to do this.
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