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SUMMARY

In this paper, we carry out a comparison analysis of the Epidemic Type Aftershock Se-

quence (ETAS) model for the earthquake process, embedded with the three main exponential-

type distributions adopted in practical applications to describe the magnitudes of seismic

events, that are, the Gutenberg-Richter (GR), the tapered Gutenberg-Richter (TGR) and

the CHaracteristic (CH) frequency-magnitude distributions (FMDs). The first law is a

pure-power decreasing function, while both the other two introduce a more rapid decay

in the tail of the distribution: a soft taper in the TGR model and a sharp cutoff in the

CH one. To perform the comparison, we first investigate some theoretical features of the

ETAS model with CH-distributed magnitudes (ETAS-CH), which have not been deeply

analyzed in the literature as much as for ETAS-TGR and ETAS-GR. In particular, we

explicitly compute the branching ratio, we analyze its asymptotics in relation to its pa-

rameters, and we derive the proper stability conditions. We then move to the comparison

among the three ETAS-GR, ETAS-TGR and ETAS-CH processes, to highlight differences

and similarities. This is done by carrying out both a theoretical analysis, mainly focused

on the three models’ branching ratios and the relative sensitivity, and a simulation analy-
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sis of realistic synthetic catalogs to compare the processes’ numbers, events’ magnitude

distribution and temporal evolution. The results we obtained show that the ETAS-TGR

and ETAS-CH processes have very similar features. They both have also less restrictive

non-explosion conditions than for ETAS-GR; in fact, differently from this latter case,

their branching ratios exist for any value of the parameters and are lower than the one of

ETAS-GR, to which they converge for large magnitudes.

Key words: Statistical seismology, Statistical methods, Probability distributions.

1 INTRODUCTION

The magnitudes of seismic events in statistical seismology applications are typically modeled like

exponential-type random variables. The most used Frequency-Magnitude Distribution (FMD) is in-

deed the Gutenberg-Richter (GR) law (Gutenberg & Richter 1944), which is a decreasing exponen-

tial distribution according to which the number N of events with a magnitude ≥ m is given by

N(m) = 10a−b(m−mt), where mt is the completeness threshold and a, b are two positive parame-

ters. The first one characterizes the seismic activity (earthquake productivity) in a given region and

precisely represents the number of events above the completeness magnitude. The second parameter

is instead the so-called b-value and describes the ratio of the smaller events with respect to the larger

ones. Great interest has been shown by the scientific community to this parameter, which is debated to

vary in space and/or time, thus suggesting its interpretation in terms of a physical process providing

important information about the crustal tectonics (Westerhaus et al. 2002; Montuori et al. 2010; Hus-

sain et al. 2020; Arroyo-Solórzano & Linkimer 2021). This discussion is still active in the literature,

and the main criticisms are ascribed to the fact that the b-value estimation is susceptible to several

sources of bias (Marzocchi et al. 2020).

Although the GR law is a benchmark in practical seismological applications, some investigations

have highlighted that it may not be appropriate in a complete earthquake catalog for near fault regions

(e.g., Ishibe & Shimazaki (2008); Field et al. (2017)), where it has been shown to overestimate the

probability of large earthquake magnitudes. Various alternatives have therefore been proposed to ac-

count for the limited amount of stress energy in small domains, or for the finiteness of the seismic

moment flux and the deformational energy (Kagan 2002; Schorlemmer et al. 2005; Tan et al. 2019).

Among them, the most used ones are the Tapered (Pareto) Gutenberg-Richter (TGR) law, and the
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Characteristic (CH) model, both accommodating a change from a power law to a more rapid decay:

the first as an exponential taper which varies with the magnitude, the second as a sharp cutoff (Kagan

2002). The main difference is that the GR simple power-law scaling relationship is adapted to have

a lower or null (respectively in the case of TGR or CH) probability of strong events to occurr (more

precisely, events stronger than a fixed threshold). Several studies have been made to show the main

features of each model and to capture source seismicity in b-value estimation and seismic hazard anal-

ysis results (Kagan et al. 2010; Spassiani & Marzocchi 2021; Taroni et al. 2021; Yaghmaei-Sabegh &

Ebrahimi-Aghabagher 2017; Yaghmaei-Sabegh & Ostadi-Asl 2021). Some direct comparisons have

already been performed between GR and one of the other two distributions for practical cases. Wes-

nousky (1994) used paleoearthquake and fault slip-rate to examine the shape of FMDs in Southern

California; Ishibe & Shimazaki (2012) used a high quality catalog compiled by the Japan Meteoro-

logical Agency (JMA) to show whether the GR or CH models more adequately describe the FMD

around late Quaternary active faults; Spassiani & Marzocchi (2021) introduced a modification in the

TGR distribution to obtain an optimal fit for seismicity in small spatiotemporal domains, and showed

a practical application to the Mw7.3 Landers earthquake occurred in California in 1992.

In order to delve into the models’ differences, in this paper we compare the three FMDs of GR,

TGR and CH all together. Throughout the text, we will use this terminology for consistency with

the paper by Kagan (2002), which is a reference work in the literature. To do the comparison, we

firstly give the formal definition of the probability density functions (PDFs) in terms of the seismic

moments (hereafter indicated with capital letter M ), instead of the magnitudes (hereafter indicated

with small letter m), as in this way the definitions are more readable and the theoretical comparison

is more straightforward. More precisely, we use the relation M = 10
3
2
m+9 (M measured in Nm) by

Kanamori (1977) which links the two quantities in a unique, bijective way. The PDFs of GR, TGR and

CH can then be written as:

φGR(M) = βkM
βk
t M−1−βk Mt ≤M, (1)

φTGR(M) =

[
βk
M

+
1

Mc

](
M

Mt

)−βk
exp

{
Mt −M
Mc

}
Mt ≤M, (2)

φCH(M) = βkM
βk
t M−1−βk + δ (M −Mxc)

(
Mt

Mxc

)βk
Mt ≤M ≤Mxc, (3)

where: Mt is the seismic moment of completeness; βk = 2
3b; Mc controls the upper range distribution
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in the TGR law;Mxc is the upper bound seismic moment of the CH distribution; δ(·) is the Dirac delta

function.

To the aim of modeling the entire earthquake sequence, the FMD is usually embedded in a

stochastic process that involves also spatial and temporal components. The most used one is the Epi-

demic Type Aftershock Sequence (ETAS) model, a benchmark in statistical seismology consisting in a

branching, clustering process of events evolving in successive generations (Ogata 1988, 1998; Console

& Murru 2001; Console et al. 2003; Zhuang 2012). Its conditional intensity, that completely charac-

terizes the process, dependes on the Omori-Utsu law for the aftershocks temporal decay, on a spatial

kernel for the earthquakes location distribution and on the productivity law %(M) = κ
(
M
Mt

)αk
, here

written in terms of the seismic moment, which represents the expected number of aftershocks trig-

gered by a given mother event (κ, αk are positive parameters, and αk = 2
3α, where α is the fertility

exponent parameter of the productivity law written in terms of the magnitudes).

The stability of the ETAS process, that is the non-explosion of the seismic sequence it models, is

assessed by looking at the relative branching ratio η, that is the integral

η =

∫ ∞
Mt

φ(x)%(x)dx, (4)

where φ(·) is the generic FMD. The branching ratio is indeed the proportion of triggered events with

respect to all the shocks. De facto, this quantity corresponds to the critical parameter of the process,

i.e. the average number of first-generation shocks per mother event. It then follows that it has to be set

lower than 1 for the process not to explode.

The branching ratios ηGR and ηTGR for the ETAS model with GR- and TGR-distributed mag-

nitudes (hereafter, ETAS-GR and ETAS-TGR, respectively) can be explicitly and straightforwardly

computed as shown in Zhuang et al. (2012) and Spassiani (2021), obtaining:

ηGR =
κβk

βk − αk
, βk > αk, (5)

ηTGR = κ+ καk exp

{
Mt

Mc

} (
Mt

Mc

)βk − αk
Γ

(
−βk + αk,

Mt

Mc

)
, (6)

where we recall that κ concerns the earthquake productivity, and Γ(s, t) =
∫∞
t ys−1e−ydy is the upper

incomplete Gamma function. We stress that ηGR can be computed only for βk > αk in order for the

integral (4) to converge. Instead, this condition is relaxed for ηTGR where the taper impeds the number

of events to become infinite (Spassiani 2021). When βk = αk, we can in fact more simply rewrite the

ETAS-TGR branching ratio as



Comparison ETAS-GR, -TGR, -CH processes 5

ηTGR, βk=αk = κ+ κβk exp

{
Mt

Mc

}
E1

(
Mt

Mc

)
, (7)

where E1(z) =
∫∞
z

e−t

t dt is the exponential integral.

In what follows, we will first focus on the theoretical analysis of the ETAS-CH process, so far not

deeply studied in the literature. More precisely, we firstly explicitly derive the branching ratio, then

we perform a sensitivity analysis with respect to its parameters, and finally we investigate the process

stability. We then move to the comparison among the three ETAS-GR, ETAS-TGR and ETAS-CH

processes, by focusing mainly on the relative FMDs and branching parameters ηGR, ηTGR and ηCH ,

through both a theoretical and a simulation analysis.

2 BRANCHING RATIO OF THE ETAS-CH PROCESS

To the aim of computing the branching ratio of the ETAS model with CH-distributed magnitudes

(ETAS-CH), we substitute the expression (3) in the integral (4). A straightforward calculation gives

ηCH =

∫ Mxc

Mt

[
βkM

βk
t x−1−βk + δ (x−Mxc)

(
Mt

Mxc

)βk]
κ

(
x

Mt

)αk
dx

=κβkM
βk−αk
t

∫ Mxc

Mt

x−1−(βk−αk)dx+
κMβk−αk

t

Mβk
xc

∫ Mxc

Mt

xαkδ(x−Mxc)dx. (8)

We have then to distinguish between the cases βk 6= αk and βk = αk.

2.1 Case βk 6= αk

Setting βk 6= αk, we use in the last integral of equation (8) that∫ t

s
f(x)δ(x− y)dx = f(y)[u(y − s)− u(y − t)],

where

u(x) :=


1, if x > 0

0, if x < 0

0.5 if x = 0

is the unit step function. We then get

ηCH =
κβk

βk − αk
− κβk
βk − αk

(
Mt

Mxc

)βk−αk
+
κ

2

(
Mt

Mxc

)βk−αk
=

κβk
βk − αk

− κ(βk + αk)

2(βk − αk)

(
Mt

Mxc

)βk−αk
. (9)
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This shows that, when βk 6= αk, the branching ratio ηCH of the ETAS-CH model is obtained as the

classical one ηGR = κβk
βk−αk minus the quantity

ηres =
κ(βk + αk)

2(βk − αk)

(
Mt

Mxc

)βk−αk
, (10)

which is positive (negative) for βk > αk (βk < αk). The relative graphical representation is given in

Fig. 1, where ηres and ηCH are plotted against αk and the ratio
Mt

Mxc
, for a fixed βk both < and > αk.

By looking at the upper panels, corresponding to the case βk < αk, we can observe that ηres and ηCH

have a similar decreasing trend with αk, while an opposite trend with respect to the ratio
Mt

Mxc
. Still,

the latter’s velocity rate is for both the quantities very slow. The bottom panels in Fig. 1 show instead

that when βk > αk, ηres and ηCH have an opposite monotonicity with respect to both the two variables

they are plotted against.

The asymptotics for the cutoff magnitude to 0 or to infinity analytically confirm the evidence

shown in the above figure. Explicit computations give

lim
Mxc→Mt

ηres =
κ(βk + αk)

2(βk − αk)
=

1

2
ηGR +

καk
2(βk − αk)

, (11)

from which

lim
Mxc→Mt

ηCH =
1

2
ηGR −

καk
2(βk − αk)

. (12)

The above quantity is always smaller than ηGR. In fact, if βk > αk (βk < αk), the inequality

− 1

2
ηGR >

καk
2(βk − αk)

(13)

holds true if and only if βk < αk (βk > αk), that is, there is no consistency with the conditions on the

order relation between βk and αk. Still, we stress that only the hypothesis of βk > αk subsists for ηGR

to exist.

In the limit for Mxc →∞ it holds instead

lim
Mxc→∞

ηres =

0, if βk > αk,

−∞, if βk < αk

⇔ lim
Mxc→∞

ηCH =

ηGR, if βk > αk,

+∞, if βk < αk.
(14)

This shows that, for large Mxc and βk > αk, the branching ratio ηCH has the same formulation of

ηGR, as expected.

2.2 Case βk = αk

If βk = αk, formulation (8) becomes

ηCH, βk=αk =κβk

∫ Mxc

Mt

x−1dx+
κ

Mβk
xc

∫ Mxc

Mt

xβkδ(x−Mxc)dx =
κ

2
− κβk ln

Mt

Mxc
, (15)
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whose graphical representation is given in Fig. 2 and shows that ηCH, βk=αk increases with the increase

of both
Mt

Mxc
and βk = αk.

In this case, it is easy to see that

lim ηCH,βk=αk =

∞, if Mxc →∞
κ

2
, if Mxc →Mt.

(16)

The previous results highlight that the condition βk > αk, essential for the classical ETAS-GR

case to guarantee the finiteness of the integral (4) (related to the non-explosion of the seismic se-

quence), is not required in the ETAS-CH modeling, as for the ETAS-TGR. This is what expected, in

fact the CH law introduces a sharp upper cutoff to the magnitudes.

2.3 Criticality

As anticipated in Section 1, in the case of self exciting epidemic-type models, the critical parameter of

the process coincides with the branching ratio, independently of the explicit formulation adopted for

the magnitudes, as long as it is independent of space and time (i.e., the rate of the model is space-time-

magnitude separable). It follows that the stability of the seismic process modeled through ETAS-CH

is guaranteed by setting ηCH < 1, like it happens for ETAS-TGR and ETAS-GR (Zhuang et al. 2013).

In the paper by Spassiani (2021) it is shown that, when βk > αk, the non-explosion condition is less

restrictive for the ETAS-TGR than for the ETAS-GR case, as ηGR > ηTGR. This inequality holds true

also when substituting the branching ratio in the right-hand side (RHS) of this latter inequality with

ηCH . In fact, as we explained before, the quantity ηres in (10) is positive when βk is larger than αk.

In the case of ETAS-CH, the parameter that mainly controls the branching ratio to be less than 1

is κ. This is shown in Fig. 3, where ηCH is plotted versus the difference βk−αk, for four pairs (κ, βk)

and, in each of them, for four values of the ratio
mt

mxc
. We kept the y-scale fixed, and this highlights that

the highest variability is observed between left and right panels, which differ for the value of κ indeed.

The figure also shows that ηCH decreases with βk − αk and its rate of decrease is controlled by the

ratio
mt

mxc
: the higher this latter, the slower the decrease. We stress that in this case we use and display

the magnitudes (small letters m) instead of the seismic moments (capital letters M ): this will be done

also hereafter just as a “visualization” chioce for the plots to be more immediately understandable and

more easily interpretable.

3 COMPARISON RESULTS

We now turn to the comparison of the seismic processes modeled through ETAS-GR, ETAS-TGR

and ETAS-CH. To do that, we firstly focus on the branching ratios ηGR, ηTGR and ηCH , respectively
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defined in (5), (6)-(7) and (9)-(15). For the sake of simplicity, hereafter we will set mc ≡ mxc (or,

equivalently, Mc ≡Mxc).

The reciprocal relation between the branching ratios from ETAS-TGR and ETAS-CH is shown in

Figures 4, 5 and 6. In the first one, the difference ηTGR − ηCH of the quantities defined in (6) and (9)

is plotted against βk − αk, for a fixed pair
(
βk,

mt

mxc

)
and two values of κ. This difference is shown

to be very small, in fact it remains below 7 · 10−2 also for the highest κ. Besides, the range of the

y-axis is very narrow. This result highlights that the two branching ratios are close to each other, the

smaller the κ value the lower their difference. It is what expected, as both the two FMDs introduce

a rapid decay to the magnitude distribution: the only difference is that CH has a hard cutoff, while

TGR has a soft taper. The ETAS-TGR process is expected to have a higher number of stronger events

than ETAS-CH, and this is more evident when the κ parameter, which represents the productivity of

aftershocks, is higher. We stress that we come to the same conclusions by using also different pairs

of
(
βk,

mt

mxc

)
. More precisely, for a higher ratio

mt

mxc
the difference falls below 4.5 · 10−2, while it

decreases with a higher βk: still, the conclusions are the same. In Fig. 5, we show the contour plot of

the difference ηTGR− ηCH as a two-variables function of αk and κ, for three values of βk (each in one

of the three lines), and βk > αk in the left panels while βk < αk in the right ones. We can see again

that the difference is overall very small: it is larger for βk < αk than for βk > αk, and this is quite

independent of the βk parameter value; finally, it becomes close to 0 in correspondence of smaller αk

and κ.

The case βk = αk is instead illustrated in Fig. 6, where we plot the difference ηTGR, βk=αk −

ηCH, βk=αk of the branching ratios defined in (7) and (15), versus the parameter κ. A linear increasing

trend is observed, and this agrees with what is shown in Fig. 4 at the x-point = 0, where the line

corresponding to the highest κ is above the other one. In agreement with the results obtained before, the

difference remains small (here, smaller than 3.5 ·10−2 in correspondence of the highest κ considered).

We stress that, by using different values of the parameters, we obtained that for a higher βk this

difference becomes even smaller, while it does not change with the ratio
mt

mxc
. As expected, also in

this case we can draw the same conclusions.

In Fig. 7 we finally plot the three branching ratios ηGR, ηTGR and ηCH together, to have an overall

comparison. We can observe that the variation of ηCH and ηTGR with respect to their parameters is very

slow, indeed, their ratio is almost coincident for the scale used; we stress that the latter has been chosen

such as to allow to plot ηGR in the same figure. The non-explosion of the process is far more restrained

when ETAS is embedded with CH or TGR rather than with GR. The latter is always above the former

two, and they approach each other when βk − αk becomes larger. Again, we notice that the relative

position between ηCH or ηTGR and ηGR is strongly controlled by the κ parameter: the higher the latter,
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the greater the distance between the curves. This is more evident when the difference βk−αk is small.

On the other hand, the influence of the b-value is quite unrelevant (see top right panel of Fig. 7). We

underline that the curves corresponding to ηGR are plotted only for βk > αk, since this branching ratio

exists only when this condition is satisfied.

3.1 Simulations

A simulation analysis has been performed to study and compare ETAS-GR, ETAS-TGR and ETAS-

CH realistic synthetic seismic sequences, such to highlight differences in the main features of the

processes, like the number of aftershocks and background events, the magnitude distribution and the

temporal evolution.

To obtain the synthetic catalogs, for each process of the two ETAS-TGR and ETAS-CH we

first generate three synthetic magnitude sets of fixed cardinality N̄ = 10000, with the parameters

αk = 0.65 and respectively βk = (0.74, 0.65, 0.59), that is, corresponding to the cases βk >,=, < αk.

For the ETAS-GR process we instead generate N̄ synthetic magnitudes with αk = 0.65 < βk = 0.74,

since this condition is necessary in this case to guarantee the finiteness of the process. We specifi-

cally use the method for the inversion of the exponential cumulative distribution function. For TGR-

distributed magnitudes, we adopt the competing risk approach proposed by Vere-Jones et al. (2001)

and well described in Kagan & Schoenberg (2001). We stress that we are fixing here the number N̄

of simulated events and, for the sake of simplicity, we will consider hereafter only the pure-temporal

ETAS process.

Once obtained the seven synthetic sets of N̄ magnitudes each, we correspondingly produce the

synthetic pure-temporal earthquake catalogs by adapting the algorithm for the pure-temporal ETAS

model proposed by Ogata on the basis of the thinning method for the simulation of point processes

(http://www.ism.ac.jp/~ogata/Ssg/ssg_softwaresE.html, Lewis & Shedler (1979); Mus-

meci & Vere-Jones (1992); Ogata (1981, 1998)). Regarding the background and the temporal compo-

nents of the ETAS rate, we use the fixed set of parameters (µ, κ, c, p) = (0.79, 0.012, 0.038, 1.13),

as estimated for the Italian catalog from January 2007 to December 2014 through the maximum like-

lihood estimation (MLE) technique. We also set the completeness threshold equals to 2.5, while the

cutoff magnitudes (mc for TGR and mxc for CH) both equal to 6. These choices for the input param-

eters are arbitrary and do not affect the conclusions deduced from the analysis, in agreement with the

evidences obtained from the sensitivity analysis we performed in the previous Section 3.

The algorithm we develop allows also to build the family tree of the generated synthetic sequences

by means of an in-line routine based again on the thinning (sampling) procedure (Zhuang et al. 2002;

Zhuang 2006). It precisely allows to label each event as background or triggered, and to associate

http://www.ism.ac.jp/~ogata/Ssg/ssg_softwaresE.html
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to the aftershocks the relative mother events. In particular, to identify the mother of the ith event we

search for the previous kth event, k ∈ [0, i− 1], such that the ratio between the model’s rate in k and

the model’s rate in i− 1 is for the first time larger than a random number between 0 and 1.

The first result is illustrated in Fig. 8, where we compare the branching ratios estimated for the

simulated ETAS-GR, ETAS-TGR and ETAS-CH processes (square, circle and “x” markers, respec-

tively) and for the three cases βk <,=, > αk. The plot shows that ηTGR and ηCH are in general close

to each other, and become closer as the difference βk − αk increases. The two branching ratios are

also inversely proportional to this latter difference: the higher it is, the lower they are. For the case

βk > αk, the estimated ηGR is instead higher than the other branching ratios, and this directly follows

from the hypothesis of unbounded magnitudes on which the GR law relies.

In Fig. 9 we show instead the numbers of triggering and triggered events generated in the three

synthetic processes for the three cases βk <,=, > αk. More precisely, in the left column panels we

show the ratio of background and aftershocks events over the total length of the catalog (N̄ events). In

the right column panels we insted plot the first generation triggered events. We can observe a similar

behavior for ETAS-CH and ETAS-TGR, in which the numbers of total and first generation aftershocks

decrease with βk − αk. When this difference is negative, the percentage of triggered events over the

total is ∼ 98.3% and 98.6%, respectively for ETAS-CH and ETAS-TGR, diminishing to 88.9% and

90.1% when the two parameters are equal. Finally, if βk > αk we obtain 57.4% and 58.1%. The total

number of aftershocks decreases of 45 and 14 moving βk−αk from negative to 0 and then to positive,

for ETAS-CH, while of 17 and 58 for ETAS-TGR. This difference may be induced by the sharp and

tapered cutoffs of the two FMDs. To interpret these results we resort to the meaning of the parameters:

βk controls the proportion of larger to smaller events (the lower it is, the higher is the proportion), while

αk is related to the aftershocks productivity. The case βk < αk can be interpreted as the situation in

which the role of aftershocks productivity in the seismic process is more remarkable, we could say

“more tangible”, than that of the rate of larger to smaller events. Therefore, the effect is to observe

a higher number of triggered events and a higher number of first generation aftershocks. Besides,

the proportion of aftershocks over the total is higher and this is reflected in a higher branching ratio.

The percentage of triggered events over the total for the ETAS-GR is instead ∼ 91%, interestingly

comparable to the other processes when βk = αk.

Fig. 10 shows the cumulative magnitude distributions of the ETAS-GR, ETAS-CH and ETAS-

TGR simulated processes. The last two are characterized by a lower taper as long as the difference

βk − αk increases. The curve corresponding to ETAS-GR falls between the other two obtained for

βk ≥ αk: it retraces quite well the ETAS-TGR and ETAS-CH FMDs for βk > αk until a certain

magnitude value (< 5) and then, for larger magnitudes, it approaches the tails obtained for βk ≤ αk.
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The histograms of the aftershocks’ number with respect to the magnitudes are instead given in Fig. 11

for ETAS-CH and ETAS-TGR, and in panel a) of Fig. 12 for ETAS-GR. By looking at these plots, we

can observe that the relationship <,=, > between βk and αk plays a role also in correspondence of

small magnitudes: the higher these parameters’ difference, the higher the number of small events. In

this case, no relevant diversity can be appreciated between the three FMDs apart from the tail values:

the dashed lines indicate the location of the last bin in each case and we can observe that, for the

simulated processes we generated, the one embedded with CH has a shorter tail. The histogram for

ETAS-GR (see panel a) of Fig. 12) has a longer tail despite it corresponds to βk > αk, the case that

produces the shortest ending bins in ETAS-CH and ETAS-TGR.

As we can see in Fig. 13, the temporal intervals covered by the fixed number N̄ of events in the

synthetic ETAS-TGR and ETAS-CH catalogs are far more extended when βk becomes higher than αk.

In the case βk < αk the two processes end earlier and the histograms are unbalanced towards higher

times: this agrees with the results shown in Spassiani (2021). At first glance, this could be quite coun-

terintuitive, as βk > αk is the case of a lower number of stronger shocks, which are those expected

to be more productive. However, the histogram shows that when βk > αk the sequence is more uni-

formely spread along the time interval, and the absence of strong peaks justifies the conclusion we can

draw. The case of ETAS-GR is instead shown in panel b) of Fig. 12. Here the temporal interval is quite

uniformely occupied, and its length is comparable to those of the other processes in correspondence

of βk = αk. This calls back the conclusions we deduced by observing Fig. 9.

To investigate also how much and how differently productive are the ETAS-GR, ETAS-CH and

ETAS-TGR simulated processes, we finally generate a second group of seven synthetic catalogs by

using the same parameters and procedures as before, but we do not fix now the number of events

to be produced. We fix instead the temporal interval of simulation to 1 year. In Figures 14 and 12c)

we show the aftershocks temporal frequency relative to these synthetic processes, again in correspon-

dence of the three cases βk <,=, > αk. As before, in the ETAS-GR case we produce the simulations

only for βk > αk. All the plots show a similar behavior, which is quite uniformely spread along the

interval considered. In Fig. 15 we finally show the numbers of events simulated for all the cases in

the fixed temporal window: in the specific set of synthetic catalogs plotted, they are comparable with

the exception of the ETAS-TGR case for βk < αk. However, this result is not significant because,

when iteratively generating the synthetic catalogs for several times, we obtained randomly varying

results. Instead, conclusions about the FMDs and background/aftershocks numbers are comparable to

the previous simulation analysis.
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4 DISCUSSION AND CONCLUSIONS

The aim of this paper has been to compare the seismic processes modeled through ETAS with GR-

, TGR- and CH-distributed magnitudes through both a theoretical and a simulation analysis. To do

that, we first explicitly derived some theoretical features and relevant quantities of the ETAS-CH

model, such as the branching ratio and the stability conditions, in order to allow a straightforward

comparison with ETAS-GR and ETAS-TGR processes, for which these quantities and conditions have

already been studied in the literature (e.g., see Zhuang et al. (2012) and Spassiani (2021); see also

Sornette & Werner (2005) and Zhuang et al. (2013) for the ETAS-GR with an upper cutoff). Like in

the case of ηTGR, we obtained that ηCH exists for all pairs (βk, αk) and, when βk > αk, it is smaller

than the classical ηGR. The non-explosion of the ETAS-CH process is therefore guaranteed by less

restrictive conditions than ETAS-GR. In the case of ETAS-CH, κ is the parameter that mainly controls

the branching ratio to be less than 1. Furthermore, ηCH decreases with the difference βk − αk with a

velocity rate mainly controlled by
mt

mxc
.

The branching ratios of ETAS-GR, ETAS-TGR and ETAS-CH models were then analyzed from

a theoretical point of view to perform a direct comparison of the three processes. More precisely, we

focused on the relative behavior and the sensitivity with respect to the parameters, as well as on their

reciprocal relationship. Results highlighted that all ηGR, ηTGR and ηCH decrease with βk−αk, and the

parameter which controls their reciprocal velocity rate is κ. The two branching ratios ηTGR and ηCH

decrease with a lower rate than ηGR, and this is more clearly visible when βk − αk is small; they are

also very close to each other, as their difference remains very small (of the order of ∼ 10−2 or below)

in all the reasonable range for the parameters values. This highlights that the two TGR and CH FDMs

behave very similarly, as expected: they both account for the limited amount of energy available in a

given spatiotemporal domain, the only diversity is that TGR allows to model the stronger magnitudes

with a more taper decay (probability-dependent) instead of a sharp cutoff, which induces a clean break

of the distribution tail.

In order to investigate differences and similarities in the three processes’ numbers and time/magnitude

distributions, we made an additional step consisting in the generation of seven synthetic catalogs of

N̄ fixed events each: in the case of both the processes ETAS-TGR and ETAS-CH, one for each of the

three possibilities βk <,=, > αk; while, in the case of ETAS-GR, only for βk > αk due to the sta-

bility reasons (see Section 3.1). These parameters and their relationships regulate indeed the various

possible scenarios and calibrate the main features of the processes. We obtained that a higher number

of triggered events and first generation aftershocks are observed when βk < αk, in agreement with the

interpretation of these parameters’ meaning. Interestingly, the ETAS-GR case shows similarities with

the other two when βk = αk, and we plan to investigate in more detail such behavior in a future study.
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The temporal length occupied by the synthetic catalogs with N̄ fixed events is longer for ETAS-CH

and ETAS-TGR when βk > αk, the case in which the seismicity is more uniformely spread along

time. Such uniformity is instead satisfied by all the processes when they are simulated by fixing the

temporal window. In this case, also the productivity is almost comparable.

The final conlcusion that we can drawn from the study we carried out is that the TGR law could be

the best choice in the FMD modeling, as it allows to account for the limited amount of energy in small

spatiotemporal domains, and it regulates the number of strong events in a probabilistic manner, which

lowers the bias on the parameters’ estimation. At the same time, it shows a very similar behavior of

the ETAS-CH model, thus sharing the same grounds it has, but with less rigidity.

5 FIGURES
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Figure 1. Three-dimensional representation of ηres (left column) and ηCH (right column) for varying αk and
Mt

Mxc
, when βk < min(αk) (top) and βk > max(αk) (bottom).
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Figure 2. Three-dimensional representation of ηCH,βk=αk
for varying βk = αk and Mt
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Figure 3. Branching ratio ηCH with respect to the difference βk−αk and several values of the ratio
mt

mxc
. Upper

and lower panels correspond to βk = 0.58 and βk = 0.75, respectively. Left and right panels correspond instead

to κ = 0.07 and κ = 0.18, respectively. The horizontal dotted line coincides with the value 1 and represents the

threshold for the criticality (see the text for the details).
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Figure 7. Overall comparison among ηGR, ηTGR and ηCH , as functions of the difference βk − αk, for several

values of their parameters, as indicated in the panels. Continuous, dotted and continuous-with-circles lines refer

to ηCH , ηTGR and ηGR branching ratios, respectively. The first three items in the legend of the upper panels are

just referred to the line styles, and can be associated to all the three gray-scaled colors. In the panels of each line

we also fixed the y-axis to have an easier comparison.
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marker) simulated processes, and for the three cases of βk <,=, > αk. The ηGR has been computed only for

βk > αk, since for the process ETAS-GR the latter condition is necessary to guarantee the non-explosion.
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CH

GR

TGR

Figure 9. Events’ number comparison of the ETAS-CH (first line panels), ETAS-TGR (second line panels) and

ETAS-GR (third line panels) simulated processes. Specifically, the left panels contain the numbers of back-

ground events (#Bkg) and aftershocks (#Aft) (respectively solid and 50% trasparent colors), while the right

panels show the average numbers of the first generation aftershocks. The numbers relative to ETAS-GR have

been computed only for βk > αk, since for this process the latter condition is necessary to guarantee the

non-explosion.
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Figure 10. Magnitude cumulative distributions of the ETAS-CH (continuous line), ETAS-TGR (dotted line)

and ETAS-GR (continuous-with-circles line) simulated processes, for the three cases of βk <,=, > αk. The

first three items in the legend are just referred to the line styles, and can be associated to all the three gray-scaled

colors in the plot. The cumulative distribution relative to ETAS-GR has been computed only for βk > αk, since

for this process the latter condition is necessary to guarantee the non-explosion.
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CH TGR

Figure 11. Frequencies of the aftershocks versus the magnitudes, relative to the ETAS-CH (left column panels)

and ETAS-TGR (right column panels) simulated processes. Gray-scaled colors are used for βk <,=, > αk

(from top to bottom panels). The vertical dashed lines correspond to the last non-empty bin occupied by the

aftershocks’ magnitude frequencies.
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Figure 12. Results relative to the ETAS-GR simulated process. Panel a): frequency of the aftershocks versus

the magnitudes; the vertical dashed line corresponds to the last non-empty bin occupied by the aftershocks’

magnitude frequency. Panel b): temporal frequency of the aftershocks. Panel c): the same of panel b), but here

simulations are obtained for a fixed temporal window of 1 year. In all the panels, only the case βk > αk is

considered, since this condition is necessary to guarantee the non-explosion of the ETAS-GR process.
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CH TGR

Figure 13. Temporal frequency of the aftershocks relative to ETAS-CH (left column panels) and ETAS-TGR

(right column panels) simulated processes. Gray-scaled colors are used for βk <,=, > αk (from top to bottom

panels).
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CH TGR

Figure 14. Temporal frequency of the aftershocks relative to ETAS-CH (left column panels) and ETAS-TGR

(right column panels) simulated processes. Here simulations are obtained for a fixed temporal window of 1 year.

Gray-scaled colors are used for βk <,=, > αk (from top to bottom panels).
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Figure 15. Numbers of events simulated for the ETAS-CH (black), ETAS-TGR (dark gray) and ETAS-GR (light

gray) simulated processes, and for βk <,=, > αk. Here simulations are obtained for a fixed temporal window

of 1 year. We stress that we computed the number for the ETAS-GR process only in the case βk > αk, since

this condition is necessary to guarantee the non-explosion of the process.
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epidemic-type aftershock sequence model, Båth’s law, and observed aftershock sequences, Journal of Geo-

physical Research: Solid Earth, 110(B8).

Spassiani, I., 2021. Stability of the Epidemic-Type Aftershock Sequence Model with Tapered Gutenberg-

Richter Distributed Seismic Moments, Bulletin of the Seismological Society of America, 111(1), 398–408.

Spassiani, I. & Marzocchi, W., 2021. An energy-dependent earthquake moment-frequency distribution, Bul-

letin of the Seismological Society of America, 111(2), 762–774.

Tan, Y. J., Waldhauser, F., Tolstoy, M., & Wilcock, W., 2019. Axial Seamount: Periodic tidal loading reveals

stress dependence of the earthquake size distribution (b value), Earth and Planetary Science Letters, 512,

39–45.

Taroni, M., Selva, J., & Zhuang, J., 2021. Estimation of the tapered gutenberg-richter distribution parameters

for catalogs with variable completeness: An application to the atlantic ridge seismicity, Applied Sciences,

11(24), 12166.

Vere-Jones, D., Robinson, R., & Yang, W., 2001. Remarks on the accelerated moment release model: problems

of model formulation, simulation and estimation, Geophys. J. Int., 144(3), 517–531.

Wesnousky, S. G., 1994. The Gutenberg-Richter or characteristic earthquake distribution, which is it?, Bulletin

of the Seismological Society of America, 84(6), 1940–1959.



Comparison ETAS-GR, -TGR, -CH processes 31

Westerhaus, M., Wyss, M., Yilmaz, R., & Zschau, J., 2002. Correlating variations of b values and crustal

deformations during the 1990s may have pinpointed the rupture initiation of the M w= 7.4 Izmit earthquake

of 1999 August 17, Geophysical Journal International, 148(1), 139–152.

Yaghmaei-Sabegh, S. & Ebrahimi-Aghabagher, M., 2017. Near-field probabilistic seismic hazard analysis

with characteristic earthquake effects, Natural hazards, 87(3), 1607–1633.

Yaghmaei-Sabegh, S. & Ostadi-Asl, G., 2021. Estimating of the b-Value Based on the Characteristic Earth-

quake Model, Journal of Earthquake and Tsunami, 15(03), 2150015.

Zhuang, J., 2006. Second-order residual analysis of spatiotemporal point processes and applications in model

evaluation, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(4), 635–653.

Zhuang, J., 2012. Long-term earthquake forecasts based on the epidemic-type aftershock sequence (ETAS)

model for short-term clustering, Research in Geophysics, 2(1), e8–e8.

Zhuang, J., Ogata, Y., & Vere-Jones, D., 2002. Stochastic declustering of space-time earthquake occurrences,

Journal of the American Statistical Association, 97(458), 369–380.

Zhuang, J., Harte, D., Werner, M., Hainzl, S., & Zhou, S., 2012. Basic Models of Seismicity: Temporal Models,

”Community Online Resource for Statistical Seismicity Analysis.

Zhuang, J., Werner, M. J., & Harte, D. S., 2013. Stability of earthquake clustering models: Criticality and

branching ratios, Physical Review E, 88(6), 062109.


	Introduction
	Branching ratio of the ETAS-CH process
	Case k=k
	Case k=k
	Criticality

	Comparison results
	Simulations

	Discussion and conclusions
	Figures

