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ABSTRACT

Single rainwater samples were collected in the city of Goma (~1,1 million inhabitants), eastern
Democratic Republic of the Congo, from January to June 2013 to draw a baseline for rainwater chemical
composition and quality as influenced by the permanent plume of Nyiragongo volcano. This was a better
period for a baseline as the neighboring Nyamulagira volcano, only 15 km apart, had no important
degassing from its central crater, and hence the recorded volcanic influence on the rainwater chemistry
was solely from Nyiragongo’s lava lake which has been active since May 2002. The baseline for the
rainwater chemistry and quality is important for this highly populated region where rainwater is the
unique potable water source for the inhabitants of many villages sur-

rounding the volcanoes, and for some of the inhabitants of the city of Goma. Our results show that
samples collected at the crater rim of Nyiragongo were more acidic with pH ranging from 3.70 to 3.82,
while the majority of rainwater samples collected in downtown Goma city and to the northeastern zone
of the volcano had pH close to 5.7; which represents the value for rainwater from unpolluted continental
areas (Berner and Berner, 2012). However, the pH was as low as 3.93 to the west of Nyiragongo volcano
because the volcanic plume is directed westward by the dominant local wind direction. The western part
of the city of Goma as well as the small town of Sake and many villages (e.g. Rusayo, Mubambiro, Kingi,
...) are located in this zone, and experience endemic fluorosis caused by high fluoride in the available
water. The mean F- in this zone was 0.38 mg/L, while the southern and northeastern zones had mean F-
concentrations on 0.44 and 0.01 mg/L respectively; even though concentrations higher than the WHO
guidelines were found in few samples from the western zone (1.69 mg/L) and from the southern zone
(3.44 mg/L). Compared to data from Cuoco et al. (2012) obtained during the Nyamulagira 2010 eruption,
and from Balagizi et al.2017 and Liotta et al., 2017 obtained during the intense degassing of both
Nyiragongo and Nyamulagira lava lakes; we have noted similarity in the spatial variation of the pH, but
samples from the present study showed notable lower concentrations of major elements. This is the case
for fluoride which is strictly of volcanic origin. For the other major elements, anthropogenic sources,
mainly the traffic and wind-blown dust; or other non-volcanic natural sources influenced their
concentrations. Thus, the anions (CI- and SO4%) and cations (Na*, K, Mg?*, and Ca?") from the present
study are either lower compared to that previously reported in the literature for the Virunga, or are both
comparable for the zones impacted by anthropogenic activities.



48
49

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

1.Introduction

Rain chemistry has been widely used for the assessment of the rainwater hazards in regions with volcanic
emissions, ranging from short to long lasting volcanic eruptions nearby highly populated zones; e.g.,
Harding and Miller (1982); Nachbar et al., 1989; Baxter and Ancia (2002); Vasselli et al. (2008); Burgi
et al. (2010); Madonia and Liotta (2010); Balagizi et al., (2017), 2018a. In fact, during their eruptive
phase, volcanoes release thousands of tons of acidic gases mixed with scoria, Pele’s hair and ash into the
atmosphere. Particularly, open system volcanoes and mostly those with permanent lava lakes release
huge amounts of gases and aerosols into the atmosphere daily; these emissions may last up to many
decades (e.g, Allard et al., 2016; Sawyer et al., 2008; Head et al., 2011; Burgisser et al., 2012; Moor et
al., 2013; Beirle et al., 2014; Arellano et al., 2016; Balagizi et al., 2016; Coppola et al., 2016; Bobrowski
et al., 2016). Such strong degassing influences the chemistry of the surrounding atmosphere and hence
lowers both the air and rainwater quality (e.g., Aiuppa et al., 2009; Le Cloarec and Marty, 1991; Halmer
et al., 2002; Robock, 2000; Textor et al., 2004; Von Glasow et al., 2009, Cuoco et al., 2012a,b). The
rainwater chemistry around open system volcanoes has thus been found to be affected by volcanic gases
(Liotta et al., 2006; Calabrese et al., 2011; Madonia and Liotta, 2010; Balagizi et al., 2017) and metal-
bearing particles (Mather et al., 2003; Oppenheimer, 2003, Cuoco et al., 2012a,b; Liotta et al., 2017).
Within the Virunga Volcanic Province (VVP), the release of volcanogenic products from the two highly
active volcanoes, Mounts Nyamulagira and Nyiragongo, into the atmosphere of the densely populated
city of Goma (1.1 million habitants; Mairie de Goma, 2019) and of many other small cities and villages
(Fig. 1) presents important hazards. One of these hazards is related to the volcanic plume-derived
chemical elements in the rainwater, in a region where rain is the unique water source for many villages,
and an intermittent water source for some others, including part of the city of Goma (Balagizi et al., 2015,
2017, 2018a, b). In the VVP, rainwater composition has been used for the understanding of the impacts
of Nyiragongo and Nyamulagira volcanic plumes on rain chemistry (e.g., Cuoco et al., 2012a, b; Liotta
et al., 2017; Balagizi et al., 2017), on the environment, and on the moisture source and dynamics (Liotta
et al., 2017; Balagizi and Liotta, 2019). The VVP represents a rare natural laboratory for the study of
hazards caused by volcano emissions on both human health and the environment, because of its
peculiarity of holding two of the world most active volcanoes, i.e., Nyiragongo and Nyamulagira only
14 km apart, and which are located less than 20 km from highly populated zones. Furthermore, while
Nyiragongo holds the world largest and permanent lava lake which has been active since May 2002,
Nyamulagira has erupted at least 44 times since ~1880 and has shown an intermittent lava lake since
mid-2013 (see compilation in Balagizi and al, 2018a). Thus, any observed significant changes in the air
quality and the rainwater chemistry in the region of Goma is directly linked to the volcanic activity
because there are no major anthropogenic activities that might yield such significant impacts. In fact, in
the VVP there areno S, CL, N, F, C, ... (e.g., H2S, SO», NH3, NOx, HCI, Cly, carbonyl sulfide, ...) gases
emitting industries, with the exception of very little amounts from farming activities and traffic. The
farming activities mainly generate wind-blown dust, which is higher during the dry season periods, i.e.,
during the long dry season spanning from mid-June to August and a very short one of mid-January to
late-February. In contrast, during the rainy season, the higher precipitation rate of up to 357.3 mm/month
(Balagizi et al., 2018b; Balagizi and Liotta, 2019) yield soil water saturation and hence prevent the
production of wind-blown dust. Therefore, the rainwater chemistry around the city of Goma varies
widely, both spatially and temporally, in relation to Nyiragongo and Nyamulagira eruptive activities, and
with the season. The present study was devoted to the understanding of the rainwater chemistry in and
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around the city of Goma during a non-eruptive episode of Nyamulagira volcano. The obtained dataset is
used to draw a rainwater chemistry and quality baseline for the city of Goma, as Nyiragongo is an open
system volcano that has had a permanent active lava lake since May 2002. Nyiragongo has huge
degassing rates with values up to t/day 5356.8 t/ daytons per day (t/d) for SO2, ~200 t/d for Cl, and 102
t/d for BrO (see Arellano et al., 2016; Balagizi et al., 2016 and Bobrowski et al., 2016), and has not
shown any important decrease in its activity. This rainwater baseline is both important for volcano
monitoring planning, for rainwater and air quality monitoring and the management of the resulting human
health impacts.

2.Materials and methods

Single rainwater samples were collected from 15 sites located in the city of Goma, in the villages around,
and on the top of Nyiragongo volcano (Fig. 1). Of these 15 sampling sites, one was located at the summit
crater of Nyiragongo volcano, one in the village of Rusayo to the south-west of Nyiragongo, seven in the
city of Goma (three to the western-southwestern side where the Nyiragongo volcanic plume is regularly
directed by the local dominant wind direction, two to the center of the city, one to the south and one more
to the north of the city), and the remaining six others in villages located to the west, east and northeast
of Nyiragongo volcano (Fig. 1). Rainwater at each site was collected in a 5-Liter plastic container placed
on the roof of a house at the beginning of a rain event between January and June 2013. The containers
were washed with distilled water between sampling events. After each rain, an aliquot of water sample
was taken from the container, filtered through a 0.45 um polysulfone filter attached to a syringe. The
filtered water was used to fill in a 50 ml polyethylene plastic bottle with a double cap, and stored at room
temperature until laboratory analysis. No fixers were added to the samples. The pH and specific
conductivity of the rain were measured in the field using an ORION STAR A325 probe, of which the
electrodes were calibrated before the sampling campaigns using pH 4 and pH 7 (25 °C) and a 1413 puS/cm
standard buffers, with an accuracy of 0.01 pH unit 1 uS/cm conductivity. The concentrations of major
cations (Na*, K*, Ca?", Mg?") and major anions (F-, CI, NOs, SO4%, H,PO4") were measured by ion
Chromatograph (IC) mean (Dionex-120) at the University of Naples 2 in Italy. Four calibration levels
were used for each of the major elements, while a “BURTAP-05" (Environment Canada) certified
analytical reference material was used to control the accuracy of the IC analyses. The analytical precision
and accuracy for the major cations and anions were better than 5%. The Total Dissolved Substances
(TDS) was estimated from the rainwater specific conductivity using the Lloyd and Heathcote (1985)
equation (TDS =Ke EC), where the correction factor Ke was 0.67 for diluted water (Atekwana et al.,
2004).

3.Results and discussion
3.1. General variabilities in the chemistry of rainwaters

The results of the chemical analysis of the rainwater collected in the Goma region are given in Table 1.
A diversity of pH values is observed among the samples, varying between 3.70 and 7.73, where the
Nyiragongo Summit (3.70-3.82) and some Kingi sites (3.93—5.74) show the lowest pH values (Table 1
and Fig. 2A). The latter is both the result of the proximity of the sampling site at Nyiragongo summit to
the source of the plume loading acidic gases such as HCI, HF, SO», NOx; and the fact that Kingi is located
to the western part of the study area where the plume is directed by the wind (Fig. 1). These volcanic
gases are highly soluble in water (Stumm and Morgan, 1995; Aiuppa et al., 2001; Madonia and Liotta,
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2010), and thus quickly dissolved in the falling rain drops to yield the measured lower pH values at these
sites. The specific conductivity span in a large range, varying from 8 pS/cm (at Rugari site, to the
northeastern of the volcano) to 270 uS/cm (at Kasika site in the city of Goma); at the summit of the
volcano, the value was 86 puS/cm with an average of 82 uS/cm (Table 1). The TDS values followed the
same trend as that of the specific conductivity (Fig. 2A) as the former was estimated from the latter by
applying the Lloyd and Heathcote (1985) equation. The F- and CI concentrations were higher at the
crater of Nyiragongo volcano (Fig. 2B), with mean values of 0.98 mg/L (varied from 0.00 to 4.18 mg/L)
and 4.85 mg/L (varied from 0.33 to 19.16 mg/L) respectively; as a result of the influence of the
Nyiragongo plume and other non-volcanic activities. On the other hand, a higher concentration of SO4*
was found at Rusayo site (26.5 mg/L), while the majority of elevated values were found in sites located
in the southern zone of the study area (Table 1) because of the anthropological prevalence of sulfur in
the atmosphere of the city of Goma. The NO3 and H>PO4 concentrations were the lowest among the
anions with mean values of 2.75 mg/L (ranged between 0.00 and 16.46 mg/L) and 0.20 mg/L (range from
0.00 to 1.84 mg/L) respectively, as a consequence of their absence in volcanic products, i.e., gases, ash,
soil with volcanic origin. The alkaline cations Na* and K™ had their single higher values to the southern
side of the volcano (12.16 mg/L at Goma/ Ngangi for Na* and 12.21 mg/L at Rusayo for K¥), but their
higher mean values were found to the western side of the volcano and at the summit. The high Mg>*
values were found in rainwaters from the southern zone of the volcano and, to the western zone for Ca%*
(Table 1). As a general trend, the following dominance was observed for major anions Cl>SO4>>F-
>NO3>H,PO4 and K">Na*">Ca?">Mg?* for major cations; CI-, accounting for up to 20.29% of the total
ionic concentrations in some samples.

3.2. Spatial variations in the rainwater chemical composition

In order to understand the influence of Nyiragongo’s permanent plume in the study area, we have
subdivided the area into four zones based on their relative position to the Nyiragongo summit. These four
zones include the summit of Nyiragongo volcano, the western zone where the plume is directed, the
southern zone where the city of Goma is located and the north-eastern zone (Fig. 1). The variation of the
rainwater chemistry in these zones are presented in Table 2, where the chemistry of the rainwaters around
Nyiragongo volcano (from this study and from published literature) is further compared to that from
other world’s open systems volcanoes. As mentioned in section 3.1, the pH of rainwater depends on the
amounts of acidic gases that dissolve in the rain and release of H' ions, and hence the summit of
Nyiragongo measured the most acidic rains because of being closest to the plume vent. Also, the sites
located to the western zone had the second most acidic rains, with lower pH because they are located in
the zone where the plume is directed by the main wind direction (Fig. 1). All the samples from the summit
had pH values that varied very little, while in sites from the other zones, especially those to the south
(e.g. Goma and Sake), the pH showed important variations (Fig. 2A). This is because sometimes rain
events may have taken place while the plume is in a different direction from the sites, which causes the
increase in the pH in the resulting samples. Most samples from the other zones, principally those from
the northeastern and southern zones have pH values close to 5.7, which is the pH value for rainwater in
unpolluted continental areas (Langmuir, 1997; Berner and Berner, 2012). For the pH with values above
5.7 that were recorded in some samples from these sites, the high values are due to the fact that the dust
load in rainwater and in the humid atmosphere reacts with the H" ions and causes both pH and TDS
increases (Fig. 2A). This generally takes place when the rainwater amounts decreases and/or when the
amount of dust in the atmosphere increases (Balagizi et al., 2017). The dissolution of volcanic plume and
ash and of wind-blown dust loaded elements determined the chemistry of the rainwater allows one to
distinguish the influence from the volcano (dissolution of volcanic plume and ash) from the direct and
indirect human activities (e.g. dissolution of wind-blown dust in city and farms, traffic). The sites
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impacted by the volcano showed the higher concentrations of elements contained in volcanic plume and
ash, e.g., F~and in some cases SO4>* (2 B and 2C). The summit and the western zone (e.g. Rusayo, Kingi
and Sake, Fig. 1) have the most elevated F- concentrations (Fig. 2B and C). While SO4?" was higher only
at Rusayo and was mostly dominant at sites with impacts from anthropogenic activities such as traffic
(Fig. 2C). The higher SO4* value at Rusayo is due to the fact that this site is potentially affected both by
anthropogenic and volcanic activities. This is similarly the case for Cl- at most sites where anthropogenic
influence or CI- originating from other natural sources predominates. This dual origin of elements caused
the shift from the 1:1 line, with values which are in opposition to ratios found in the plume. As an
example, in Nyiragongo plume, plume molar amount of SO2, HCI and HF are 4.6%, 0.26%, and 0.11%
respectively (Sawyer et al., 2008), ratios which are not in line with their respective concentrations
observed in rainwaters. In fact, in the rainwaters, the CI/F ratios average 4.8, but range between 0 and
25; the higher values being in samples with limited influence from the volcanoes (Fig. 2B), mainly to the
south and northeastern side of Nyiragongo. Similar trends of disturbance of molar ratios in the plume
were observed for SO4/F (averaging 4.9, range 0.1 and 31.7; Fig. 2C) and for SO4/Cl that averages 1.3
and varies from 1.2 to 9.9. This shifting from the plume composition is the result of anthropogenic and
other non-volcanic natural inputs, as well as the dissolution of chemical elements that may be included
in the ash (Cuoco et al., 2012a, b; Balagizi et al., 2017). The dissolution of the elements included in ash
(e.g., Spilliaert et al., 2006) may have caused F to being enriched in rain-waters at the summit of
Nyiragongo (Fig. 2A). Major cations originate from the dissolution of volcanic ash and wind-blown dust,
with K* and Ca?" being higher in samples from the sites influenced by volcanic products (i.e., summit,
Rusayo, and Kingi), while on the other hand Na* and Mg?" are dominant at sites with limited influence
from the volcano (Rumangabo, Rugari and Kibumba; Fig. 2E and F). The latter further highlights the
fact that the summit and the western zones of Nyiragongo are the most impacted by the volcanic plume,
while the southern zone is partially impacted; and the north-eastern zone is almost not impacted by the
plume. Of course, the dissolution of wind-blown dust of soil from volcanic parental material may yield
major cations composition close to that volcanic ash. The presentation of both major cations and anions
in a single chart (Fig. 3A) clearly shows that the summit of Nyiragongo and the western zone are the
most impacted by the volcanic impacts with halogen (F- and CI°) and alkaline cations (Na" and K*) being
dominant, followed by the southern zone where SO42-, Mg?", and Ca?" are dominant.

3.3. Comparison with previous studies in the Virunga: baseline for rainwater chemistry as impacted by
Nyiragongo'’s permanent plume

When comparing the pH values measured in rainwater samples of the present study with those reported
in the literature for the Virunga, it is noted that the mean pH values from each of the zones are comparable
(Fig. 3B; Table 2). This is because the pH is the principal parameter that is directly linked to volcanic
gases dissolution, and is continuously consumed during the interactions between the H* ions and the ash
and dust that are also available. As noted by Balagizi et al. (2017), the availability of the H' ions in the
rainwater and time are the limiting parameters to ash and dust dissolution, and hence in each zone it is
quite reasonable to have comparable pH values. In some zones, the pH values from the present study are
slightly higher compared to that from the literature (Fig. 3B and Table 2), implying the absence of any
contribution from the neighbouring Nyamulagira that was also emitting a plume when the other studies
were conducted (Fig. 1). The latter trend is confirmed by the prevalence of the high concentrations of
major elements reported by Cuoco et al. (2012a), b; Liotta et al. (2017) and Balagizi et al. (2017), such
as fluorine (Fig. 3C) and the total dissolved substances (Fig. 3D). The data reported by Cuoco et al.
(2012a) are from single rainwaters collected during Nyamulagira 2010 eruption, those in Balagizi et al.
(2018a) include single rainwaters from both Nyamulagira 2010 and 2011/2012 eruptions, those in Liotta
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et al. (2017) (single rainwaters) and Balagizi et al. (2017) (monthly samples from rain gauges) are
collected while both Nyiragongo and Nyamulagira had a lave lake in their main craters (the image of
Fig. 1 was captured during this period). In all the studies, the fluorine concentrations at the summit of
the Nyiragongo exceed the World Health Organization (WHO) limit for drinking water fixed at 1.5 mg/L
(Tables 1 and 2; WHO, 2011). In the other zones, particularly the western of the volcano and of the city
of Goma, the fluorine concentrations vary in a large range, with some values exceeding the WHO
guidelines. Vaselli et al., 2009 have even reported fluoride concentrations as high as 1000 mg/L in
rainwater during the Nyiragongo 2002 eruption, while Balagizi et al. (2015), 2018a reported values up
to 6.9 mg/L in rivers of the Virunga. The high fluorine concentrations in waters (surface, rain and
groundwater) have yielded the endemic fluorosis that is visible on the teeth of the population in the
Virunga (see compilation in Balagizi et al., 2018a).

3.4. Comparison with others open system volcanoes with continuous degassing

In the Virunga, the rainwater is more acidic at the Nyiragongo crater and gradually decreases as one
moves away from the summit towards the western zone where the wind carries the volcanic plume (Figs.
| and 2A and Table 2). Similar behaviour is observed at others volcanoes, e.g., Kilauea volcano, Hawaii
and Vulcano volcano, Italy. In fact, the pH at the summit of Nyiragongo averages 3.75 (Table 2), which
is close to that reported at the Halemaumau crater (Kilauea) 3.6, (Harding and Miller, 1982), but is still
slightly higher than that obtained in rainwater at la Fossa crater (Vulcano Island) (2.0-3.5), (Madonia
and Liotta, 2010). While the average pH of rainwater on Hawaii Island is between 4 and 5 Harding and
Miller (1982); Nachbar et al. (1989), in the Virunga we obtained an average of 5.6. These data are
perfectly comparable since they are obtained from studies conducted on open systems volcanoes (i. e.,
presence of a lava lake, or persistent degassing), with non-classic eruption accompanied by lava flows
formation. No unique trend of dominance of given major cations was observed: Stromboli volcano, Italy,
has higher mean Na* values (0.46 mmol/L; Liotta et al., 2006) with its highest recorded value being 6.6
times higher than that found in Nyiragongo rainwaters (Table 2). Etna showed a higher K* value (1,02
mmol/L; Calabrese et al., 2011) which is 3.2 times higher than the one we report for Nyiragongo; while
on the other hand, Stromboli has a higher Mg?* value (Table 2). Similarly, Vulcano has higher Ca** mean
concentrations (0.1 mmol/L; Madonian and Liotta, 2010) which is 1.25 times higher than we found in
Nyiragongo rainwaters. This general tendency of higher major cations and some anions at Italian
volcanoes (Table 2) is because of the higher precipitation in the tropical region of the Virunga (up to
2332 mm/year; Balagizi et Liotta, 2019) compared to the Mediterranean area (up to 1100 mm/year, Liotta
et al., 2006). This high precipitation in the Virunga dilutes and reduces concentrations of elements in
rainwaters.

3.5. Comparison with other studies conducted in cities with non volcanic activities

Atmospheric pollutants, gases and solid particles, are removed from the atmosphere during rain washout;
the dissolved pollutants are then deposited on the ground where they may reach groundwater or
accumulate in the soil. Hence, rainfall is one of the most effective ways of removing atmospheric
pollutants (Hameed et al., 2006), while the chemical composition of the resulting rains is a useful index
for the assessment of the atmosphere chemistry in a given area. The latter provides a better understanding
of the relative contribution of different sources of atmospheric pollutants (Zhang et al., 2012; Xiao,
2016). Several studies have thus used the chemical composition of the rainwater to evaluate air pollution
(see Table 3), in which major and trace elements as well as the pH of rainwater are the dominant key
tracers. As expected, from Table 3, Nyiragongo summit has the most acidic rainwaters (pH averaging
3.75), along with other elements which are simultaneously with H® in the rainwater. Hence, the
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concentrations of these elements, e.g., Cl, F, SO4, are also at high concentrations at the crater and in most
cases in Goma city (southern zone) as compared to concentrations in most cities reported in Table 3. In
these cities, the major source of air pollution is anthropogenic activities (traffic, agriculture, industrial
activities). Even though the pH values in these cities are close to that of unpolluted air (5,7; Berner and
Berner, 2012), some however, have mean pH values below 5 (e.g. 4.6 in Ya’an, China, 4.5 in Hwasung,
Korea, and 4.9 in Eastern France). These cities have their air either influenced by strong industrialization,
or are semi-rural and semi-urban areas with less industry but pollutants (air masses) are transported from
more polluted regions both near and far (Sanusi et al., 1996; Yobou'e et al., 2005; Zhao et al., 2013; Park
et al., 2015). Some cities with high pH values compared to that of the Virunga are regions limited
industrialization (7.7 in Xi’an, China; 7.03 in Roorke, India); (Hameed et al., 2006; Xiao, 2016), but their
pH is also the result of the neutralization of industrial products in rainwater that yield high pH, similar
to the wind-blown dust that consumes H* ions and higher the pH in the Virunga. The major cations in
downtown Goma city (western and southern zones) are at higher concentrations compared to other cities
reported in Table 3, while on the other hand; the northeastern zone that is less impacted by Nyiragongo
plume has concentrations that are comparable to that found in other world cities. Hence, Na*, K*, Ca?*,
Mg?" in the southern and eastern zones have concentrations up to 130, 100, 160 and 160 peq/L,
respectively (Table 3); which is generally about 2-20 times higher than the concentrations found in
rainwaters of world cities listed in Table 3; except Xi’an and Ya’an in China and Ma’an in Jordan that
have either comparable or higher concentrations to that in the Virunga.

4.Conclusions

*The pH at the crater and west of the Nyiragongo was more acidic than other groups due to the influence
of the gas plume in these areas and which is carried by the wind whose preferential direction in the region
remains from East to West.

*The dominance of F- and CI- anions at the crater of the volcano and SO4> anions in the south was noted
due to the dissolution of HF, HCI and H>SO4 acids in water. Cl- anion was the most dominant of the all
ions and contributed to 20,29% of the total ionic concentration. Na* and K were the most dominant of
cations and were of volcanic origin.

*Volcanic emissions are the primary sources of dissolved solutes, and their impact decreases with
distance. The Virunga region is not industrialized, hence vehicle traffic and soil dust from roads and
farms remain the unique anthropogenic sources of pollution.

*Comparing the results of this work with published investigations (Balagizi et al., 2017; Cuoco et al.,
2012a,b and Liotta et al., 2017), we remarked that the atmosphere of the region is less polluted when
there is no contribution of the plume of the Nyamulagira volcano from eruption or presence of a lava
lake. On the other hand, compared to others non volcanic areas the Virunga region maintains a high
concentration of ions of volcanic origin. The mean pH value (3.75) of Nyiragongo volcano is comparable
to that obtained at a site located 0.8 km from the Halemaumau crater of Kilauea volcano (3.6) but is high
compared to that of La fossa crater in range of (2—3.5) at Vulcano Island. The Virunga region generally
could be considered to be an unpolluted area with its mean pH of 5.6 compared to Hawaii Island with
mean pH ranged between 4 and 5 which similarly is proximal to an open system volcano like Nyiragongo.
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Figure Captions

Fig. 1. Locations of sampling sites in Goma city, surrounding villages and around Nyiragongo volcanoes
situated within the western branch of the East African Rift System, East Africa. In the Southern zone,
the numbers correspond to the sites as follows: 1 for Kituku, 2 for Ndosho, 3 for Ngangi, 4 for Kibwe, 5
for Kasika and 6 for OVG.

Fig. 2. Relationship between total dissolved substances (TDS) and pH (A), F-and CI(B), SO4+*~ and F-
(C), CI" and SO4>~ (D), Na* and K" (E), Mg?" and Ca*" (F) in rainwater collected on a daily basis in the
Nyiragongo and Nyamulagira volcanic fields, situated within the western branch of the East African Rift
System, East Africa; between January and June 2013.

Fig. 3. Mean major ion concentrations in different zones (A), comparison of pH (B), F- concentration (C)
and total dissolved substances (TDS) (D) means of this study and the previous studies in the Virunga and
Nyamulagira volcanic fields, located within the western branch of the East African Rift System, East
Africa; between January and June 2013.

Table Captions

Table 1 Sampling sites, physico-chemical parameters and major ions concentrations of single rainwater
collected in Goma city, on and around Nyiragongo volcano, between January and June 2013.

Table 2 Comparison of physico-chemical parameters and major ions concentrations of single rainwater
collected in Goma city, on and around Nyiragongo volcano, with literature data on rainwater chemistry
at Nyiragongo and Nyamulagira volcanoes, as well as some Italian long lasting open system volcanoes.

Table 3 Comparison of physico-chemical parameters and major ions concentrations of single rainwater
collected in Goma city, on and around Nyiragongo volcano, with literature data on rainwater chemistry
from some world major cities without volcanic activities.
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013
Goma/OVa 163001  29.22563 1501 Southern zone May 9, 36.00 598 017 096 157 415 000 074 115 015 184 1072 7.55
W15
Coma OV 164001 2922563 1501 Southern zone May 11, 33.00 606 012 070 158 582 000 0.59 1.05 Loz 218 2412 5.35
W15
Goma/OVE 168001 2922583 1501 Southern zone May 10, 40.00 588 000 0.69 567 431 020 1.8 1.40 0.5 210 26.90 2.07
W15
Goma/OVE 168001 1927583 1501 Southern zone May 12, 29.00 609 020 055 146 410 000 0.88 104 0.2 o.78 2545 3.83
015
Goma OV 164001  29.22563 1501 Southern zone Apil 30, 16.00 561 Qi1 033 057 5.15 000 0.41 0.59 @10 113 1543 576
W15
Goma/OVa 163001  29.22563 1501 Southern zone May 23, 11800 580 000 821 1366 1507 000 3.67 436 @77 6.95 75.08 9.95
W15
Goma Fitukn 164133 2916853 1479 Southern zone April 10, 51.00 602 017 045 057 1226 020 1.60 151 131 1.23 5417 9.57
2013
Goma/Ndoeka 163880 12918366 1524 Southern zone Agril 10, 90.00 613 01z 252 102 2000 00D 2.79 299 2.3 308 60.30 6.66
13
Goma/ 161666 19.1505 1511 Southern zoae April 12, 97.00 594 544 1219 040 1078 000 314 247 545 214 6499 1.90
Mungunga
Gama,/Ngangi 1.64016 28.225 1558 Southem zone 177.00 6.53 0.50 19.16 0.50 10.32 0.00 12.16 6.78 .45 242 11358 9.51
Goma Fanika 165850  29.205 1523 Southern zone 7000 689 107 1501 300 375 080 1043 351 6.56 1.50 15050 6.65
Goma/Tibwe 165250 I9.20666 1547 Southern zone 76.00 511 022 L&2 857 487 060 072 307 (1% 3.35 50.52 285
Fimurmba 151666 29.33816 2026 Hartheastarn April 13, 22.00 575 020 083 1] 365 000 0.35 118 015 1.25 1474 9.40
zone 13
Fugaci 135016  19.368 1565 Hartheastara April 14, 00 560 025 091 057 067 0.20 0.25 0.73 14 105 5365 2.37
zone 013
F.muang:b-o 1.33866 29.35766 1602 Hortheastarm A;n'l 11, 17.00 5.31 0.14 L11 073 278 010 0.51 0.3z .11 1.66 1139 8.10
e W13

TDS valves calculated from measured specific conductivity after (Atelovana ec al., 2004,

Charge balances were caleulated using values expressed in mmal/L.

Tab.1



648
649

650
651

652
653

654

Zone pH EC ({5 cm) P~ (ol Cl~ (mmel 50% (mmol  Mat (mmol E+ {mmal Mgt Ca?t (mmol
L™ I L™ L™ I mmal 7Y LY
Thin study Nyiragongo 375 B2D 0.22 0.17 0.09 0.17 015 0.03 04
crater [3.70-3.32) (73.00-86.00)% (0.21-0.22) (0.15-0.21) 0.07-0.131 (0.14-0.21) (0.13-0.18) {0.02-0.04) {0.05-0.06)
Western zone 577 6009 002 015 .10 0.10 0o 0.05 0.08
(3.93-7.73)  (9.00-170) (0.00-0.09) (002044 (0.01-0.28)  (0.01-0.29)  (0.02-0.3Z)  (0.00-0.28)  (0.03-0.1%)
Southern £.00 54.00 0.03 013 .11 013 008 .08 L1+
zone (5.11-7.08)  (15.00_270) [0.00-0.18) (0.01054)  (0.04025 (0.02053 (0.01-0.17) {0.00.0.28)  (D.02-0.18)
Northeastern 5.55 15.66 0.01 o.o3 002 0.0z 0oz .01 .03
zone [5.31-5.75] [E.00-Z2.000 (0.00-0.01) [0.0Z-0.03) {0.01-0.04) (0.01-0.02) [0.02-0.03) (0.00-0.01) (0.03-0.04)
Nyiragongo 5.20 256.0 0.38 (bdl- 0.41 0.41 0.16 013 0.03 0,10
erater [2.30-5.60] (23-1828) 10.21) [0.01-7.59%) 0.01-3.53) (2.01-1.17) (0.01-0.65) (0000540 {0.01-0.71)
b Western zone 5.8 44 [11-115) 0.05 oo? 006 0.07 o4 .01 o7
[£.0-7.0) (0.01-0.74)  [0.01-1.55) (0.01-0.20)  (0.02-0.29)  (0.02-0.300  (0.00-0.15)  (0.01-0.5%)
Southem 6.10 40.0 0.01 (kdl- oo3 .03 0.0+ 003 002 (bdl- [+ Lin )
zone [£80-8.10)  [5.0-178) 0.08] [0.00-0.22) (0.00-0.37)  (0.00-0.57)  (0.00-0.25)  ©.28) {0.00-0.55)
Nyiragongo 3.41 131 {65-172) 0.68 041 014 0.33 022 €11 .13
erater [3.10-3.17] (0.10-2.64) [0.04-1.07}) 0.05-0.34) (0.02-1.16) (0.04-0.57) 0L00-0.48) 0.02-0.50)
Western zone  5.53 &4 0.06 015 0.06 0.0+ 0.08 0.05 0.1
[+.06-6.77] (26.33-55.33) (0.02-0.171 (0.04-0.54) 0.03-0.15) (0.02-0.181 (0.03-0.571 (0.01-0.400 {0.05-0.91)
Southem 6.22 41 (105153 0.0z oos = 0.05 0o 0.03 005
zone [£.74.7.48) (0.00-0.07)  [0.02-0.29) 0.02-009)  (0.01-0.14) (0.02-051) (0.01-0.06)  (0.02-0.12)
Nyiragongo 3.25 Mo daea 0.60 0.28 .19 0.08 0og 016 .03
erater [3.11-3.49] (0.46-0.63)  [0.15-0.36) (0.14-0.25)  (0.07-0.10)  (0.06-017)  (0.01-0.03)  (0.02-0.05)
Western zone 5.21 Mo dara 0.05 01z .05 0.03 004 0.01 0.03
[3.4-6.41) (0.00-0.28) [0.O0-0.2T) (0.00-0.12) (2.01-0.12) (0.00-0.15) {0.00-0.02) {0.00-0.11%
Southern 5.35 Mo daca 0.00 0.02 .02 0.03 0.03 0.01 0.03
zone [+.96-5.35] (0.00-0.001 (0.01-0.03) {0.01-0.02) (0.02-0.041 (0.01-0.05) {0.00-0.01) {0.02-0.04)
Btna" 5.3 49 [7-25500 0.01 (kdl- Q12 006 0.08 0.01 .02 L1842
(2.0-8.2) 3.42) (0.01-11.53)  (0.01-0.05) (0.00-3.13)  (0.00-1.0Z) (0.00-0.90)  {0.01-1.50)
Seramboli® 5.6 Ho data 0.08 [+X-3 009 (kdl- 028 o.o7 047 [iL+
(3.2-7.6) 0.01-5.86)  (0.16-7.56) 7.10} (0.13-3.52)  (0.01-0.82) ({0.05-675)  (0.02-1.43)
Veauvio et 3.6 Mo data 0.03 (hkdl- 1.14 ibdl- 0.38 (kdl- 0.23 001 il .07 1
Vulcano' [L.8-6.9) 1200 23.72) 11.09) (0.00-1.50) 0LES) {0.00-0.70% {0.00-0.98)
budl: below detection limit
* Calabrese at al. (2011).
" Liotta et al. (2006).
® Madonia and Liotta (2010).
Tab.2
Asea pH Spec. F (peg O (peq HO3 500 Hat NHY K (Heq ™t Mgt Reference
GCond. L™ L™ (eg ey [P=g [peg Py ip=g e
(pS/em) L L Y Y L |
DRC, Hyiragoago 373 g2.20 220.00 170000 [+Le s 150,00 170,00 Hde 150.00 S0.00 &0 Thia Study
{crater]
DRC, Hyiragoago 5.77 &5.09 40,00 150000 S0.00 200,00 pLe ki Hde 100.00 160,00 10000
(Westemn zone]
DRC, Hyiragoago 6.00 3+.00 30.00 130000 S0.00 220,00 130.00 Hde &0.00 120,00 150.00
Southern zone)
DRC, Hyiragoago 5.55 15.66 10.00 30,00 10.00 20.00 20,00 Hde 20.00 &0.00 2000
(Hothereast=m
zonel
Eaztern Prance 4.90 20.00 = 17.00 2600 30.00 15.00 3000 .00 5.00 .00
Avignon, Prance = = 5 &0.20 43.70 F7.00 4050 20,20 13.30 117.80 1670
Ma'an, Jordan 6.85 160.60 25 50.60 35.70 53.20 75.60 2= 13.40 163.10 6130
Fuoorkse, Tndia 7. 22,33 - 50,38 33.36 2250 3050 - 1472 145.13 2318
Forea, Hwmzung 450 - - 25.00 63.00 127.00 33.00 11700 900 57.00 1500
Ya'an, Chine 481 11069 = G050 lan.s= 41565 47.4% 330,06 50.75 23375 3740
¥i'an, Chine 7. 161.50 25 136.50 162.50 61230 10150 353,30 7920 65250 5550
Lamio, Ivory Goast, 3.1 - - 7.0 770 6.50 65.30 17.60 2.40 9.50 ]
Southeastern Brazil 5.77 11.30 - 17.30 16.20 14.20 Z5.00 20,50 712 39.60 Z4.10
Acegua, Brazil 5.43 7.51 - 14.70 215 11.70 15.20 3140 242 779 541
Argentina Salta Cigy 5.72 991 - 26.60 23.20 16.40 6.580 - 3.40 2210 150 .
eral (2019)
Tab.3



