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Abstract: The global sea-level rise (SLR) projections for the next few decades are the basis for
developing flooding maps that depict the expected hazard scenarios. However, the spatially variable
land subsidence has generally not been considered in the current projections. In this study, we use
geodetic data from global navigation satellite system (GNSS), synthetic aperture radar interferometric
measurements (InSAR) and sea-level data from tidal stations to show the combined effects of land
subsidence and SLR along the coast between Catania and Marzamemi, in south-eastern Sicily
(southern Italy). This is one of the most active tectonic areas of the Mediterranean basin, which drives
accelerated SLR, continuous coastal retreat and increasing effects of flooding and storms surges. We
focus on six selected areas, which show valuable coastal infrastructures and natural reserves where
the expected SLR in the next few years could be a potential cause of significant land flooding and
morphological changes of the coastal strip. Through a multidisciplinary study, the multi-temporal
flooding scenarios until 2100, have been estimated. Results are based on the spatially variable rates
of vertical land movements (VLM), the topographic features of the area provided by airborne Light
Detection And Ranging (LiDAR) data and the Intergovernmental Panel on Climate Change (IPCC)
projections of SLR in the Representative Concentration Pathways RCP 2.6 and RCP 8.5 emission
scenarios. In addition, from the analysis of the time series of optical satellite images, a coastal
retreat up to 70 m has been observed at the Ciane river mouth (Siracusa) in the time span 2001–2019.
Our results show a diffuse land subsidence locally exceeding 10 ± 2.5 mm/year in some areas,
due to compacting artificial landfill, salt marshes and Holocene soft deposits. Given ongoing land
subsidence, a high end of RSLR in the RCP 8.5 at 0.52 ± 0.05 m and 1.52 ± 0.13 m is expected for
2050 AD and 2100 AD, respectively, with an exposed area of about 9.7 km2 that will be vulnerable to
inundation in the next 80 years.
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1. Introduction

Sea-level rise (SLR) is one of the major consequences of global warming, driving the
melting of ice sheets and the thermal expansion of the oceans, increasing the vulnerability
of coastal areas to flooding. Over the past two centuries, the global sea-level (GSL) has
risen at faster rates than in the last two millennia [1,2], with values from 1.7 mm/year
in the late 20th century up to 3.2 mm/year over the last decades [3–6]. The latest report
of Intergovernmental Panel on Climate Change (IPCC, Special Report on the Ocean and
Cryosphere in a Changing Climate SROCC [7]) shows that in 2100, GSL projection has an
upper limit of about 1.1 m higher than present sea-level, while about 400 million of people
will be highly exposed to coastal hazard. SLR can be exacerbated by land subsidence from
natural (i.e., tectonic and volcanic activity and sediment compaction) and anthropogenic
causes (i.e., fluid withdrawal, dams building), accelerating the submersion process of
low-elevated continental [8–10] and insular coasts [11–13]. Coastal flooding is likely to be
the biggest socioeconomic impact of SLR in the 21st century [14] exceeding the damage
caused by earthquakes and volcanic eruptions.

Recently, Toimil et al. [15] delineated the requirements for a scientific approach for
future projections of shoreline changes, which should consider changes in the mean sea-
level, storm surges, coastal erosion and other additional factors, with the aim of reducing
uncertainty in coastal change estimates. Indeed, the rate of relative SLR (RSLR) can vary
significantly due to other processes such as isostatic adjustments, ocean currents, seismic
and volcanic activity, besides the already cited natural and anthropogenic land subsidence.
These phenomena are already affecting the global coasts and large coastal cities [16],
including the Mediterranean [17] (www.savemedcoasts.eu and www.savemedcoasts2.eu,
accessed on 4 February 2021 [18]). SLR, in conjunction with extreme storm surge events,
caused dramatic flooding, such as in 1953 for the coast of Netherlands or more recently
in New Jersey (2012, Hurricane Sandy), Louisiana (2015, Hurricane Katrina), Florida
(2016, Hurricane Matthew), Louisiana and Texas (2017, Hurricane Harvey) and in the
Mediterranean Sea in 2019 and 2020 [19–21].

Because relative sea-level change along the coast is given by the sum of eustatic,
thermo-steric, isostatic, sediment compaction and tectonic factors [22,23], the projection of
the future coastline positions in specific zones require to consider in the analysis: (i) the
local rate and trend of sea-level change and (ii) the rate of vertical land movements (VLM),
including tectonic and isostatic contributions and anthropogenic influence. The first are
provided by the latest IPCC reports [7,24] and can be downscaled for specific regions,
while the second are provided by geodetic data, such as sparsely GNSS stations and InSAR
observations [25]. The latter can much improve the spatial coverage and resolution to
characterize and detail land subsidence, whereas GNSS provide precise measurements
in well-defined, ground-based, reference frame, to which InSAR measurements can be
referred. Assuming that VLM rates estimated from geodetic data will remain constant for
the next few decades in a specific coastal zone, i.e., in absence of any relevant tectonic event,
relative sea-level rise projections and flooding scenarios for the coming years (2100) can be
reasonably realized. Scenarios can be mapped on high resolution 3D topography of the
investigated zones, supporting the analysis of the flooding extension and the assessment
of the coastal impacts. Digital Elevation Models (DEM) extracted by LiDAR data are the
most suitable tools to realize realistic scenarios.

Here, we report on accurate observations of VLM along the coast of southern Sicily
between the city of Catania and the village of Marzamemi, from a combination of GNSS,
InSAR and tide gauge observations at an unprecedented resolution and accuracy
(Figures 1 and 2). This allowed us to provide the first multitemporal RSLR projections
up to 2100 for this area, providing high resolution inundation maps based on the IPCC
projections downscaled for the Mediterranean Sea. Projections of revised SLR for the cen-
tral Mediterranean provided by the IPCC 2019 (SROCC report, Oppenheimer et al. [7,26])
predict a rise of 0.15 ± 0.04 to 0.20 ± 0.05 m by 2050 and 0.33 ± 0.07 to 0.72 ± 0.13 m by
2100, relative to 2016, based on different RCPs of greenhouse-gas emission scenarios.

www.savemedcoasts.eu
www.savemedcoasts2.eu
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Figure 1. Tectonic and kinematic sketch of the Sicily–Calabria region. (A) The white rectangle is 

the investigated area in this study (basemap by Google Satellite). The thick red lines show seismic 

belts not clearly associated with well constrained fault systems. (B) Instrumental seismicity [27] 

and the Italian Seismic Instrumental and parametric Database have been considered (ISIDE; avail-

able at http://iside.rm.ingv.it (accessed on 6 January 2021) [28]). 

 

Figure 2. Study area of south-eastern Sicily (basemap by Google Satellite); (a) Location of the six 

investigated sites along the coast of southern Sicily (white dots) and position of the GNSS stations 

(green dots). (b) Vertical land velocities (Vup, mm/yr) estimated at the GNSS stations located be-

tween Catania and Capo Passero within 10 km of the coast. The red and orange squares show the 

mean Vup values: Vup (A) includes the GNSS stations located at the foot of the Etna Volcano 

which recorded the uplift linked with the latest eruption activity; Vup (B) is the mean velocity 

excluding CTAC and EIIV which are located close to Etna. 3. The vertical velocities fit the GIA 

values for this region which have been estimated between −0.5 and −1 mm/yr [29]. 

Figure 1. Tectonic and kinematic sketch of the Sicily–Calabria region. (A) The white rectangle is
the investigated area in this study (basemap by Google Satellite). The thick red lines show seismic
belts not clearly associated with well constrained fault systems. (B) Instrumental seismicity [27] and
the Italian Seismic Instrumental and parametric Database have been considered (ISIDE; available at
http://iside.rm.ingv.it (accessed on 6 January 2021) [28]).
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Figure 2. Study area of south-eastern Sicily (basemap by Google Satellite); (a) Location of the six
investigated sites along the coast of southern Sicily (white dots) and position of the GNSS stations
(green dots). (b) Vertical land velocities (Vup, mm/year) estimated at the GNSS stations located
between Catania and Capo Passero within 10 km of the coast. The red and orange squares show the
mean Vup values: Vup (A) includes the GNSS stations located at the foot of the Etna Volcano which
recorded the uplift linked with the latest eruption activity; Vup (B) is the mean velocity excluding
CTAC and EIIV which are located close to Etna. 3. The vertical velocities fit the GIA values for this
region which have been estimated between −0.5 and −1 mm/year [29].

http://iside.rm.ingv.it
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IPCC projections have already been used to identify areas of potential inundation in
coastal regions of the Mediterranean [11,17,18,30–32] and especially in USA for planning
flood resilience strategies for large coastal urban areas such as in San Francisco, the Los
Angeles Basin and New York [16,33,34].

In this study, we focus on six selected areas characterized by low elevated topography,
relevant coastal infrastructures and natural areas, where the expected SLR could be a
potential cause of large inland flooding and morphological changes of the coastal stretches
(Figure 2).

To reconstruct the retreating coasts in the recent past, optical images from satellites
over the last two decades have been analysed in conjunction with tide gauge data and
current rates of VLM estimated in this study. An integration between RSLR and effective
horizontal shoreline migration allowed to map the future submersion surfaces on high-
resolution Digital Elevation Models, thus to predict the submersion scenarios up to 2050
and 2100.

2. South-Eastern Sicily: Geodynamic and Geological Setting

South-eastern Sicily, between the Catania Plain in the north and Capo Passero in the
south, is shaped by compressional, extensional and strike slip movements related to the
relative motion of the Africa and Eurasia tectonic plates, where geodynamic processes
associated with subduction of the Ionian lithosphere beneath the Calabrian arc cause
a complex volcano-tectonics [35,36] (Figure 1). The geology of this region shows thick
Mesozoic to Quaternary carbonate sedimentary sequences and volcanic layers forming the
emerged foreland of the Sicilian–Maghrebian thrust belt [37]. The most important tectonic
domains of this area are the Hyblean Plateau and the Malta escarpment. The latter is a
Mesozoic boundary separating the continental domain from the oceanic crust of the Ionian
basin, reactivated during the Quaternary [38–40].

Since the Early-Middle Pleistocene, active faulting has contributed to extensional
deformation along the coastal sector of south-eastern Sicily, where NNW–SSE trending
normal faults control the Ionian shoreline [40–42]. These structures are mostly located off-
shore and their Quaternary activity is probably associated with the recent reactivation of the
Malta Escarpment system [43]. This area is marked by a high level of crustal seismicity that
released earthquakes of a magnitude of about 7, such as the destructive events occurred
in 1169, 1542 and 1693 [44,45]. The seismogenic sources of these historical events is
still debated but they are likely located in the Malta Escarpment, between Catania and
Siracusa [36,40,42–44,46–49]. The last major earthquake (ML 5.4) occurred on December 13,
1990 in the Augusta off-shore [50–52].

Due to geodynamic processes, such as the retreating of the subducted Ionian slab [53–55]
or asthenospheric flow beneath a decoupled crust [56,57], and off-shore normal faulting [43,58],
during the Late Quaternary, this area has been affected by regional uplifting. Uplift pro-
gressively decreases north of southern Calabria and south of north-eastern Sicily, as shown
by flights of marine terraces developed along the coasts [53,59–61]. In the northern sector
of south-eastern Sicily, the long-term uplift has been estimated at rates of 0.2–0.7 mm/year
from Middle-Upper Quaternary marine terraces and paleo-shorelines [40,58,62,63], gradu-
ally decreasing to zero toward the stable areas of the south-eastern corner of Sicily [59,64].

Toward the south-eastern corner of Sicily, the observed uplift also decreases during
the Holocene. In fact, archaeological and borehole evidence show vertical land stability or
weak uplift during the late Holocene [65–68].

On the other hand, levelling surveys performed since 1970 [61,69] and more recent
GNSS data [29,70,71] and InSAR analysis [72], highlighted a diffuse and interseismic low
rate land subsidence between Catania and Siracusa, which is in contrast with the long term
geological uplift of this region.

The studied coastal area has been affected by several marine extreme events in his-
torical times. Effects of several tsunamis have been reconstructed from the analyses
of boulder accumulation [73], high-energy deposits [74] and cores performed inside la-



Remote Sens. 2021, 13, 1108 5 of 25

goons [75,76]. The analysed area also experienced the effects of several storms and Medi-
canes occurred over the last decades, mainly represented by boulders dislocation along
the coastal area [19]. This is particularly important considering that in a SLR scenario
the effects of the extreme marine events will probably impact on the coastal landscapes
currently emerged [31,32,68,77–80].

3. Material and Methods

To realize high resolution maps of expected coastal flooding by 2100, we have analyzed
the following data sets: (i) geodetic data from GNSS networks and InSAR observations
to estimate the current rates of VLM for the last two decades; (ii) time series of sea-level
data collected in the time span 1992–2020 at the tide gauge station of Catania; (iii) optical
satellite images to evaluate the intervening coastal retreat occurred in the time span 2001–
2019; (iv) sea-level projection released by the IPCC (Report SROCC [7]) corrected for the
Mediterranean Sea to obtain RSLR projections for 2050 and 2100 in the RCP 2.6 and RCP
8.5 climatic scenarios. Finally, we analyzed LiDAR data to extract high resolution DEMs to
obtain detailed maps of flooding scenarios.

3.1. GNSS Data

We used the available raw observations provided by GNSS-RING network [81], man-
aged by INGV [82], integrated by other active GNSS stations belonging to regional and
national networks [83], in order to estimate the VLM rates at a set of stations located within
10 km from the coastlines of south-eastern Sicily (Figure 2). In our analysis, we considered
all the data available from 1995 to 2020, but, specifically, the sites shown in Figure 2 span
the 2006–2020 time-interval. The analysis was performed by the GAMIT/GLOBK software,
following the three step procedures described in Serpelloni et al. [29].

The raw GPS observables have been analysed using the GAMIT/GLOBK software
(V.10.70) [84,85] adopting IGS standards [86]. In this step, the satellites orbit parameters are
tightly constrained to the IGS final values. The GAMIT software estimates station positions,
atmospheric delays, satellite orbits and Earth orientation parameters from ionosphere-free
linear combination GPS phase observables using double differencing techniques in order
to eliminate phase biases caused by drifts in the satellite and receiver clock oscillators.
GPS pseudo-range observables are also used to constrain clock timing offsets and improv-
ing automated editing of phase data, helping in the resolution of integer phase ambiguities.
GPS phase data are weighted adopting an elevation-angle-dependent error model [85].
The IGS absolute antenna phase centre model is used for both satellite and ground-based
antennas, allowing us to improve the accuracy of vertical site positions by mitigating
reference frame scale and atmospheric mapping function errors. While the first-order iono-
spheric delay is eliminated by the ionosphere-free linear combination, the second-order
ionospheric corrections are applied using IONEX files from the Centre for Orbit Determi-
nation in Europe (CODE). The tropospheric delay is modelled as piecewise linear model
and estimated using the Vienna Mapping Function 1 (VMF1). We use the Global Pressure
and Temperature 2 (GPT2) model to provide a priori hydrostatic delays. The pole tide
was also corrected in GAMIT adopting IERS standards. The Earth Orientation Parameters
(EOP) are tightly constrained to priori values obtained from IERS Bulletin B. Ocean loading
is corrected using the FES2004 model. The International Earth Rotation Service (IERS)
2003 model for diurnal and semi-diurnal solid Earth tides was set. Because of the large
number of stations included in our Euro-Mediterranean GNSS data processing (~3000),
the GAMIT analysis is performed for several sub-networks, each made by <50 stations,
with each sub-network sharing a set of high-quality IGS stations that are later used as
tie-stations in the combination step.

The daily sub-nets, loosely constrained, solutions are combined using the GLOBK
software, which adopts a Kalman filter estimation algorithm, simultaneously realizing
a global reference frame by applying generalized constraints. Specifically, we define the
reference frame by minimizing the velocities of the IGS core stations (http://igscb.jpl.nasa.

http://igscb.jpl.nasa.gov
http://igscb.jpl.nasa.gov
http://igscb.jpl.nasa.gov
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gov, accessed on 6 January 2021 [87]), while estimating a seven-parameter transformation
with respect to the GPS realization of the ITRF2014 frame, i.e., the IGS14 reference frame.

In the third step, we analyse the position time series in order to estimate the 3-
components’ (east, north and vertical) of linear velocities and uncertainties. Changes in
stations positions are modelled using the following functional model:

x(t) = x0 + bt + α sin(ωt + ϕ) +
n

∑
j=1

∆xj H
(
t− tj

)
(1)

where x is the position of a point, t is the time, x0 is the initial position bias, b is the secular
rate, α and ϕ are the amplitude and phase of the annual and semi-annual seasonal signals,
respectively, and H is the Heaviside step function defining coordinate jumps (∆x) at a
given time tj. Only stations with a minimum time-span of 4.5 years are retained in this
and subsequent analyses, in order to avoid biases due to unreliable estimated seasonal
signals and underestimated velocity uncertainties due to absorbed correlated noise content
in estimated trends of short time series. We estimate the stations rates uncertainties
assuming a white–flicker noise model, using the approach implemented in the CHEETAH
software [88].

3.2. InSAR Technique and Data

Since the 1990s, the Synthetic Aperture Radar Interferometry (InSAR) technique
allowed the detection and measurements of crustal movements from space with unprece-
dented accuracy and spatial coverage [89,90]. The InSAR is a non-invasive technique [91],
suitable to monitor large areas of the Earth’s surface, measuring the projection of the
deformation vector onto the Line of Sight (LoS) direction.

In the last 20 years, the increased availability of new SAR instruments and satellite
constellations, has stimulated a steady improvement of processing algorithms. Several
multi-temporal InSAR techniques have been proposed, exploiting the redundancy offered
by hundreds of image pairs, i.e., hundreds of interferograms, to retrieve mean ground
velocity and time-series of relative ground displacements. The existing algorithms fall into
two broad categories, based on the Permanent Scatterer (PS) [92] and the Small Baseline
(SB) [93] approaches, although more recently algorithms exploiting the basic principles of
both methodologies have also been proposed [94].

In this study, we adopted the SBAS methodology applied along both the ascending and
descending orbit of the Sentinel-1A satellites (C-Band SAR sensor wavelength=5.6 cm) op-
erated by the European Space Agency (ESA) in the TOPSAR acquisition mode (VV polariza-
tion) and free-distributed (https://sentinel.esa.int/web/sentinel/missions/sentinel-1, ac-
cessed on 6 January 2021 [95]). Both the ascending and descending SAR datasets have been
processed using the Geohazard Exploitation Platform (GEP, https://geohazards-tep.eu/,
accessed on 6 January 2021 [96]) and the P-SBAS service, implemented therein. An initial
multi-looking operation was applied to the Single Look Complex images equal to 20 and
5 looks along the range and azimuth direction, respectively, resulting in a ground pixel
resolution of 90 meters. The main processing steps of the SBAS approach consist of differ-
ential interferograms generation from the formed SAR image pairs with a small orbital
separation (spatial baseline) to reduce the spatial decorrelation and topographic effects.
The Shuttle Radar Topography Mission (SRTM) [97] with 1 arc-second (~30 m pixel size)
DEM from NASA and precise orbits from the European Space Agency (ESA) were used for
the co-registration and for topographic phase removal from the interferometric phase on
each of the compute interferograms. Then, a filtering operation is performed to improve
the obtained interferogram’s quality and make easier the following phase unwrapping
step according to a fixed coherence threshold (equal to 0.7 for both the ascending and
descending processing). Then, an inversion step is performed to put together the ground
displacement time series in the time interval covered by the considered SAR acquisitions.
At this stage, the atmospheric artifacts are also estimated and removed through a double

http://igscb.jpl.nasa.gov
http://igscb.jpl.nasa.gov
https://sentinel.esa.int/web/sentinel/missions/sentinel-1
https://geohazards-tep.eu/
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filtering in the spatial and temporal domain (high and low pass filtering equal to 1200 me-
ters and 365 days, respectively) [93,98]. Finally, the geocoding step is applied by means
of the adopted DEM, obtaining a 90m ground pixel in the WGS84 datum to reference the
displacements estimated for both the orbits.

In detail, we considered 60 images along the descending orbit (track 124) covering the
time interval from 6 July 2017 to 8 March 2020 with a revisiting time of 12 days, enough
to detect the movement in the investigated area, and resulting in 163 pairs. The same
procedure was considered for the ascending case (track 44) selecting 103 images relative to
the 3 October 2016–28 March 2020 temporal span and forming 290 interferograms. The re-
trieved InSAR ground velocity maps along the satellites LoS are showed in Figures 3 and 4
for the ascending and descending orbits, respectively.
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the combination of InSAR ascending and descending orbits, for six investigated coastal zones (see
Figure 2 for location).

Thanks to the availability of both the ascending and descending InSAR outcomes,
we retrieved the surface movement along the vertical and eastward directions. This can
only be done for the pixels common to both the ascending and descending LoS maps.

Because of the SAR geometry acquisition, the east–west component of ground motion
is proportional to the difference between descending and ascending LoS maps, and it is also
a function of the local incidence angles of SAR; the vertical is proportional to the sum of
the two datasets, and depends on the local incidence angles, too. Unfortunately, the north–
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south component of the ground movement has a little effect on the LoS measurements (less
than 10% of the north–south movement is captured by SAR); therefore, we cannot estimate
it. The analytical expression that we applied to calculate vertical and east-west motions is
reported in Dalla Via [99].

Generally, ground movements along the coastal stripes are characterized by subsi-
dence phenomena due to the coastal erosion and soil compaction causing as a consequence
the retreat of the coastline [80,100,101]. Moreover, the tectonic regime of the area of interest
foresees vertical movements, e.g., rise of marine terraces [58,60,62,65]. Therefore, the hori-
zontal component of the retrieved LoS velocity is negligible in the areas investigated in
this study (see also S1—Supplementary Material).

InSAR products were validated and calibrated through a comparison with the GNSS
data superimposed and projected on the InSAR LoS directions, for both the orbits (see S1—
Additional Material for further information). Such decomposition was made pursuant to
the InSAR and GNSS data comparison and validation; hence, the reported Up component
already include any post-processing performed operation to calibrate InSAR products (see
S1—Additional Material for further details).

3.3. Sea-Level Data

The analysis of sea-level data collected at the tidal networks located in the Mediter-
ranean basin highlighted a mean rate of sea-level rise of about 1.8 mm/year for the last
two-three centuries [70], although local VLMs can influence, even severely, the mean
trend [102]. The closest tide gauge station in the investigated area of south eastern Sicily
is located in the harbor of Catania (ISPRA tidal network, www.mareografico.it, accessed
on 1 January 2021 [103]). The analysis of the time series of monthly mean sea-level data
collected in the time span 1992–2020, shows a trend at 4.66 ± 0.01 mm/year (Figure 5),
which is about 2.9 mm/year higher than the average rate for the Mediterranean Sea. It is
worth noting that InSAR analysis detected a local land subsidence at about 2 mm/year
in the proximity of the coast of Catania (Figures 3 and 4) that affects sea-level recordings.
In addition, RSLR for this location could be exacerbated by additional subsidence due local
instabilities of the tidal station location being placed at the top of a large pier in the Catania
harbor (Station coordinates Lat 37◦29′44.42′′N; Long 15◦05′42.11′′E).
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Figure 5. Monthly sea-level at the tide gauge station of Catania in the time span 1986–2020. The linear
trend (red line), calculated in the time interval 1992–2020, corresponds to a rate of 4.66 mm/year.
Recordings between 1986 and 1992 have been excluded in the analysis due to a relocation of the station.
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In order to project the expected sea-levels at 2050 and 2100 A.D. for the coast of
south eastern Sicily, the novel sea-level projections based on the IPCC special report
“The Ocean and Cryosphere in a Changing Climate (SROCC)” [7], released in 2019, were
adopted. SROCC estimates consist of sea-level median values and standard errors on
a worldwide grid obtained by summing up the contributions of geophysical sources
driving long-term sea-level changes. The considered sources of sea-level variations are:
the thermosteric/dynamic contribution (from the same 21 CMIP5 coupled atmosphere-
ocean general circulation models AOGCMs used for AR5 IPCC projections), the surface
mass balance and dynamic ice sheet from Greenland and Antarctica, the glacier and land
water storage, the glacial isostatic adjustment (GIA) and the inverse barometer effect. As for
the AR5 IPCC, SROCC projections are provided for three different RCPs 2.6, 4.5 and 8. 5:
in the RCP 2.6 scenario the emissions of greenhouse-gas emission peak around 2020, in RCP
8.5 they continue to grow throughout the century [104]. SROCC and AR5 IPCC sea-level
projections only differ in the estimates of the contributions from Antarctica: new ice-sheet
modelling results, not available at the time of AR5, have been incorporated into the SROCC
assessment. The difference between global mean sea-levels in SROCC and AR5 IPCCS
is negligible under RCP 2.6 and RCP 4.5 scenarios while it is about 10 cm in 2100 under
RCP 8.5.

The predicted sea-level rise in the south-eastern margin of Sicily has been estimated
by combining the rate of sea-level rise at the grid point closest to Lat 37◦2′54.32′ ′N;
Lon 15◦17′50.51′ ′E Gr, as provided by the SROCC projections, with the rate of vertical land
motion inferred from InSAR data. In details, the measured rate of vertical land motion,
which includes both GIA and tectonic components of both natural and anthropogenic ori-
gin, replaces the GIA contribution used in the original SROCC projections. Errors coming
from the InSAR data are included in the overall uncertainty estimation.

3.4. Optical Satellite Images

We used the time series of optical satellite images Landsat 7–8 [105] acquired in
the time span 2001–2019 and multispectral WorldView 2 acquired in 2011 to evaluate
the horizontal migration of the sandy shorelines that underwent to significant retreat.
The effective shoreline migration was obtained following the method described in Scardino
et al. [80]. From all the selected images, the shorelines were digitalized in GIS environment
for each year reported in the satellite images. In the coastal areas affected by several meters
of coastal retreat, an estimation of the rate of total shoreline retreat was performed.

To this aim, we applied a linear regression of the shoreline position digitalized with
respect to years of the satellite images. This approach involves the coastal retreat as a result
of all contribution that cause the sediment movements and shoreline migration. Firstly,
to assess the coastal retreat only due to SLR contribution, we assumed the investigated
coasts to be in steady-state approach, without significant sediment movements and the
shoreline migration caused only by land subsidence estimated by the geodetic measure-
ments. Secondly, the eustatic sea-level component was added to the local land subsidence
analysis to obtain horizontal displacements in function of the coastal slope. The latter
has been extracted from DEM of LiDAR data. The most relevant shoreline changes have
been observed on the coastal plain of Catania, the sandy coast of Siracusa and the coast of
Vendicari, near Marzamemi (Figure 6).

To project the shoreline migration at 2050 and 2100 epochs, we incorporated the sea-
level projections in the model reported in Scardino et al. [80]. Starting from the present-day
coastline extracted from high-resolution satellite image of ESRI ArcGIS service (year 2019),
the coastline in 2050 and 2100 was mapped.
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Figure 6. Multi-temporal shoreline changes observed along at the mouth of Ciane river in the time span 16 September
2002–20 August 2019. In 2019, the southern sector of the beach has been affected by a foredune breaching. In 17 years,
the coast retreated up to 70 m due to the effect of RSLR with a loss of surface of 0.07 km2.

3.5. Digital Elevation Model (DEM)

The present-day topography was obtained by the analysis of airborne LiDAR (Light
Detection and Ranging) observation data collected by the Regione Sicilia in 2008–2009 [106]
and georeferenced in EPSG 3004 Monte Mario Italy 2. The DEM was extracted with 2 × 2 m
cell width and a mean vertical resolution of about 20 cm. The rates of VLM estimated by
InSAR data have been represented as contour lines on the Digital Elevation Models (DEMs),
by means of ArcGIS® and Global Mapper software (www.globalmapper.com (accessed on
1 January 2021) [107]. 3D high-resolution maps of the investigated area were produced,
on which the position of the present-day coastline and its potential position in 2100 as
a result of relative sea-level rise are shown by contour lines and colour-shaded options,
defining the upper limits of the exposed zones at potential sea flooding by 2100 for different
climatic scenarios. DEMs were analysed to obtain the elevation of the coastal areas and the
slope of the mobile coastal systems. To model the changes of the local topography at 2050
and 2100, elevations on DEM cells were corrected with the displacements of digital model
VLM in 2050 and 2100. 3D high-resolution maps of the investigated area were produced
for the topography in 2050 and 2100, on which the position of the present-day coastline
and its potential future position in response to the relative sea-level rise, defining the upper
limits of the exposed zones at potential sea flooding.

4. Results and Discussion

Since the last decade, new studies primarily based on IPCC projections, started to pro-
vide future sea-level rise assessments along the global coasts, generally without considering
the contribution of VLM [1,108]. Lambeck et al. [30], Antonioli et al. [31]; Marsico et al. [79]
and Antonioli et al. [32], constrained the spatially variable VLMs based on long-term
geological data (mainly the elevation of the marine terraces of the MIS 5.5) to obtain RSLR
scenarios for 2100 along low-lying coasts of the Italian peninsula. Recently, instrumental
data from GNSS networks, InSAR observations and tide gauges have been considered in
these projections for the realization of inundation hazard maps in several areas such as the
coasts of California [34] and specific coasts of Italy [11,17,32,71,77,80,109,110], assuming
that VLM rates measured by geodetic instruments will remain constant in the coming
decades in a specific coastal zone.

www.globalmapper.com
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Our results underline the importance of a multidisciplinary approach for the RSLR as-
sessment to predict the future submersion of investigated coasts. The multi-temporal maps
of the expected submersion for 2050 and 2100 have been obtained through an integrated
analysis of SLR projections, VLMs and the detailed representation of the shoreline migra-
tions on high resolution DEMs. The conceptual approach is based on the worst conditions
for a mobile coastal system, in which the coastal resilience is not sufficient to contrast the
sea-level rise. Such conditions are particularly evident in the coastal areas characterized by
low sediment supply and retreatment of the river mouths (for example the Simeto river
mouth, Figure 7). Moreover, strong subsidence could act locally, preventing the dynamical
response of the coastal system. A negative contribution that affects the Southeastern Sicily
coasts is due to the anthropogenic factors [111], which determined the decrease of sediment
supply and fluid withdrawal. Obviously, in the attempt to propose a future scenario, it is
necessary to make some hypotheses and, in our case, it has been assumed that the ground
deformation is linear over time. This velocity rate is considered to be constant and equal to
that obtained from 4 years of monitoring with SAR data. This assumption is considered
valid as the GNSS data also confirm that over a much longer temporal period (more than
20 years). Furthermore, we showed how the vertical displacement retrieved by the two
remote sensing techniques, e.g., InSAR and GNSS, are comparable as well confirming
our starting assumption. Finally, considering the tectonic regime of the area, we can state
that most of the observed vertical velocities recorded at the GNSS stations show tectonic
stability, with the exception in the north of Catania, near the Etna volcano. On the other
hand, the low rate of land subsidence recorded south of Catania, fit the GIA values for this
region, which have been estimated between −0.5 and −1 mm/year [29].
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Figure 7. Retreat of the Simeto river mouth on the Catania coastal plain. The shoreline at 2003 epoch
is marked in light orange (left) while the shoreline for 2020 epoch is marked in light blue (right).

Results highlight the contribution of sea-level rise to the shoreline retreat at a level
lower than 35% (Figure 8). Below are reported the estimated shoreline changes for a set of
coastal zones:

Catania coastal plain. A variable shoreline change was estimated between 6.34 and
3.23 m/year (with a linear regression of 4.78 ± 2 m/year). In the proximity of the Simeto,
Gurnazza and San Leonardo river mouths a fast shoreline retreat, up to 10 m/year, was ob-
served [111]. The southern part of the coastal plain influences large subsidence, reaching a
rate up to 8 ± 2.46 mm/year in the Lentini area. The mobile coastal system showed phase
of decrease of sediment supply, particularly over the last decades. The reduction of sus-
pended load from Simeto, Gurnazza and San Leonardo determined a negative sedimentary
balance, which is exacerbated by the intense beach-dune erosion.
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Figure 8. (a–c) Horizontal displacements obtained following a geometric steady-state approach:
sea-level rise determines a landward shoreline movement without accretion, where the shoreline rate
change is dependent only on the coastal slope extracted from the DEM of LiDAR data.

The sandy coast of Siracusa. This coastal zone shows a rate of shoreline changes be-
tween 4.01 and 3.9 m/year (linear regression rate of 4 ± 1.9 m/year). The main evidence
of shoreline changes occurred south of the Ciane river mouth. This area, which is char-
acterized by salt-marshes, has been affected by a coastline retreat of about 70 m, with
local breaching of the beach-dune system (Figure 6). The salt-marsh is subsiding at about
2 ± 2.46 mm/year, while the northern sector of this coast, displays higher subsidence rates
mainly located in the Siracusa harbor, with velocities of about 5 ± 2 mm/year. The narrow
beaches that separate the salt-marsh from the sea are not nourished by inland sediments
due to dams that highly reduce the supply of sediments on the coast.

The coast of Vendicari. This area shows a rate of shoreline retreat between 0.95 and
0.4 m/year, with a mean rate of 0.68 ± 0.4 m/year. The InSAR analysis showed significant
rates of local land subsidence, at about −4 ± 2.46 mm/year. Foredune system showed
a given stability over the last few decades, while the dynamic of the coasts seems to be
correlated to the longshore drift toward south.

Figure 9 and Table 1 show reference RSLR projections for RCP 2.6 and RCP 8.5 for the
investigated coastal zones most prone to SLR in 2050 and 2100.
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RCP 2.6 

2100 (m) 

RCP 8.5 
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RCP 8.5 

2100 (m) 

Null VLM 0.15 ± 0.03 0.33 ± 0.06 0.20 ± 0.04 0.72 ± 0.13 

GNSS: −0.7 ± 0.35 0.16 ± 0.03 0.36 ± 0.06 0.21 ± 0.04 0.75 ± 0.13 
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Figure 9. Sea-level projections relative to 2016 AD for the coast of South-eastern Sicily obtained by combining the IPCC-
SROCC 2019 projections at regional scales with the contribution of the most common rates of land subsidence as derived
from InSAR analysis (Figures 10–15): (a) 0.7 ± 0.35 mm/year; (b) 5.2 ± 2.5 mm/year; (c) 7.6 ± 2.5 mm/year and
(d) 10 ± 2.5 mm/year. Full lines correspond to the 2.6 (blue) and 8.5 (red) SROCC scenarios and the coloured bands
highlight the 90% confidence interval. Dashed lines correspond to the raw SROCC projections when no measured vertical
land motion is included. The small-scale variations observed in the data are related to the ocean component contribution
accounting for the effects of dynamic SSH, the global thermosteric SSH anomaly and inverse barometer effects.
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Figure 10. The Catania coastal plain. In color are reported the expected extension of flooding in 2050 and 2100 for (a) RCP2.6
and (b) RCP8.5 emission scenarios, respectively. The expected maximum loss of land in 2100 is 4.094 km2 (high-resolution
maps are inserted in Supplementary Materials Maps S2 and S3). The coastal strip is characterized by about null VLM
(−0.7 ± 0.35 mm/year) with respect to the inner zones that show subsidence rates exceeding 10 ± 2.5 mm/year, likely due
to local fluid withdrawal.
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(a) (b) 

Figure 11. The bay of Augusta. In colors are reported the expected extension of land flooding in
2050 and 2100 for (a) RCP 2.6 and (b) RCP 8.5 climatic scenarios for a mean land subsidence at
3.4 ± 2.5 mm/year. The expected maximum loss of land is 1.659 km2 (high-resolution maps are
inserted in Supplementary Materials Maps S4 and S5).
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Figure 12. The bay of Siracusa. In colors are reported the expected extension of land flooding
in 2050 and 2100 for (a) RCP 2.6 and (b) RCP 8.5 climatic scenarios for a mean land subsidence
at 7 ± 2.5 mm/year. The expected maximum loss of land is 2.378 km2 (high-resolution maps are
inserted in Supplementary Materials Maps S6 and S7).
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Figure 13. The coast of Marzamemi. In colors are reported the expected extension of flooding in 

2050 and 2100 for (a) RCP 2.6 and (b) RCP 8.5 climatic scenarios. The expected maximum loss of 

land is 0.043 km2 (high-resolution maps are inserted in Supplementary Materials Maps S8–S9). 

VLM are about null except for the area of the modern harbor (at the bottom in the figure), which is 

affected by a subsidence at 1.02 ± 2.5 mm/yr. 
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Figure 14. The bay of the Asinaro river mouth, near Piccio. In colors are reported the expected 

extension of land flooding in 2050 and 2100 for (a) RCP 2.6 and (b) RCP 8.5 climatic scenarios for a 

mean land subsidence at 8 ± 2.5 mm/yr. The expected maximum loss of land is 0.045 km2 (high-

resolution maps are inserted in Supplementary Materials Maps S10–S11). 

Figure 13. The coast of Marzamemi. In colors are reported the expected extension of flooding in 2050
and 2100 for (a) RCP 2.6 and (b) RCP 8.5 climatic scenarios. The expected maximum loss of land is
0.043 km2 (high-resolution maps are inserted in Supplementary Materials Maps S8 and S9). VLM are
about null except for the area of the modern harbor (at the bottom in the figure), which is affected by
a subsidence at 1.02 ± 2.5 mm/year.
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Figure 14. The bay of the Asinaro river mouth, near Piccio. In colors are reported the expected
extension of land flooding in 2050 and 2100 for (a) RCP 2.6 and (b) RCP 8.5 climatic scenarios for
a mean land subsidence at 8 ± 2.5 mm/year. The expected maximum loss of land is 0.045 km2

(high-resolution maps are inserted in Supplementary Materials Maps S10 and S11).
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Figure 15. The bay of Vendicari. In colors are reported the expected extension of land flooding in 

2050 and 2100 for (a) RCP 2.6 and (b) RCP 8.5 climatic scenarios for a mean land subsidence at 4 ± 
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Figure 15. The bay of Vendicari. In colors are reported the expected extension of land flooding in 2050 and 2100 for (a) RCP
2.6 and (b) RCP 8.5 climatic scenarios for a mean land subsidence at 4 ± 2.5 mm/year. Maximum rate of land subsidence
for this area is 10 ± 2.5 mm/year. The expected maximum loss of land is 1.528 km2 (high-resolution maps are inserted in
Supplementary Materials Maps S12 and S13).

Table 1. Relative sea-levels projections for RCP 2.6 and RCP 8.5 scenarios for 2050 and 2100 with respect to 2016, for different
VLM rates observed in this study in south-eastern Sicily. Uncertainties define the 90% confidence limits. Different cases are
considered for: (i) null vertical land motion (only the contribution of GIA already included in the SROCC projections is
considered); (ii) mean VLM at −0.7 ± 0.35 mm/year derived by GNSS data and (iii) observed values of VLM estimated by
InSAR analysis along the coastal zones reported in Figure 5.

VLM (mm/year) RCP 2.6
2050 (m)

RCP 2.6
2100 (m)

RCP 8.5
2050 (m)

RCP 8.5
2100 (m)

Null VLM 0.15 ± 0.03 0.33 ± 0.06 0.20 ± 0.04 0.72 ± 0.13
GNSS: −0.7 ± 0.35 0.16 ± 0.03 0.36 ± 0.06 0.21 ± 0.04 0.75 ± 0.13
InSAR: −2.0 ± 2.5 0.20 ±0.04 0.47 ± 0.07 0.26 ±0.05 0.86 ± 0.13
InSAR: −3.4 ± 2.5 0.25 ± 0.04 0.59 ± 0.07 0.30 ± 0.05 0.97 ± 0.13
InSAR: −5.2 ± 2.5 0.31 ± 0.04 0.74 ± 0.07 0.36 ± 0.05 1.12 ± 0.13
InSAR: −7.6 ± 2.5 0.39 ± 0.04 0.94 ± 0.07 0.44 ± 0.05 1.32 ± 0.13
InSAR: −8.0 ± 2.5 0.40 ± 0.04 0.97 ± 0.07 0.46 ± 0.05 1.35 ± 0.13
InSAR: −8.7 ± 2.5 0.42 ± 0.04 1.03 ± 0.07 0.48 ± 0.05 1.41 ± 0.13
InSAR: −10.0 ± 2.5 0.47 ± 0.04 1.13 ± 0.07 0.52 ± 0.05 1.52 ± 0.13

Because the GNSS stations are often too sparse and far from the investigated areas
(Figure 2), we preferred to use the VLM rates obtained from the InSAR analysis to assess
the local VLM trend and to calculate the expected RSLR values. It is worth noting that
the VLM velocities obtained from the InSAR data coincides with the GNSS velocities at
the individual stations with an uncertainty of ±2.5 mm. The expected flooding scenarios
reported in Figures 10–15 are based on VLM values shown in Figure 5. Maps are referred to
the RCP 2.6 (low emission) and RCP 8.5 (high emission) climatic scenarios reported in the
SROCC Report (Oppenheimer et al., [26]), for which SLR is accelerated by land subsidence
as estimated by geodetic analysis. The multi-temporal coastal positions projected on
the high-resolution topography extracted from LiDAR data, allow to detail the potential
flooding extension and the related impacts on the investigated coasts (Table 2). For the
RCP 8.5 emission scenario, the maximum extension of expected flooded area for 2100 A.D.
in the investigated zone, is about 9.7 km2.



Remote Sens. 2021, 13, 1108 18 of 25

Table 2. Expected RSLR (m) and extension (km2) of the exposed flooded areas for 2050 and 2100 A.D. for RCP 2.6 and RCP
8.5 emission scenarios.

Area RSLR RCP 2.6 (m) RSLR RCP 8.5
(m)

RCP 2.6
2050 (km2)

RCP 2.6
2100 (km2)

RCP 8.5
2050 (km2)

RCP 8.5
2100 (km2)

Catania plain 2050: 0.15 ± 0.03 2050: 0.20 ± 0.04
1.21 2.634 1.762 4.0922100: 0.33 ± 0.06 2100: 0.72 ± 0.13

Augusta 2050: 0.31 ± 0.04 2050: 0.36 ± 0.05
0.275 0.668 0.433 1.6592100: 0.74 ± 0.07 2100: 1.12 ± 0.13

Siracusa
2050: 0.31 ± 0.04 2050: 0.36 ± 0.05

0.393 0.951 0.544 2.3782100: 0.74 ± 0.07 2100: 1.12 ± 0.13
Asinaro river

mouth
2050: 0.47 ± 0.04 2050: 0.52 ± 0.05

0.015 0.021 0.017 0.0432100: 1.13 ± 0.07 2100: 1.52 ± 0.13

Vendicari
2050: 0.47 ± 0.04 2050: 0.52 ± 0.05

0.675 1.047 0.837 1.5282100: 1.13 ± 0.07 2100: 1.52 ± 0.13

Marzamemi
2050: 0.15 ± 0.04 2050: 0.2 ± 0.05

0.007 0.013 0.010 0.0452100: 0.33 ± 0.07 2100: 0.72 ± 0.13

Total extension 2.58 5.33 3.60 9.75

The potential extension of the flooded area depends on the topographic features and
the expected RSLR. The largest flooding is expected in the coastal plain of Catania and the
Lentini area, where the complex topography and the San Leonardo channel can drive a
marine ingression up to 5 km inland, both for the RCP 2.6 and 8.5 scenarios (Figure 10).

In the Augusta bay, the expected extension of the potential flooded area is relevant
in the northern sector, reaching up to 500 m and 1 km inland for the RCP 2.6 and RCP 8.5
scenario, respectively (Figure 11). The most important flooding is expected for the coast of
Siracusa, where the flooded area will possibly extend for more than 2 km inland in both
RCP scenarios (Figure 12), involving the local salt-marsh, part of the city and the railways.
The RSLR scenario for the pocket beach of Piccio, located in the proximity of Asinaro river
mouth (Figures 13–15), is less critical both for the RCP 2.6 and RCP 8.5 scenarios, but still
with a partial submersion of the backshore.

The natural reserve of Vendicari is exposed to a potential flooding extending up to
1 km inland, involving the lagoons of Pantano Roveto and Pantano Piccolo (Figure 12).
The expected RSLR in Marzamemi bay, may cause a flooding extension of about 300 m
inland (Figure 13), determining the potential loss of the foreshore and backshore and
leading to the abandonment of the historical fisherman village.

Concerning the role of the dune system in counteracting the SLR, field evidence and
optical satellite images show that over the last two decades, the beach-dune systems have
been subjected to a continuous retreat in consequence of multiple factors (Table 3), mainly,
the sea-level rise, the increasing intensity of extreme marine events, VLM and deficit on
the sediment supply in a coastal system. The high rates of land subsidence highlighted by
InSAR, suggest that future scenarios could be driven by overtopping processes, rollover or
dune breaching [112,113], probably similar in timing and architecture of resulting deposits,
to retrogradation processes occurred during the marine transgression after the last glacial
maximum (LGM) in different low-gradient settings [114–116]. In particular, the time
series of satellite images of the sandy coasts at Siracusa between 2009 and 2020 (Figure 8,
Table 3), show the occurrence of dune breaching near the salt-marshes over the last decades.
Considering the expected accelerated SLR trend in the RCP 8.5 emission scenario, the beach-
dune system will be more vulnerable in the next years with respect to the past decades due
the combined effects of SLR, VLM and negative mass balance on the coasts.
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Table 3. Shoreline changes for different slopes (column C) for three sandy coasts located at Catania, Siracusa and Vendicari
(Column A). The difference between the total observed shoreline retreat (due to the sea-level rise, the increasing intensity
of extreme marine events, VLM and deficit on the sediment supply in a coastal system—column D) and the retreat due
to RSLR only (column E, geometric horizontal retreat), defines the residual shoreline change (D–E). The coastal erosion
triggered by RSLR is the predominant effect in the shoreline change process for the analysed gentle sloping sandy coasts
which are retreating at up to 4.78 m/year.

A B C D E F

Sandy coasts VLM InSAR,
(mm/year)

Coastal slope
(degree)

Total shoreline
retreat (m/year)

RSLR shoreline
retreat (m/year)

Residual shoreline
change (D–E)

(m/year)

Catania −8 ± 2.5
2.5

−4.78
−0.27 −4.51

6.7 −0.09 −4.69
9.45 −0.07 −4.71

Siracusa −2 ± 2.5
0.7

−4.01
−0.46 −3.55

5.38 −0.06 −3.95
8.3 −0.04 −3.97

Vendicari −4 ± 2.5
2.5

−0.68
−0.17 −0.51

3.3 −0.13 −0.55
10 −0.08 −0.6

If sea-level will continue to rise at accelerated rates, it is reasonable to expect a corre-
sponding accelerated erosion that will strike severely the coastal system. The increasing
coastal hazard will facilitate the marine flooding with subsequent impacts of the coastal
zone, including saltwater contamination of surface and underground waters, wetland
losses, and increased flooding which may lead to relevant socioeconomic impacts.

An additional factor, acting in combination with RSLR, is the occurrence of extreme
marine events connected to storm and tropical-like system (Medicanes). Several models
showed that the future storm events will be more intense than today [117–120], and the
combined effect of wave flooding and sea-level rise could increase the coastal vulnerability,
with loss of surfaces greater than those shown in Figures 10–15. Moreover, the inten-
sity of tropical-like system is increasing in the Mediterranean [19,121–123], leading to
extreme marine events that in conjunction with RSLR could determine several meters of
inland flooding.

5. Conclusions

The methodological approach here presented to account for SLR and coastal land
subsidence is transferable to other coastal zones and can be used to inform land planners
and decisions makers that should take into account similar scenarios for a cognizant
coastal management. The ongoing global climate change is affecting the inundation risks
both through accelerating ice sheet melting (i.e., increasing the rate of eustatic SLR) and
through more intense droughts, leading to unprecedented groundwater overexploiting
and associated localized coastal land subsidence. Because climate change and SLR are
posing unprecedented threats to the coastal environment, urbanization and population,
multidisciplinary studies that include Earth Observations in combination with ground data
and SLR projections will provide crucial information on the evolution of the coastal zones
and their future expected shape.

Our results have shown that the area underwent to coastal retreat up to 70 m in a few
years only while diffuse land subsidence is locally exceeding 10 ± 2.5 mm/year, due to
compaction of artificial landfill, salt marshes and Holocene soft deposits. Given the ongoing
land subsidence, the estimated high end of RSLR at 0.52 ± 0.05 m and 1.52 ± 0.13 m
expected for 2050 AD and 2100 AD in the RCP 8.5 scenario, will lead up to about 10 km2 of
marine flooding. The inundation scenarios we have presented should be considered for a
cognizant management of the coastal zone in response to the ongoing climate changes.
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Major consequences of inundation risk for the coastal areas of south-eastern Sicily
include saltwater contamination of surface and underground waters, accelerated coastal
erosion, wetland and saltmarshes losses and, in general, increased flooding. These ef-
fects are all related with the ongoing global warming and may lead to unprecedented
socioeconomic impacts. Our analysis can improve flood resilience plans for an area of the
Mediterranean with significant populations and infrastructures exposed to flood risk that
can be exacerbated by storm surges, earthquakes, tsunamis and volcano-tectonic activity.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-429
2/13/6/1108/s1, S1-Supplementary Materials; Maps: S2–S12. Captions of Supplementary Materials:
S1-Supplementary Materials. The description of the InSAR results validation. Maps S2. The Catania
coastal plain: expected flooding in 2050 and 2100 for RCP 2.6 projections. Maps S3. The Catania
coastal plain: expected flooding in 2050 and 2100 for RCP 8.5 projections. Maps S4. The bay of
Augusta: expected flooding in 2050 and 2100 for RCP 2.6 projections. Maps S5. The bay of Augusta:
expected flooding in 2050 and 2100 for RCP 8.5 projections. Maps S6. The bay of Siracusa: expected
flooding in 2050 and 2100 for RCP 2.6 projections. Maps S7. The bay of Siracusa: expected flooding
in 2050 and 2100 for RCP 8.5 projections. Maps S8. The coast of Marzamemi: expected flooding in
2050 and 2100 for RCP 2.6 projections. Maps S9. The coast of Marzamemi: expected flooding in 2050
and 2100 for RCP 8.5 projections. Maps S10. The Asinaro river mouth: expected flooding in 2050 and
2100 for RCP 2.6 projections. Maps S11. The Asinaro river mouth: expected flooding in 2050 and
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