
1.  Introduction
Knowledge of the size distribution of Earth volcanism is critical to understand several aspects of the dy-
namics of our planet. In fact, close relationships between size distribution and intimate process dynamics 
are described and generally accepted for an increasingly large variety of natural as well as man-made phe-
nomena (e.g., Laherrère & Sornette, 1998; Clauset et al., 2009; Tenreiro Machado & Lopes, 2015). In the 
case of volcanism, the way the discharged magma distributes among individual eruptions is expected to 
hold relationships with some of the most relevant processes occurring on Earth, such as mantle dynamics 
(Huang et al., 1997), Earth crust formation (Ito & Clift, 1998), and plate tectonics (Xu et al., 2009), and to be 
a factor in global models of climate change (Robock, 2000). Robust estimates of the size distribution of vol-
canic eruptions on Earth require sufficiently complete global databases of volcanic activity. Such databases 
are existing and continuously implemented (Crosweller et al., 2012; Global Volcanism Program, 2013), and 
their analysis led to the development of a statistical model for subaerial volcanism on Earth (Papale, 2018) 
which provides a basis for the determination of the continuous global eruption volume distribution illus-
trated here.
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section, tapered on its extreme right-end side, encompassing about five orders of magnitude of eruption 
volumes. The potential implications are discussed in terms of short-term eruption forecasts of the size of 
an impending eruption, critical for volcanic emergency management.

Plain Language Summary  The occurrence of volcanic eruptions over the Earth follows 
apparently complex patterns: while the vast majority of the eruptions are relatively small in size, here 
and there less frequent large eruptions appear, and even less frequently, cataclysmic eruptions take place 
menacing vast regions up to the global Earth. Summed up with relatively quick deterioration of the 
information from the geologic record, especially for small to medium size eruptions, such apparently 
irregular trends have largely limited our understanding and forecasting capabilities. New databases of 
volcanic eruptions, and new statistical analyses, allow us to determine the size distribution of volcanic 
eruptions worldwide, from the smallest lava flows to the largest explosive eruptions known to have 
occurred on Earth. We find that above a relatively small eruption volume threshold all eruptions distribute 
according to what is called a power law, which is also known to describe other natural phenomena such 
as earthquakes, wild fires, and many others. The mechanisms subtending the generation of a power-law 
distribution for the global subaerial volcanism are not immediately clear. However, as for several other 
similarly distributed phenomena, the implications may impact our capability to forecast the size of an 
impending eruption, with relevant consequences for volcanic emergency management.
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Extracting a global picture from the existing databases is largely com-
plicated by evident deterioration of the information when getting back 
in time, by even just a few decades for low VEI eruptions (Crosweller 
et al., 2012). The key element was represented by understanding that glob-
al eruption recurrence times are exponentially distributed, or equivalent-
ly, that global volcanic eruptions are Poisson distributed (Papale, 2018). 
On one hand, that discovery allows a robust definition of catalog com-
pleteness (or substantial completeness) for each discrete VEI class of 
eruptions (VEI: Volcanic Explosivity Index, Newhall & Self, 1982). That 
is illustrated in Papale (2018) and summarized in Table 1 in terms of pa-
rameters of the Poisson distributions and catalog completeness. On the 
other hand, exponentially distributed eruption inter-event times con-
tribute to explain previous difficulties in obtaining a global picture from 
the data set. In fact, entropy maximization associated with exponential 
distributions easily makes time series of events appearing as random se-
quences with no clear patterns. When summed up with effective holes 
and gaps in the records and dramatic, size-dependent deterioration of 
the information with age, the distributions appear as a messy sequence 
of events, and one would hardly believe they are more than satisfactorily 
described by a single statistical distribution. That is in fact the case, and 
once the exponential distribution of inter-event times was recognized, a 
consistent, simple, robust picture of the time-size distribution of subae-
rial volcanism on Earth emerged (Table 1).

The analysis in Papale  (2018) referred to discrete VEI classes of erup-
tions. A discussion of the pros and cons in referring to either erupted 

volumes or masses is reported in the electronic-only Methods section of Papale (2018). In summary, use of 
masses would be preferable, as this is for countless reasons a much sounder physical quantity with respect 
to volumes. Unfortunately, use of masses is less straightforward for two main reasons: first, volcanologists 
typically estimate deposit volumes, by making use of a variety of techniques that are increasingly becoming 
sophisticated. Such volumes are then converted into masses by assuming some average density or, rarely, 
some density distribution. As a consequence, mass estimates involve additional uncertainty as they sum 
up the one from the volume estimates to that deriving from the assumptions on density. Second, such a 
conversion of volumes into densities is done by the original authors who worked on the deposits and es-
timated their volumes only in a minor fraction of cases, adding further uncertainty to the final estimates. 
As a matter of fact, most conversions for dominantly explosive eruptions simply assume an average density 
of 1,000 kg/m3 (cfr. the LaMEVE database), establishing a linear relationship between eruption volume 
and mass which de facto makes it equivalent to refer to one or the other. While we stress the relevance of 
developing and extensively using more reliable methods to estimate erupted masses, we acknowledge that 
referring to volumes seems currently, as a minimum, equally justified.

Once converted into relative frequency of occurrence, the rate parameters in Table 1 for the discrete VEI 
classes from 3 to 8 appeared to depict a power-law distribution. These two elements: exponential distribu-
tion of eruption inter-event times, and power-law distribution of the frequency of dominantly explosive 
eruptions, are the fundamental aspects of the global distribution of volcanic eruptions that emerged from 
the discrete VEI analysis in Papale (2018). This study builds up from those results to determine a continuous 
eruption volume distribution for global volcanism on Earth, from small lava flows to volcanic super-erup-
tions. In fact, obtaining a continuous volume distribution requires substantial efforts described in this work, 
and reveals further aspects of the global distribution that are illustrated and discussed in the following.

2.  Data Analysis
We consider first the case of the explosive eruptions with VEI ≥ 4, then the smaller scale eruptions with 
VEI = 0–3.
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VEI 
class

Mean rate 
parameter 

(day−1)

Standard 
deviation of 

the mean rate 
parameter (day−1)

Average 
inter-event 

time

Catalog 
completeness 

(years BPa)

Any 1.1096 × 10−1 2.3318 × 10−3 9.012 days −25

0 1.6401 × 10−2 8.2004 × 10−4 60.97 days 0

1 3.8609 × 10−2 1.5855 × 10−3 25.90 days −25

2 4.1752 × 10−2 1.3079 × 10−3 23.95 days 0

3 1.2473 × 10−2 7.1772 × 10−4 80.17 days 0

4 1.4904 × 10−3 1.5538 × 10−4 671.0 days 110

5 2.0026 × 10−4 3.1275 × 10−5 13.68 years 520

6 3.8165 × 10−5 6.5452 × 10−6 71.79 years 2,500

7 9.7473 × 10−7 1.4865 × 10−7 2,811 years 125,000

8 3.5126 × 10−8 6.7601 × 10−9 78,055 years 2,600,000

Abbreviation: VEI, Volcanic Explosivity Index (Newhall & Self, 1982).
aBP stands for “Before Present”, and refers to the time back from year 1950 
CE, taken as positive (e.g., year 1810 CE corresponds to 140 BP, and year 
2020 CE to −70 BP).

Table 1 
Rate Parameters and Their Inverse Corresponding to the Average Inter-
Event Times for Different VEI Classes of Eruptions
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2.1.  Data Analysis for Explosive Eruptions with VEI ≥ 4

As recalled above, the frequency of the dominantly explosive VEI classes ≥3 appears to distribute according 
to a power law. It seems reasonable that such a power-law relationship holds also on a continuous volume 
scale. As a matter of fact, the slope of the power law in the discrete VEI representation was determined on 
a continuous volume distribution that, once categorized into discrete VEI classes, produces the observed 
VEI frequency distribution (Papale, 2018). Here, we directly address the problem of the continuous volume 
distribution, with equal emphasis on the tail of the distribution (the large or very large explosive eruptions) 
as well as on the bulk distribution describing more frequent, less voluminous eruptions.

A power law distribution is described by the following.


 

   
 

1
k

min min

k VPDF
V V

� (1)

where PDF stands for Probability Density Function, minV  is the minimum volume above which the pow-
er-law distribution holds, and k  is the power-law exponent (also called “slope” or “scaling” parameter). The 
corresponding CDF (Cumulative Distribution Function) and its complementary cCDF  =  1 – CDF (also 
called the survivor function, here expressed as S) are given by
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From Equations 1 and 2, it follows that the PDF and S of a power-law distribution produce a straight line on 
a log-log plot (while the CDF does not). Such a simple trend is useful, as it can be visually compared with 
data. In particular, the survivor function S is useful, since constructing it from real data does not require any 
artificial binning as for the PDF while keeping all of the properties of the distribution. When referring to 
power-law distributed data within a pre-defined interval, for example, the eruption volumes within a given 
VEI class or group of VEI classes, there is an additional aspect to take into account. In fact, power laws are 
such only when they extend to infinity on their right end. When the distribution has an upper limit (e.g., a 
physical limit to the values that the variable can take, or a bound reflecting a given window under consider-
ation), the power law is truncated, and its survivor function diverges from the rectilinear trend (on a log-log 
plot) reflecting a more rapid approach to zero (Kagan, 2002, offers a detailed description for earthquake 
magnitudes). In such a situation, the straight line trend of the survivor only holds for values of the variable 
sufficiently far from the limit.

The above is relevant for the present situation, since observed eruption volume distributions must be eval-
uated separately for the different VEI classes. In fact, volcanic eruptions database completeness strongly 
depends on VEI, and the information rapidly deteriorates with time, much quicker for smaller volume 
eruptions as a consequence of much lower preservation in the geological record (Crosweller et al., 2012; 
Papale, 2018). Table 1 provides a reference for catalog completeness in terms of eruption VEI, based on 
the appearance of statistically significant deviations from the exponential distribution found to describe 
eruption inter-event times (Papale, 2018). From catalog completeness and individual VEI inter-event times 
from the same Table, it follows that to manage a complete distribution including a minimum number of 
large explosive eruptions, the database should give us the volume of any volcanic eruption during at least 
1 million years. With the rate parameters in Table 1, that translates into a complete database with about 40 
million entries, which is by far beyond presently available databases.

The consequences of the above strong limits in data availability are important, and require the design of a 
method whereby the eruption volume distribution is reconstructed from the available data. Figure 1 reports 
the case for eruptions with VEI 4 or larger, for which volume estimates are available from the LaMEVE 
database (Crossweller et al., 2012).

The data in Figure 1 refer to entries from LaMEVE for which the nominal volume is consistent with the cor-

responding VEI attribution. For such cases, VEI ≤      
3log 4V m  < VEI + 1 (Newhall & Self, 1982; Deligne 
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et al., 2010; Pyle, 2015). For a minor subset of data that relationship does not appear to hold in LaMEVE, 

often resulting in largely inconsistent average density of the volcanic materials required to reconcile the 
attributed VEI and M scales (an extensive discussion of the two scales is provided in the electronic version 
of Papale [2018]).

As it is discussed above, a power-law distribution bounded within imposed limits, like the limits of the 
observational window corresponding to each given VEI class, takes a truncated shape reflecting a more 
rapid approach to zero than for a power-law distribution. The distributions in Figure 1a clearly illustrate 
that. The blue symbols are data up to catalog completeness for the corresponding VEI class, whereas the 
orange symbols extend far beyond catalog completeness for the corresponding VEI class, including all data 
with consistent volume attribution in the database. The similarities in the overall blue and orange data 
distributions suggest that loss of information beyond catalog completeness only partially affect the data 
when the focus is on individual VEI classes, likely as a consequence of the relatively small differences in 
eruption volumes within each VEI class thus limited differences in terms of preservation in the geologic 
record. Both the blue and orange symbols show concentration at specific values in particular corresponding 
to VEI class limits, likely reflecting approximations in eruption volume estimates to the nearest reasonable 
low-digit number. That results in a sort of data binning, suggesting that volcanologists approach the diffi-
cult task of estimating eruption volumes through subsequent approximations: the VEI is order zero (thus 
it holds lowest uncertainty), whereas the estimated volume is order one, still implicitly binning the data 
as for the VEI but on a finer mesh. The consequences are substantial for statistical testing, as data binning 
creates artificial steps, well visible in Figure 1, that do not hold any correspondence in the distribution (e.g., 
Marzocchi et al., 2020; Virkar & Clauset, 2014). In similar situations a viable way forward is that of “dirtying 
the data”, involving artificial data distribution around their nominal value so to keep the overall distribution 
while smoothing small-scale artifacts (e.g., van Leeuwen et al., 2019). The red symbols in Figure 1 add to 
the data a log-normal distributed random error: each nominal volume estimate is taken as the mean value 
of a log-normal distribution with assumed variance equal to 0.01 (on a log scale, with volumes expressed in 
cubic meters), by accepting only the part of the distribution, normalized to 1, which sits within the range of 
volumes consistent with the original VEI attribution, in agreement with lowest uncertainty associated with 
VEI attribution. Figure 2 graphically illustrates the adopted data dirtying procedure. Further justification to 
keep the dirtied volumes within the bounds of the original VEI attribution is provided in Section 3.2.
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Figure 1.  Distribution of eruption volumes for VEI classes ≥4 (data from the LaMEVE database; only data for which VEI ≤      
3log 4V m  < VEI + 1). (a) 

VEI 4–7 eruptions. The blue symbols and lines are volumes from the database up to catalog completeness (Table 1); many data with same volume attribution 
emerge, especially in correspondence of VEI class limits. Dirtying these data with the procedure described in the text produces smoother distributions, of which 
the red symbols and lines represent one example outcome. Orange symbols include all data beyond catalog completeness. The thin black lines are theoretical 
power-law distributions, constrained within the corresponding VEI class (as for the data), with slope parameter k from right to left equal to 1.95, 2.30, and 
2.60. (b) VEI 8 eruptions, blue and red symbols as in panel (a). The magenta line shows an open power-law distribution with k  1.95 (as from Papale, 2018), 
while the thick black line is the same for a truncated power law (truncation at log V  1013 m3). The thin black lines are tapered power law distributions (see 
Equation 3) with CV  2 × 1012 m3 and k from right to left equal to 2.30 and 2.60.
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The distribution of the dirtied red symbols in Figure  1a is similar to 
that of the blue (and orange) symbols, but the original large steps are 
smoothed down. For comparison, the three thin black lines superim-
posed on the distributions for each VEI class are theoretical (truncated) 
power-law distributions with three different values of the slope parame-
ter corresponding (from right to left) to 1.95, 2.30, and 2.60. Overall, the 
correspondence between the distributions and the data (either dirtied or 
not) appears to reinforce the hypothesis that the continuous volume data 
are in fact power law distributed. Quantitative testing of that hypothesis 
is left to the analysis below, when a global volume distribution is derived 
(see Section 3.1 below).

The case for eruptions with VEI 8, considered in panel (b) of Figure 1, is 
peculiar, as such eruptions are located at the right extreme of the distri-
bution where rare observations due to extremely low frequency, or pos-
sible physical limits to further increase in size, or both of them, result in 
frequencies significantly lower than expected from a power-law distribu-
tion. Note that the LaMEVE database (Crossweller et al., 2012) lists 27 
VEI 8 eruptions (back to catalog completeness in Table 1), but only 15 of 
them are reported in association with an eruption volume consistent with 

that class. In addition to the brief discussion above on inconsistent volume attributions in the database, 
we acknowledge that there are specific open issues in volume (and mass) estimates for such extreme scale 
eruptions. As an example, a recent paper (Takarada & Hoshizumi, 2020) reports a detailed re-evaluation 
of one of such VEI 8 eruptions with inconsistent volume attribution, namely, the 87–89 ka ASO 4 eruption 
from the Aira caldera, Japan. The new estimates raise the volume from 600  km3, as from LaMEVE, to 
930–1,860 km3, in line with its original definition as VEI 8.

Despite recent improved volume estimates such as the one for the Aira eruption, our choice is to not modify 
the database with new or competing volume estimates, rather, refer to it as the current state-of-the-art so 
to ensure full reproducibility of our results. We are aware that the database can be improved and will likely 
be in the future. Accordingly, new analyses reflecting major data updates will likely provide more accurate 
results, as it is always the case in science. We deem reference to a common database as more valuable than 
questionable improvements from its subjective modifications, and consider further developments of the da-
tabase as a necessary major accomplishment reducing the still relevant lag of the volcano community with 
respect to the EU-INSPIRE principles and directive (https://inspire.ec.europa.eu/).

Figure 1b shows in blue symbols the data from the database. The same low-digit approximations and artifi-
cial binning described for VEI 4–7 eruptions clearly emerge, with more than 50% of the data corresponding 
to a volume of exactly 1,000 km3. Data dirtying with the same procedure as for VEI 4–7 eruptions is shown 
by the red symbols. While in its very initial portion the dirtied distribution is not dissimilar from those 
pertaining to lower VEI eruptions, it rapidly departs from open power-law distribution (represented by the 
magenta line in Figure 1b, with a slope parameter close to 2). As discussed above, such a behavior is not 
unusual, on the contrary, it characterizes many other natural power law distributed phenomena, including 
earthquakes, tsunamis, and floods (Geist & Parsons, 2014). In all such cases, deciding if the deviation from 
the power law is just due to under-sampling of exceedingly rare events, or if it is real, for example, due to 
the existence of some physical limitations preventing the occurrence of events with larger size, is nontriv-
ial. In the present case, an evaluation is done a-posteriori, requiring the arguments and analysis illustrated 
in Section 3 below. We anticipate here that an open power-law distribution (i.e., assuming that the quick 
departure from power-law distribution in Figure 1b is entirely due to under-sampling) would give us the 
chance to observe one VEI 9 eruption (volume > 10,000 km3) on average every about 3 million years. Given 
the presently accessible geological record, and observing that we do not have notice to-date of any VEI 9 
eruptions on Earth, it seems plausible that such monstrous eruptions are limited by some physical reason 
causing the observed deviation from open power-law distribution. Accordingly, we employ here a tapered 
power-law distribution, also employed for other power law distributed natural phenomena, of the form 
(Kagan & Schoenberg, 2001; Vere-Jones et al., 2001; Geist & Parsons, 2014):
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Figure 2.  Examples of data dirtying for volumes with nominal value 
reported besides the corresponding curve.

https://inspire.ec.europa.eu/
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where CV  is a “corner volume” above which the distribution departs from the log-log linear trend of the pow-
er law. With respect to a truncated power law, which assumes an upper limit to the size of the events (e.g., 
Corral & Gonzàles, 2019; Kagan, 2002), the tapered power law is less strict as it does not prohibit very large 
event size above the available observations, but it significantly reduces the likelihood of their occurrence. 
In practical terms, truncated and tapered power laws produce the same distribution over most application 
cases, but the latter has the conceptual advantage that it does not imply any strong assumption about the ex-
istence of a physical size limit. The exponential term in Equation 3 becomes quickly negligible for volumes 
smaller than the corner volume; accordingly, Equation 3 essentially describes a power-law distribution be-
low CV , and a more rapidly decaying distribution above it. According to Frank (2009), an exponential term 
causing the PDF (and survivor) to approach zero more rapidly than for a pure power-law distribution, is the 
most natural and most likely form for power law-like distributions from the real world. Figure 1b reports, 
for illustrative purposes only, two tapered power-law distributions (thin black lines) obtained with a corner 
volume of 2,000 km3 and slope parameter, from right to left, of 2.3 and 2.6. The thick black line in the same 
panel is instead a truncated power-law distribution, with truncation volume at 10,000 km3.

2.2.  Data Analysis for Small Scale Eruptions With VEI = 0–3

Obtaining a volume distribution for eruptions with VEI in the 0–3 range is far less straightforward than for 
larger VEI eruptions, for the two reasons that (i) no clear relationship emerges for the discrete frequency 
distribution of VEI 0–2 eruptions (Papale, 2018), and most importantly (ii) the volume of VEI 0–3 eruptions 
is not reported in the reference databases. In fact, the LaMEVE database, which reports volumes, deals with 
only large explosive eruptions with VEI 4+, while GVP (the Global Volcanism Program database of the 
Smithsonian Institution, https://volcano.si.edu) reports low VEI eruptions but does not include eruption 
volumes. The original paper introducing the VEI scale (Newhall & Self, 1982) associates a volume range 
to each VEI including the smallest ones. However, a quick check in the literature immediately reveals that 
elements other than eruption volume are largely employed when associating a VEI value to small eruptions. 
Clear examples include the 2014 Bardarbunga eruption at Holuraun, Iceland, with an estimated volume 
between 1.2 and 1.75 km3 (Bonny et al., 2018; Dirscherl & Rossi, 2018; Coppola et al., 2019) as for explosive 
VEI 5 eruptions, but with assigned VEI 0 in GVP as a reflection of its quiet effusive evolution; many VEI 
0–2 eruptions from the Kilauea volcano, Hawaii, with volumes up to >100 Mm3 (Macdonald et al, 1983); 
and conversely, other eruptions with small volume but substantial explosive character thus assigned a VEI 
value of 3. The latter cases include the phreatic eruption at Mount Ontake, Japan, in 2014, with estimated 
volume barely reaching 1 Mm3 (Takarada et al., 2016), as well as many dome-collapsing, small volume py-
roclastic flow-forming eruptions. In substance, while there is essential (although not complete) correspond-
ence between assigned VEI and erupted volume for explosive eruptions with VEI 4+, for smaller eruptions 
with VEI 0–3 the situation is much more complex, as VEI assignments appear to include considerations 
on the effusive versus explosive character and, likely, some degree of subjectivity. As additional examples, 
the May 2008 to July 2009 eruption of Mount Etna, Italy, produced an estimated volume of 68 Mm3 (Harris 
et al., 2011) or 57 Mm3 (Proietti et al., 2020) and is reported in GVP as VEI 1; while the about 6 months long 
1984 eruption at the same volcano, which produced a comparable volume of 46 Mm3 (Harris et al., 2011), 
is associated to VEI 3.

To derive a description of the erupted volume distribution for VEI 0–3 eruptions, we have analyzed an 
ample literature and constructed a database of VEI versus erupted volume (provided as Table  S1). Our 
database is not intended to be exhaustive, what would require far more efforts similar to those that led to 
the LaMEVE database. Its scope within this study is that of supporting the identification of a viable rela-
tionship, if one exists, that may lead to identify on a first approximation a volume distribution for low VEI 
eruptions. There are many volume estimates available from the literature for low VEI eruptions, but only 
part of them (roughly 2/3 of those that we found) could be used here and contributed to our database, essen-
tially because establishing a relationship with low VEI eruptions as they are reported in the GVP database is 
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often not possible. That reflects one other major issue with low VEI eruptions, which requires a discussion 
on how such eruptions are identified and classified in the database.

Many low VEI eruptions are dominantly effusive and occur at frequently erupting, open system volcanoes. 
Their dynamics are such that in many cases an objective definition of eruption start and end is not straight-
forward, implying a degree of subjectivity in even identifying individual eruptions. That is a common sit-
uation for volcanoes with activity characterized by events occurring within a sequence lasting for years or 
decades. An extreme case is that of the Stromboli volcano, Aeolian Islands, Italy (Calvari et al., 2012; Gi-
udicepietro et al., 2020). After a major paroxysm in 1932, the volcano entered a state characterized by small 
Strombolian events, typically occurring every few to a few tens of minutes, each discharging from a few to 
a few hundred m3 of scoria. This activity is punctuated by major explosions with a frequency of a few per 
year, up to rare paroxysmal events (four recorded in the current century) typically discharging a few tens of 
thousands m3 of scoria. Identifying in the database every single explosion from the volcano as an individual 
eruption would be impractical if not impossible. Accordingly, the GVP database reports the entire period 
from 1934 to date as one single eruption, associating such a long, spurious event to VEI 2.

The extreme example above is not dissimilar from others at many other volcanoes. The entire period at 
Mount Etna from September 2013 to date (December 2020) is reported in GVP as just one eruption with VEI 
2. However, many individual eruptions from Mount Etna are described and analyzed in the literature (and 
sometimes, their individual volumes are estimated) in the same period. All of such cases force us to consider 
the meaning of “eruptions” as they appear in the databases, and consequently, as they can be described by 
a distribution. The following discussion may also apply, at least partly, to some VEI 4+ eruptions, but it is 
reported here because it overwhelmingly impacts low VEI eruptions.

Obviously, whatever the database (for low VEI eruptions, the GVP database) means for “eruption,” that is 
necessarily what we refer to, when using that database as a basis for statistical analysis. Accordingly, when 
we say that the average inter-event time of eruptions with VEI 1 is about 26 days (Table 1) we refer to VEI 
1 eruptions as they are identified and cataloged in the GVP database. We do not have inter-event times of 
minutes like those characterizing subsequent Strombolian events at Stromboli, because those events are 
not classified as individual eruptions in the database. Accordingly, in associating a volume distribution to 
low VEI eruptions we only refer to eruptions as they are identified in the GVP database. For all those cases, 
some of which recalled above, for which we can find a volume estimate but cannot associate it to a defined 
eruption with assigned VEI in the database, we are forced to reject that volume estimate and not use it in our 
analysis. In this way, we are entirely consistent: the rate parameters in Table 1 describing the exponential 
distribution of inter-event times for each VEI class of eruptions, the frequency of the various VEI classes of 
eruptions, and the global, continuous volume distribution that we seek here, all make reference to the same 
“eruptions” as they are identified and classified in the databases.

At the end, we have found 151 eruptions with estimated volume and VEI in the 0–3 range, for which an as-
sociation can be established between the eruption as it is identified in the GVP database and assigned a VEI 
in-there, and the corresponding volume estimate from the literature. The database, referred to here as the 
LV (for Low VEI) database to distinguish it from the GVP and LaMEVE databases, is reported in Table S1. 
It is important to remark that the sampling that led to the LV database can be considered a random one for 
the scopes of this study, and in particular, it can be considered independent from the eruption volume. In 
fact, (i) our selection is exclusively based on the availability of a volume estimate and possibility to establish 
a 1:1 relationship with an event listed in GVP and having a VEI assignment; and (ii) volume estimates for 
low VEI eruptions that can be found in the literature do not appear to bring in major biases, for example, 
by overweighting larger eruptions or similar; rather, the production of a volume estimate seems to have 
been motivated more by the availability of adequate conditions reducing uncertainties thus allowing the 
application and testing of novel or more refined techniques, and secondarily, by the need of quantifying a 
few cases which had some significant impact on people and infrastructures (not necessarily associated with 
particularly large volumes; e.g., the above cited, low volume Mount Ontake eruption in 2014).

Figure 3 shows the cumulative and survival volume distributions for the VEI 0–3 eruptions from the LV 
database. As from the discussion above, different VEI eruptions overlap to each other in terms of erupted 
volumes, except for the largest volumes within each VEI class. Black symbols refer to all eruptions taken 
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together, either as they appear in the database (open symbols and dashed line) or by weighing (solid sym-
bols and line) each VEI eruption by the corresponding VEI frequency from Papale (2018). The very similar 
distributions shown by the open and solid black symbols suggest that differences between VEI frequencies 
and their frequency of appearance in the LV database, combined with volume distributions for eruptions 
corresponding to individual VEI classes (also reported in the figure), do not cause major uncertainties in 
overall VEI 0–3 volume distribution.

The data in Figure 3 reveal some organizations that can be exploited with the aim of defining a repre-
sentative distribution. At a first sight, the trends in panel (a) (CDF) seem to suggest a distribution close 
to log-normal. However, the head of the distribution, on the left, is much wider than the tail of the distri-
bution, on the right; in fact, with respect to the median value (CDF = 0.5), the left side of the distribution 
covers about 3.5 orders of magnitude in volume, whereas the right side covers only about two orders of 
magnitude, suggesting that the frequencies on the tail of the distribution decay more rapidly than for a 
log-normal distribution. That is better evidenced by the plot of the survivor in panel (b), showing (on a 
log-log scale) close to linear trends for volumes above roughly some tens of Mm3. Such a linear trend may 
suggest a power-law distribution; however, the coda of log-normally distributed data may also mimic 
a linear trend, and clear discrimination is often a difficult issue requiring data quality, accuracy, and 
completeness that our LV database hardly guarantees. For the moment we do not make any assumption 
on the tail of the distribution, and deserve instead additional evaluations for a later moment, when we 
attempt to derive, from the data presented so far, an overall distribution for eruption volumes from VEI 
0 to 8 (see Section 3 below).

It is worth noting that the separate distributions for VEI 0 and 1 eruptions in Figure 3 appear to be sensibly 
different from those of the larger eruptions with VEI 2 and 3; in fact, for a given value of the CDF in panel 
(a), the distributions for VEI 0 and 1 eruptions are systematically shifted toward smaller volumes with 
respect to the distributions for VEI 2 and 3 eruptions. Although all eruptions largely overlap in terms of 
volumes, that shift seems to suggest that the erupted volume maintains some relevance when attributing a 
VEI to also low VEI eruptions. In any case, to determine an overall distribution of eruption volumes, such 
differences do not require any differential treatment. In fact, the individual VEI distributions sum up in the 
statistically equivalent distribution provided by the black solid symbols in Figure 3; for the sake of evaluat-
ing an overall volume distribution, the four individual ones (associated to their respective frequencies) or 
the ensemble one (associated to the sum of the individual frequencies) provide the same information and 
lead to the same results. We have checked that, by repeating the entire procedure described in this paper 
with either one single or four separate distributions for VEI 0–3 eruptions; as expected, the results are 
indistinguishable.
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Figure 3.  Distribution of eruption volumes for VEI 0–3 eruptions. Data from the database provided in Table S1 (151 data in total, VEI 0: 45, VEI 1: 24, VEI 2: 
39, VEI 3: 43). (a) Cumulative distributions. (b) Complementary cumulative (survivor) distributions. Weighting for VEI 0–3 eruptions is done with reference to 
the corresponding class frequency from Papale (2018).
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3.  Data Processing
As it is illustrated above, the available eruption volume data appear to display an initial part, on the low-vol-
ume extreme, characterized by log-normal distribution of volume frequency, followed by a power-law 
distribution above a certain volume. Close to the large-volume extreme, in correspondence of VEI 8 su-
per-eruptions, the observed frequency decays more rapidly than for a power law, and a tapered power-law 
distribution (Equation 3) appears to better describe the observations. To complete the description of the 
global volume distribution of subaerial eruptions, we must determine the parameters describing the distri-
bution. This is the objective of this section.

3.1.  Data Merging

The first issue is to determine the actual overall distribution of the volume data in Figures 1 and 3. Those 
data relate to each other through VEI frequencies determined by the rate parameters in Table 1:







i
i

i
f� (4)

where i is the rate parameter of the thi  VEI class, and the sum is extended to all VEI classes. The distribu-
tions in Figure 4a are obtained by starting, for each VEI class, from the value of the cumulative frequency 
distribution before that class (equal to zero for VEI 0–3 eruptions), and adding a contribution from each 
data point equal to the frequency of the corresponding class divided by the number of data in that class. 
The red and orange circles in Figure 4a refer, for the VEI classes 4–8 whose data derive from the LaMEVE 
database, to only the data with erupted volume attribution consistent with the corresponding VEI class. 
The blue and green circles in Figure 4a include the data with inconsistent volume attributions (see the 
discussion above). For both sets of data, the orange and green symbols indicate the subset of VEI 4+ erup-
tions with volume in a range superimposing to that of VEI 0–3 eruptions. Such a superposition involves all 
of the VEI 4 and most VEI 5 eruptions. Although an overall trend is already visible for both the blue and 
green data points on one side, and the red and orange points on the other side, the ample superposition of 
volumes does not allow direct treatment of the data in Figure 4a. Instead, those data must be recast into a 
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Figure 4.  Global distribution of eruption volumes for VEI 0–8 eruptions. Data from the LaMEVE (VEI ≥ 4) and LV (VEI 0–3) databases. (a) Distributions 
obtained by maintaining separated the eruptions belonging to different VEI classes. The red and orange symbols on one side, and the blue and green symbols 
on the other side, refer to data with only consistent, or including inconsistent, respectively, volume attribution in the LaMEVE database. The orange symbols 
belong to the red distribution, with different colors used to evidence the volume range over which eruptions with VEI 4 and 5 overlap with eruptions with VEI 
0–3. The green symbols have the same meaning, with reference to the blue distribution. The slopes of the two overlapping branches are significantly lower 
than for the eruptions with larger volumes. (b) Same as for panel (a), after reconstruction of the global distributions through Equations 5–8. For both the red 
and blue data sets, after an initial close-to-log-normal portion the distribution displays a unique slope that satisfactorily approximates a (tapered) power-law 
distribution (p-values reported in the figure). Red data points in panel (b) (including the orange ones in panel (a)) refer to 336 eruption cases (151 for VEI 0–3 
from the LV database, the rest from the LaMEVE database: 80 for VEI 4; 36 for VEI 5; 24 for VEI 6; 31 for VEI 7; 14 for VEI 8). Blue data points in panel (b) 
(including the green ones in panel (a)) refer to 373 eruption cases (151 for VEI 0–3, 89 for VEI 4; 40 for VEI 5; 26 for VEI 6; 40 for VEI 7; 27 for VEI 8).
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distribution corresponding to continuously increasing volume, implying that contribute to the CDF from 
each individual eruption in the figure must be consistently re-determined with reference to volume inter-
vals instead of VEI classes. This is done through Equations 5–8:
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In the above equations, iw  is the contribution to the CDF by the thi  data point; n is the number of data of the 
thj  VEI class within any given volume interval; N  is the total number of data within the thj  VEI class; and f  

is VEI class frequencies from Equation 4. It can be verified that   1 1NTOT
iiCDF w , where TOTN  is the total 

number of volume data for each one of the red plus orange or blue plus green distributions in Figure 4a.

Once the data are re-organized through Equations 5–8 into a continuously increasing volume sequence, the 
distributions in Figure 4b are obtained. These distributions do not make any reference to the VEI classes 
from which they are derived, and they overcome the issue of overlapping volumes in Figure 4a. Accordingly, 
the complete set of blue + green data of panel (a) is now reported in blue in panel (b), and the reduced set of 
red + orange data in panel (a) is reported in red in panel (b). The overall volume trend emerges with much 
increased evidence from Figure 4b. Remarkably, the entire data sets (either red or blue) align close to a 
unique straight line above a volume of order 100 Mm3 up to approaching the largest volumes several orders 
of magnitude higher. That was not visible from the raw data plots in Figure 4a, where instead the eruptions 
with volume between roughly some tens of Mm3 and some tens of km3 appeared to distribute along a sig-
nificantly lower slope with respect to the higher volume data. A-posteriori, such a remarkably unique slope 
over so many orders of magnitudes suggests no major flaws in representativeness within the LV database.

It should be stressed that the distributions in Figure 4b involve exclusively (a) knowledge of the rate param-
eters and catalog completeness for the different VEI classes from Table 1, and b) use of volume data from the 
LaMEVE plus LV databases (with the GVP database employed in the construction of the LV database). As 
discussed above when introducing Figure 1a, the LaMEVE data involve some degree of artificial binning, 
well visible in both panels (a) and (b) of Figure 4 as a vertical sequence of data points corresponding to same 
eruption volume. Binning is known to be an issue when extracting a distribution from the data, as it results 
in artificial features which do not have any correspondence in the real distribution. Specific techniques to 
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test the likelihood of a power-law distribution and determine its parameters have been proposed for binned 
data sets (e.g., Virkar & Clauset, 2014). However, those techniques strictly require knowledge of the struc-
ture of binning, as well as non-overlapping bin classes. In the present case, we can only infer that some 
artificial binning affects the data as a result of order of magnitude estimates and low-digit approximations 
when evaluating eruption volumes, but there is not any standard or reference for eruption volume binning 
emerging from Figures 1a, 4a, and 4b. Instead, that binning reflects complex factors involving unknown 
levels of accuracy as well as a degree of subjectivity by very many different researchers who estimated 
eruption volumes by employing a variety of volume estimation techniques, from largely approximated to 
more sophisticated. The only level of data binning for which the binning structure is defined with no class 
overlapping, at least to an extent, relates to the VEI scale and large explosive eruptions with VEI 6 or larger. 
Such a limited range, summed up with failure of the simple power-law distribution for VEI 8 eruptions (Fig-
ure 1b), makes the application of the existing techniques to treat binned data distributions poorly effective 
even at the level of the macroscopic VEI scale classification, and definitely not applicable at the refined level 
of the present analysis.

The uncertainties in both eruption volume assignment and the tendency to bin the data in correspondence 
of the lowest digit volume estimate effectively alter, to an uncertain extent, the eruption volume distribu-
tions in Figure 4. However, the many orders of magnitude covered by data along an approximated straight 
line in the log-log plots in Figure 4b reduce the relevance of localized data binning, and allow the applica-
tion of statistical methods appropriate for continuous data distributions. These include “dirtying” the data 
so as to statistically redistribute them according to some estimate of their uncertainty, as it is discussed 
above (see Figure 2), and require an appropriate technique to determine the parameters of the power-law 
distribution. Such a technique is illustrated in the following.

3.2.  Data Fitting

The first relevant consideration to take into account is that establishing whether a given distribution gen-
uinely follows a power law, and extracting the parameters of the power-law distribution, is often a difficult 
exercise, even with the most accurate and reliable data. As a matter of fact, that is to date an open and 
very active field of research (e.g., Broido & Clauset, 2019; Clauset et al., 2009). Best-fit methods based on 
least-squares minimization or similar are known to be inadequate for power-law distributions, as such dis-
tributions do not hold any of the required features for their application such as normally distributed errors 
or uncertainties (Clauset et  al.,  2009). The classical approach from Kolmogorov-Smirnoff (KS) statistics 
involves finding the distribution that minimizes the maximum distance KSD  between the CDF of the data 
and that of the distribution:

   


 
min

maxKS dat disx x
D CDF x CDF x� (9)

where the subscripts dat and dis refer to the data and the distribution, respectively, and the calculation is 
extended over the range of  minx x  for which the power law holds. The KS approach at Equation 9 was 
employed in Papale (2018) to determine the slope of a power law describing the continuous volume dis-
tribution that best approximates the frequency distribution of the discrete VEI classes 3–8. KS statistics 
provides a very effective, powerful method to extract power law (and others) distribution parameters, often 
outperforming other empirical distribution function statistics such as Anderson-Darling, Cramer-von Miss-
es, and Watson statistics (Safari et al., 2018). All of these statistics apply to data representing an outcome 
or observation from some unknown distribution, that the statistics allows us to determine in terms of its 
likelihood and corresponding parameters. However, the case in this work provides a different exercise. In 
fact, as it is explained above when introducing Figure 1, managing a true distribution that includes obser-
vations of large explosive eruptions is beyond the possibilities offered by the available data. Such a data set 
should include tens of thousands of observations to include even one single VEI 7 eruptions, and millions 
to include one VEI 8 eruption (see Table 1). We are several orders of magnitude far from such a database. 
Still, we can work it out: instead of being the result of direct observations, the distributions in Figure 4 
are reconstructed from known rate parameters corresponding to individual VEI classes, as detailed above. 
Through Equation 4 knowledge of VEI recurrence is converted into VEI frequency, and with Equations 5–8 
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that is in turn transformed into volume frequencies. The key point here is that the robustness of the initial 
information does not necessarily deteriorate with size thus with rareness of the events, because the obser-
vational window is not the same for all events, rather, it greatly expands with increasing size thus rareness 
(Table 1). As a consequence, the fundamental assumption implicit in the use of Equation 9 from classical 
KS statistics, that the information on progressively less frequent observations on the right of the distribution 
is less informative of the true distribution, does not (necessarily) hold for Figure 4, as it would instead, if 
Figure 4 was simply a plot of the millions of observations necessary to achieve a minimum number of large 
eruptions from which to extract a highly uncertain estimate of their frequency.

The concepts above are illustrated in Figure 5. The data points in panel (a) of Figure 5 are obtained from 
assumed power-law distributions with exponent k  equal to 2.50, and three different values of minV  (see Equa-
tion 2) so to separate the distributions in the graph and visualize them properly. From left to right, we have 
produced 10,000, 1,000, and 100 power law distributed data. For each distribution, the black line (barely 
visible close to or below the blue one) represents the true distribution from which the data are extracted. 
Assume now we only have the data and want to retrieve the unknown parameters of the power-law distri-
bution. The blue lines represent the results obtained from KS statistics. In all cases, the true distribution 
is retrieved with high accuracy, especially when the data points are many. In fact, those data genuinely 
represent power law distributed outcomes, and in such a case KS statistics is very effective in quantifying 
the underlying distribution. It is relevant, for the present discussion, to note how KS works: it gives highest 
relevance to the central part of the distribution (left portion of the distributions in Figure 5a), while com-
pletely neglecting the shape of the low-frequency tail according to its poor representativeness compared to 
the bulk of the distribution. That is fully appropriate for the case in Figure 5a, where the data are extracted 
from a distribution, therefore, the low-frequency tail is poorly representative of the distribution itself.

Panels (b) and (c) in Figure 5 illustrate the case for the eruption volume data in Figure 4b. The data points 
in these panels are two statistically equivalent outcomes from the red set of data in Figure 4b, after dirtying 
as from Figure 2. The blue lines represent the corresponding distributions obtained through KS statistics 
(actually, the procedure involves finding consistent distributions for the initial log-normal and subsequent 
power-law sections of the distribution; that procedure, employed for the fits in Figures 5b and 5c, is il-
lustrated below). Different from the case in panel a, now we want the fit to not give the right side of the 
distribution minimum relevance; after all, the information on, for example, eruptions with volume larger 
than 1,000 km3 summarizes 2.6 million years of reconstructed Earth volcanism, and is not necessarily less 
robust than the information on eruption volumes between, say, 100 Mm3 and 1 km3, that are much more 
frequent but also much less preserved, thus much less confidently known from the geological record. From 
the KS fits (blue lines) in panels 5(b and c), it clearly emerges that by giving maximum relevance to the 
central portion of the distribution, KS fails to adequately describe the tails, ending up in frequencies for the 
large explosive eruptions that significantly differ, by up to more than one order of magnitude, from those 
expected by the corresponding rate parameters.

To deal with the distributions in Figure 4b, and obtain appropriate power-law parameters, we must there-
fore rely on a different approach that equally weighs the entire power-law distribution including its tail. 
This is done here by referring to a distance different from that used for KS statistics, and corresponding to 
the relative distance computed along the survivor function:

   
 
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S x CDF x CDF x

� (10)

where the subscript RDS stands for “Relative Distance on Survivors,” and S indicates the survivor function. 
By referring to a relative instead of absolute distance, Equation  10 does not weigh off the low-frequen-
cy portion of the distribution where absolute distances are orders of magnitude lower than those on its 
high-frequency portion; and by normalizing the distances on the value of the survivor, very small distances 
on the tail of the distribution are as important as correspondingly larger distances on the bulk of the dis-
tribution. As a matter of fact, by equally weighing the distribution all over its length, Equation 10 provides 
an optimal criterion for a situation like the one in Figure 4b, where the frequencies corresponding to the 
different sectors of the distribution do not derive from counting the corresponding observations, but they 
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Figure 5.  Comparison between the Kolmogorov-Smirnov (KS, Equation 9) and Relative Distance on Survivors (RDS, 
Equation 10) methods to constrain the parameters of a power-law distribution. (a) The sample represented by the 
symbols has been obtained from the power-law distribution represented by the black line (nearly overlapped by the 
blue one). The KS method (blue) reconstructs the power law nearly exactly, whereas the RDS method (red), which 
equally weighs the bulk and the tail of the distribution, does not. (b) and (c) Two examples of applications of the KS 
and RDS method to the problem in this work, where the data do not represent individual observations, and the tail of 
the distribution is as important as the bulk of the distribution. In such a case the KS method results in distributions that 
largely diverge from the tail of the distribution, whereas the RDS method provides a satisfactory approximation all over 
the distributions. Panel (b) includes a comparison between the use of RDSD  at Equation 10 (dashed red line), and 

RDSD  
at Equations 11 and 12 (solid red line). The two quantities provide similar results, but 

RDSD  provides a more balanced 
weighting of data points outlying below and above the distribution.
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are independently known. From Equations 9 and 10, it can be noted that the fundamental property of KSD  
to converge to 0 when the number of observations tends to infinity is also a property of RDSD .

The capability of the quantity RDSD  to properly deal with the situation represented by the eruption volume 
data in Figure 4b is illustrated in Figure 5, where the red lines are obtained by RDSD  minimization (and 
the blue lines, as explained above, by KSD  minimization). For a problem like the one in panel (a) of Fig-
ure 5, where the data do appear with a frequency dictated by the underlying power-law distribution, RDSD  
is clearly not adequate, since weighing the tail as the bulk of the distribution is not legitimate. In such a 
case, classical statistics from KS is far superior. On the contrary, for the present case represented in panels 
(b) and (c), minimization of RDSD  adequately accounts for the distribution all over its entire length. A slight 
modification of RDSD  provides more balanced account of data outlying above or below the distribution:
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which corresponds to:
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The solid red lines in Figures 5b and 5c are obtained by minimization of 
RDSD  at Equation 12, while the 

dashed red line in Figure 5b is obtained by minimizing the quantity RDSD  at Equation 10.

With the criterion provided at Equation 12, the volume data in Figure 4b result in the distributions repre-
sented by the solid lines in the same figure, with the red line referring to the red data points (reduced data 
set, see above), and the blue line referring to the blue data points (complete data set). In both cases, the 
p-value has been evaluated through the statistics represented by the quantity 

RDSD : 1,000 samples each with 
the same size as the data have been produced from the distribution, with the p-value quantity representing 
the proportion of samples for which the statistics is at least as bad as for the data. The results are reported 
in Figure 4b for both the red and blue data and distributions, showing that in both cases the null hypothesis 
that the data are drawn from the distribution cannot be rejected at usual confidence thresholds (e.g., 5%). 
That is a particularly relevant result as it is obtained over data that involve artificial, unstructured binning, 
as it is largely discussed above. On the other hand, the wide range over which the power-law distribution 
holds reduces the relevance of localized artifacts, as it was anticipated above. The algorithm to extract in a 
single, consistent procedure the power law and log-normal parameters describing the entire volume distri-
bution in Figure 4b is the following:

1.	 �Refer to a tapered power law with survivor function expressed as:
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�where 0V  is the intercept of the power law on the horizontal axis corresponding to a frequency of 1. Note 
that such a power law does not reflect any real distribution, as any power-law distribution is necessarily 
truncated on the left thus it never gets to a frequency of 1. In fact, Equation 13 describes the distribution 
only above minV . However, writing in terms of a purely mathematically defined intercept 0V  ensures that 
the frequency at minV  computed on the log-normal and on the power law is the same, simplifying the 
mathematical description of the whole distribution. Use of 0V  in the exponential term does not modify 
the distribution, as the exponential term is only relevant when V  approaches CV  which is many orders of 
magnitudes larger than either 0V  or minV .

2.	 �Find the k, 0V , CV  triplet that minimizes 
RDSD  above the minimum volume minV  corresponding to the 

intersection between the power law and log-normal distributions.
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3.	 �For each k, 0V , CV  triplet under consideration within the minimization procedure, the log-normal distri-
bution is found for the data with  minV V , by scanning a wide range of candidate mean values , each 
time with variance  2 from maximum likelihood estimator:

 


 


2
12

logK
i V

K
� (14)

where the sum is extended to the K  data with volume less than current minV . The pair of ,   describing the 
log-normal distribution for the K  data with  minV V  is determined by KS statistics (minimization of KSD  at 
Equation 9).

The survivor function  1S CDF  for the distribution of volcanic eruption volumes is therefore defined 
by the following:





  
         

log1: 1
2 2

min
V

for V V S erf� (15)

  : . 13minfor V V Eq� (16)

Three-variable (k, 0V , CV ) minimization of 
RDSD  at point (2) is carried out through the Powell's direction-set 

method (Press et al., 1992), appropriate for the present problem as it does not require knowledge of the 
derivatives of the function being minimized. To prevent convergence toward secondary minima, which 
are found to exist in the vicinity of any initial guess of 0V , we perform the minimization over a sufficiently 
ample range of guessed 0V  values, which are scanned with progressively decreasing step until finding the 
triplet (k, 0V , CV ) which results in the absolute minimum value of 

RDSD .

The procedure above has been employed to determine the distributions corresponding to the red and blue 
lines in Figure 4b, which refer to the data as they appear in the database, processed with rate parameters 
corresponding to the mean value for each VEI class (Table 1) to move from the representation in Figure 4a 
to the one in Figure 4b through the set of Equations 5–8. As it is largely discussed above, that procedure 
does not remove the effects of data binning, still clearly visible from the distributions of data in Figure 4b. 
On one side, the results of the p-value analysis reported in Figure 4b suggest that a power-law distribution 
above a given minV  is a statistically robust assumption even in the presence of unstructured, localized data 
binning. On the other side, the artificial features introduced by data binning, and the uncertainties they im-
ply on eruption volume estimates, are expected to affect the computed distributions, to an extent that must 
be estimated. To do so, we further elaborate the procedure above:

a)	 �Randomly select a set of i values for use in Equation 4, according to normally distributed uncertainty 
of rate parameters as from Table 1.

b)	 �“Dirty” the data as in Figure 2.
c)	 �Execute points 1 to 3 above. Store the results for statistical analysis, then repeat from point a) until a 

sufficiently large number of statistically equivalent distributions is obtained.

The procedure above has been applied to the reduced set of data represented by the red symbols in Fig-
ure 4b. In fact, the blue data points, which include volume estimates inconsistent with the assigned VEI 
class (and often inconsistent with the corresponding eruption mass estimates), bring about substantially 
increased uncertainties that impact the database to a significant extent. Again, it should be recalled what is 
the meaning of the data points in Figure 4: they do not just represent individual observations, rather, they 
are a distribution reconstructed by means of the rate parameters for each VEI class. As a consequence, a few 
inconsistent data have a significant effect on the distribution. In fact, a few volume data corresponding to, 
for example, VEI 4 but having a volume 10 times larger than expected for VEI 4 eruptions, result in signif-
icantly increased overall frequency of such larger eruptions when the overall distribution is reconstructed 
through Equations 5–8. The effects are visible when comparing the distributions of the red and the blue 
data points in Figure 4b, with the latter showing significantly larger oscillations around a common trend. 
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Although a statistically significant p-value is still obtained, the larger overall uncertainties associated with 
the blue data points are expected to result in less confident final estimates. For that reason, only the more 
confident, more internally consistent red data points are used for the analysis from here on.

The arguments above provide additional justification to the employed dirtying procedure exemplified in 
Figure 2, whereby each volume estimate is dirtied without trespassing the volume boundaries of the cor-
responding VEI class. One alternative possibility would consist in arbitrarily changing the VEI attribution 
when the dirtying procedure results in a VEI class jump. However, we prefer not to change VEI attributions, 
according to the view, discussed above, that VEI estimates represent a more robust categorization with 
lower associated uncertainty, with respect to generally more uncertain volume estimates. Translated in 
practice, that means to assume a view like the following one: when volcanologists assign, for example, a 
volume of exactly 109 m3 to an eruption with VEI 5 (as it is often the case, see Figure 1), they are meant to 
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Parameter Mean value 5th percentile 25th percentile 50th percentile 75th percentile 95th percentile

k 2.491 2.416 2.461 2.491 2.522 2.567

0V , Mm3 46.09 30.43 38.23 45.29 53.96 64.17

minV , Mm3 169.0 87.56 119.9 158.3 208.8 270.1

CV , km3 1,973.7 1,727.2 2,003.3 2,004.6 2,006.8 2,035.7

μ, log(m3) 7.266 7.229 7.250 7.267 7.282 7.304

σ, log(m3) 0.916 0.897 0.907 0.914 0.924 0.937

minVCDF 0.843 0.772 0.813 0.847 0.873 0.895

,lnKSD 0.402 0.250 0.305 0.364 0.490 0.643


,RDS plD 0.730 0.520 0.620 0.721 0.822 0.983

For each parameter, the variance is given by the diagonal of the covariance matrix in Table 3. The quantities that are 
truly obtained by minimization correspond to the power-law parameters k, 0V , and CV , and the log-normal parameters 
μ and σ. All other parameters follow thereby, and are reported here to evidence their variability. Similarly, maximum 
distances on the log-normal and power-law sections of the distribution are reported to evidence their variability.

Table 2 
Parameters of the Global Eruption Volume Distribution

Covariance and correlation are reported below and above, respectively, the diagonal step-wise line. KS,lnD  and *
RDS,plD  are maximum distances 

at Equations 9 and 12, respectively, for the log-normal (ln) and power law (pl) sections of the distribution. minVCDF  is the value of the CDF at 
minV . The values on the diagonal of the matrix correspond to variances. The quantities that are truly obtained by minimization correspond to 

the power-law parameters k, 0V , and CV , and the log-normal parameters μ and σ. All other parameters follow thereby, and are reported here to 
evidence their variability as well as their mutual dependencies. Similarly, maximum distances on the log-normal and power-law sections of the 
distribution are reported to evidence their variability as well as their relationships with all other quantities.

Table 3 
Covariance-Correlation Matrix
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refer to at least that volume, likely not too much above it; while if instead 
they assign a volume of 8 × 108 m3 (VEI 4), they imply less than 1 km3, by 
some quantity likely not too different from 200 Mm3. That is, in fact, the 
ultimate meaning of the dirtying procedure illustrated in Figure 2.

The procedure described at points (a) to (c) above, and embracing the one 
at points (1)–(3) above, has been applied with 1,000 repetitions so to ob-
tain 1,000 statistically equivalent estimates of the power-law parameters 
k, 0V  (or minV ), CV , and of the log-normal parameters  and  , describing 
the overall distribution of eruption volumes for subaerial volcanism on 
Earth. The results are illustrated in the following section.

4.  Global Volume Distribution for Subaerial 
Volcanism
Table 2 reports the mean value and percentiles of the parameters describ-
ing the global distribution of eruption volumes, while Table 3 shows the 
computed covariance and correlation between parameters (note that the 
true parameters determined through the above minimization procedure 
are k, 0V , CV ,  and  , while the other quantities reported in Tables 2 and 3 
are either by-product quantities ( minV  and VminCDF , the latter representing 
the value of the total cumulative distribution function at minV ) or they are 
the functions being minimized ( ,KS lnD  and 

,RDS plD  for the log-normal and 
power-law sections of the distribution).

Figure 6 shows a random set of 100 global distributions, out of the 1,000 determined here and used for the 
statistics reported in Tables 2 and 3. The uncertainty is much more significant along the power-law section 
than for the log-normal initial section of the distribution, largely reflecting the uncertainty in the identifi-
cation of minV , that is, the eruption volume threshold separating the log-normal from the power-law sections 
of the distribution. The scatter is however limited, and the overall distribution is well delineated. Tapering 
of the power-law distribution results in an expected average frequency of about 7 × 10−11 for eruptions with 
VEI 9 or larger. Combined with the rate parameters in Table 1, that results in the expectation of one VEI 
9+ eruption every about 360 million years, consistent with the to-date lack of any known VEI 9 eruption in 
the geological record. As it was anticipated when introducing the tapered power law Equation 3, compared 
to the about 3 million years resulting from the assumption that the deviation from open power law at the 
extreme right tail of the distribution entirely reflects under-sampling, that provides a-posteriori justification 
to the assumption of some right-end truncation and use of tapering.

The mean (and median) value of the power-law slope coefficient k, reported in Table 2, turns out to be 
equal to 2.491, with relatively little variability (the 5th and 95th percentiles are within about 3% of the 
mean value). Figure 7a shows that the fitted k  values are normally distributed (the variance of k  as well as 
of any other quantity in Table 2 is reported in the corresponding value along the diagonal of the covariance 
matrix in Table 3). The k  value determined here for the continuous eruption volume distribution is sensibly 
higher than the value of 1.95 obtained in Papale (2018) for the distribution of the VEI classes. A look back 
at Figure 4 explains why. In the unprocessed distribution in Figure 4a, the low VEI classes 3–5 along the 
power law distribute according to a lower slope than for the higher VEI classes in the same figure or for the 
processed distribution in Figure 4b. Thus, the KS estimator employed in Papale (2018), which over-weighs 
the high-frequency classes with respect to the low-frequency ones as largely discussed above, results in low 
value of k. It is only after processing the volume distribution data through Equations 5–8 that a consistent 
continuous distribution of eruption volumes emerges (Figure 4b), showing that the low slopes in the vol-
ume range roughly between 107 and 1010 m3 is an artifact due to superposition of volumes for eruptions 
within the same volume range but attributed to different VEI classes.

Figure 7b shows that the distribution of 0V , the intercept of the power law with the frequency 1 axis, is also 
roughly normally distributed, but with a spread larger than for k  (in this case, the 5th and 95th percentiles 
are within 40% of the mean value). k  and 0V  are positively correlated (Table 3 and Figure 7c): in fact, a larger 
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Figure 6.  Ensemble of 100 randomly selected global distributions of 
eruption volumes, out of the 1,000 obtained here (see text). The thick black 
line is the distribution obtained by employing mean values from Table 2.
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value of 0V  implies a shift to the right of the initial part of the power-law distribution, which is compensated 
by a higher slope.

The value of minV  is of particular relevance, as that represents the lower cutoff for the power-law distribution, 
therefore, it may embed some physical meaning for the occurrence and dynamics of volcanic eruptions. As 
for 0V , and basically for the same reason, minV  is also positively correlated to k  (Table 3). However, the rela-
tionship between 0V  and minV  is a bit more complex than expected (Figure 7d), and so are the relationship 
between minV  and VminCDF , and the distribution of VminCDF  (Figures 7e and 7f). In all such cases, the points 
in the graphs reveal the existence of hiatuses. In particular, the value of the CDF (or its complementary S) at 
the intersection between the log-normal and power law distributed sections, VminCDF , does not take contin-
uous values, rather, it evolves step-wise, with the width of each hiatus increasing with decreasing VminCDF . 
Such peculiar trend appears to relate to the methodology set up to obtain the global distribution parameters. 
In fact, the fitting procedure described above treats together the power law and log-normal sections of the 
distribution to maintain consistency in the overall distribution. Within a unique fitting procedure, all of 
the quantities in Tables 2 and 3 are determined altogether, including the limit between the two sections 
represented by minV  and its corresponding VminCDF . Looking at Figure  7, the internal functioning of the 
global fitting procedure can be better understood: if the distribution of data is such as to require a larger k, 
a larger 0V  is generally implied (Figure 7c). Further increase of k  thus of 0V  also causes progressive shift of 

minV  toward larger values (Figure 7d), thus assigning more data to the log-normal section of the distribution. 
Minimization of the two quantities ,KS lnD  and 

,RDS plD  occurs in such a way that discrete pockets of data are 
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Figure 7.  Parameters of the global eruption volume distribution and their relationships. (a) Distribution of the slope parameter k; (b) distribution of 0V , the 
intercept of the power-law distribution with the frequency 1 axis (Equation 13); (c) relationship between the fitted values of 0V  and k (1,000 data points); (d) 
relationship between the fitted values of minV  and 0V  (1,000 data points); (e) relationships between minV  and the CDF of the global distribution computed at minV  
(1,000 data points); (f) distribution of the CDF of the global distribution computed at minV  (1,000 data points); (g) relationship between the fitted values of CV  and 
k (1,000 data points); (h) distribution of the mean value of the log-normal distribution; (i) distribution of the standard deviation of the log-normal distribution. 
CDF, cumulative distribution function.
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assigned to either section of the distribution, producing the discrete jumps in VminCDF  in Figures 7e and 7f 
and the peculiar trend of minV  versus 0V  in Figure 7d. Thus, the slope within each one of the discrete batches 
of points in Figure 7d represents the effective dependence of minV on 0V , rather than the steeper overall trend 
resulting from the ensemble of all batches.

Different from 0V  (and minV ), the corner volume CV  determining the effect of tapering (Equation 3) on the 
extreme tail of the power-law distribution is largely independent of the slope k  as well as from any other 
distribution parameter (Figure 7g and Table 3). About 90% of the values of CV  are close to 2,000 km3, with 
the remaining values defining a cloud extending down to about 1,600 km3 (with one single value of about 
1,060 km3). The low values likely reflect particular combinations of data from the dirtying procedure, re-
quiring to move back the corner volume so to allow more pronounced curvature of the distribution. The 
incidence of such cases is however limited, and both the mean and the median of the distribution are close 
to 2,000 km3 (Table 2). Noticeably, that is close to the volume of the largest known eruption on Earth (the 
74 ka Young Tuff eruption from Toba, Indonesia, 2,800 km3), with only one other known eruption (the 
2.133 Ma Huckleberry Ridge Tuff eruption from Yellowstone, US, 2,160 km3) overcoming the mean value 
of CV  in Table 2 (see Figure 1b).

Finally, Figures 7h and 7i show that the mean and standard deviation of the log-normal section of the dis-
tribution are about normally distributed with very small variance (Tables 2 and 3), producing very minor 
variabilities in the ensemble distributions in Figure 6.

It looks relevant to use the ensemble distributions in Figure 6 to determine the probability density function 
for discrete classes of eruption volume. Such a distribution releases the problems related to volume overlap-
ping when considering eruption categorization into VEI classes as in Papale (2018), largely described above. 

Figure 8 shows the corresponding discrete PDF and CDF. The discrete 
PDF values are also reported in Table 4. Note that for the large eruptions 
with volume ≥ 10 km3 (VEI ≥ 6), for which the volume classes in Figure 8 
correspond to VEI classes, the PDF values in the figure and in Table 4 are 
fully consistent with the corresponding absolute probabilities of occur-
rence provided in Papale and Marzocchi (2019) (that can be verified by 
employing the rate parameters for such high VEI classes from Table 1).

The single most abundant volume class corresponds to volumes between 
10 and 100  Mm3 (35.4% of the total), followed by the 1–10  Mm3 class 
(28.1%), the 100 Mm3–1 km3 class (23.2%), and the smallest volume class 
gathering all eruptions with volume  <  1  Mm3 (12.3%). Together, these 
small-medium eruptions with volume ≤ 1 km3 constitute about 99% of 
the subaerial volcanism on Earth. The medium to extremely large erup-
tions with volumes between 100 Mm3 to >1000 km3 still align on a power 
law when gathered into discrete volume classes. Note that gathering into 
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Figure 8.  Discrete probabilities for classes of eruption volumes. (a) PDF. (b) CDF. The error bars refer to the 5th and 95th percentiles reported in Table 4. CDF, 
cumulative distribution function; PDF, probability density function.

Volume class  
(log, m3) PDF (mean)

PDF (5th 
percentile)

PDF (95th 
percentile)

<6 0.1232 0.1137 0.1329

6–7 0.2806 0.2742 0.2863

7–8 0.3537 0.3380 0.4033

8–9 0.2325 0.1796 0.2509

9–10 9.79 × 10−3 6.65 × 10−3 1.34 × 10−2

10–11 3.11 × 10−4 2.35 × 10−4 3.89 × 10−4

11–12 9.70 × 10−6 7.31 × 10−6 1.22 × 10−5

>12 2.05 × 10−7 1.39 × 10−7 2.81 × 10−7

Table 4 
Probability Density Function (PDF) for Discrete Eruption Volume Classes
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VEI classes suggested instead that a power law (with remarkably lower slope) holds from volumes as low as 
10 Mm3 (Papale, 2018). The globally impacting eruptions with VEI ≥ 6 or volume ≥ 10 km3 constitute only 
about 0.03% of the total, and the super-eruptions with volume ≥ 1,000 km3 make up only about 0.00002% of 
the total subaerial volcanic eruptions on Earth.

5.  Discussion and Conclusions
5.1.  General Aspects

The analysis presented in this paper rests on the following basic ingredients:

•	 �the data, coming from (a) the LaMEVE database for eruptions with VEI ≥ 4, (b) the GVP database, and 
(c) our LV database (provided in Table S1) for the volume of eruptions with VEI ≤ 3; and

•	 �the rate parameters for the exponential distribution of inter-event times and catalog completeness for 
different VEI eruptions, reported in Table 1.

On that basis, we have constrained the shape and parameters of the continuous distribution of eruption 
volumes from subaerial volcanism on Earth. That distribution consists of an initial log-normal section with 
mean and standard deviation (expressing volumes in m3) respectively equal to 7.266 [7.229, 7.304] and 0.916 
[0.897, 0.937] (mean values, while numbers within brackets are the 5th and 95th percentiles, respectively; 
see Table 2), up to an estimated volume of 169 [88, 270] Mm3 making up 84.3 [77.2, 89.5] % of the volume 
erupted from global subaerial volcanism, above which the distribution follows a power law with slope of 
2.491 [2.416, 2.567] and right end tapering described by a corner volume of 1973.7 [1727.2, 2035.7] km3.

As this study shows, obtaining a continuous volume distribution was not trivial, but the efforts are more 
than compensated by the achieved complete analytical description of the global eruption volume distribu-
tion at Equations 15 and 16 with parameters in Table 2. The present continuous volume distribution is far 
superior to the VEI-based distribution in Papale (2018), for the main reasons that:

•	 �the VEI-based distribution is necessarily discrete, thus it involves loss of information with respect to the 
continuous volume distribution, resulting in less accurate estimate of distribution parameters. As an 
example, the minimum threshold above which the power-law distribution holds could be best placed 
at the boundary between the VEI classes 2 and 3 in Papale (2018), nothing comparable with the present 
estimate involving a mean volume for minV  with a variance and quantiles (Tables 2 and 3). Similar loss 
of information due to discretization also affected the estimate of the slope parameter in the discrete VEI 
representation, although the elements at the following point are even more critical in establishing the 
superiority of the present slope estimate. Finally, loss of information due to discretization in the VEI rep-
resentation did not allow the characterization of the extreme tail of the distribution, where more rapid 
decay with respect to a power law is now recognized and quantified; and

•	 �the VEI scale mixes up different elements and it involves a degree of subjectivity in its determination, 
resulting in ample overlapping of physical quantities such as the erupted volume (and mass). As a con-
sequence, the slope of the power-law distribution in correspondence of the overlapping classes appears 
to decrease as it is abundantly illustrated above (see Figure 4), resulting in a significantly lower slope 
in the discrete VEI representation (1.91 as from Papale [2018], compared to 2.49 estimated here for the 
continuous volume distribution).

The discrete volume distribution in Figure 8 is fully consistent with the continuous one in Figure 7, thus 
it is totally different from the previous VEI-based distribution. Being a discrete representation, it loses in-
formation with respect to the continuous one, as it is seen by the missing features at the extreme tail of 
the distribution. It is however useful, as it provides a more immediate picture of the incidence of volcanic 
eruptions having different sizes.

5.2.  Power-Law Section of the Global Volume Distribution

Power law distributions emerge in complex systems characterized by highly nonlinear dynamics with many 
degrees of freedom (e.g., Bak et al., 1987; Bak, 1997; Marković & Gros, 2014). Such phenomena invariably 
have a lower cutoff to the power-law distribution, as power laws diverge when approaching the left bound-
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ary of the distribution. In the present case, the cutoff volume corresponds to minV , or the minimum volume 
above which the power-law distribution holds. Above minV  the distribution of the global subaerial volcanism 
appears therefore to display the properties of power law – distributed phenomena, such as scale invariance 
and self-similarity: the shape of the distribution is always the same whatever volume interval we examine 
(as long as that volume interval is sufficiently far from the corner volume CV ; the extreme tail of the distri-
bution is discussed below). Such classes of phenomena are often related to the emergence of self-organized 
criticality, or SOC, proposed by Bak et al. (1987) and since then invoked for a growing number of natural 
(largely including geophysical) as well as man-made systems (e.g., Olami et al., 1992; Mantegna & Stan-
ley, 1995; Turcotte, 1999; Yakovlev et al., 2005; and many others). Since the seminal work by Bak et al. in the 
eighties and nineties, other models have been introduced to explain the emergence of power-law distribu-
tions in physical, biological, and man-made systems (Marković & Gros, 2014, provide a model review and 
analysis). In all such systems, some relevant quantity describing the “size” of the observed phenomenon 
(e.g., a spatial dimension, a number of connections, a release of mass or energy, etc.) is found to display 
a power-law distribution, which is a necessary (although not sufficient) element of self-organized critical 
systems. One relevant aspect of many systems described by power-law distributions is the unfeasibility of 
deterministic predictions of the size of the next event: the exceedingly large number of degrees of freedom 
in a system governed by highly nonlinear dynamics makes that endeavor a hopeless one, no matter how 
well we know the state of the system at a given time (countless experiments with sand piles as the prototype 
of self-organized critical systems clearly show that, e.g., Yoshioka, 2003). A general model of the Earth as 
a critical system with respect to the occurrence of volcanic eruptions does not exist yet; nonetheless, glob-
al subaerial volcanism displays some of its fundamental ingredients, such as: (i) power law—distributed 
eruption volumes demonstrated here; (ii) highly nonlinear dynamics well known to govern the volcanic 
processes (e.g., Sparks, 2003); (iii) scale invariance and self-similarity of processes, at least within the broad 
classes of explosive eruption on one side, and effusive eruptions on the other side, making progressively 
larger events to appear essentially as a scaled-up version of smaller ones; and (iv) to-date lack of any general 
or generally accepted relationship between pre-eruptive observations and size of the consequential erup-
tion, letting open the possibility that forecasts of a next volcanic eruption size can not be defined determin-
istically (Papale, 2018). Critical systems are generally associated with systems that quickly dissipate energy 
accumulated over longer periods, as it is the case with potential energy release during sand pile collapse 
under the action of gravity, mechanical stress release during earthquakes, and pressure release and conver-
sion into mechanical energy during volcanic eruptions. Here, we demonstrate a power-law relationship at 
global level, for which the equivalent of the sand pile would be the whole Earth, with the eruptions on its 
surface corresponding to individual landslides. We did not examine the individual volcano scale, for which 
the range of eruption size is often limited, and the number of available eruptions is usually exceedingly little 
for the extraction of confident distributions. Individual volcanoes may not display Poissonian behavior as 
for global volcanism, because the memoryless property of such distributions may not adequately account 
for their behavior. We do not know if over the individual volcano scale a power-law distribution similar 
to the one that we describe for global volcanism holds. Certainly, however, different eruptions from indi-
vidual volcanoes are equally governed by extreme nonlinear processes, they display self-similarity of their 
events as for the global volcanism, and as long as we know, have escaped so far any systematic attempt to 
establish a clear, workable relationship between size and precursors. Future investigation should explore 
(i) the reasons at the basis of the observed global power-law distribution of volcanic eruption volumes, (ii) 
the relationships between the distributions at the global and individual volcano scale, and (iii) the poten-
tial consequences of such distributions for our forecasting capabilities, from the occurrence of a volcanic 
super-eruption globally to the size of the next event at a given volcano, including the possibility to relate 
observed episodes of unrests to the order of magnitude of the impending eruption.

5.3.  Log-Normal Section of the Global Volume Distribution

Obvious questions follow from the above arguments: what does minV  represent in physical terms, and can we 
count on better predictive capabilities for the vast majority of eruptions with discharged volume below that 
threshold? Unfortunately, a robust answer does not emerge for none of them. First, it is useful to note that 
while the vast majority of medium to large explosive eruptions distribute along the power-law section, there 
is a substantial number of explosive as well as effusive eruptions along both the log-normal and power-law 
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sections of the distribution. Therefore, relating minV  to a fundamental difference in the mechanisms of effu-
sive versus explosive eruptions does not seem justified. On the other hand, we have extensively discussed 
above a number of issues related to progressively smaller eruptions and the way they are identified and cate-
gorized in the available databases. In particular, small eruptions from frequently erupting volcanoes tend to 
lose their distinctiveness in the databases, being instead incorporated into undistinguished longer periods 
often associated with an average or peak VEI. Although the volume estimates employed here for eruptions 
with VEI ≤ 3 have been carefully chosen to eliminate or at least minimize that issue, the consequences are 
still significant for the global distribution. To make the point clear, consider again the case of Stromboli 
volcano: the current VEI 2 eruption as from the GVP database, lasting from 1934, is actually made of an 
estimated 106–107 individual events. Over the same time, the total number of eruptions occurring on Earth, 
with reference to “eruptions” as they are categorized in the databases, is estimated to be roughly 3.5 × 103 
(Table 1). Clearly, the frequency of very small eruptions not individually recorded in the databases is orders 
of magnitudes larger than that of the recorded eruptions, opening to the possibility that if they were indi-
vidually recorded, then a power-law distribution may be seen to extend far below the estimated minV . In other 
words, the value of minV  estimated here, as well as the initial log-normal section of the global distribution, 
may simply emerge as the result of gathering together several small individual eruptions over long periods 
of volcanic activity, rather than having a true significance in terms of physical mechanisms governing small 
versus large eruptions. We have checked such a possibility by simulating the process of progressive gath-
ering of small events from an initial power-law distribution (Figure 9). In detail, we associate the smaller 
events to a higher probability of being aggregated with other randomly chosen events, and repeat the pro-
cess an increasing number of times so to obtain a series of modified distributions, each corresponding to a 
different extent of eruption aggregation. The resulting distributions mimic the one observed in the eruption 
events as they are reported in the employed databases, with an initial close-to-log-normal section followed 
by a power-law section (cfr. Figures 3 and 4).

The exercise in Figure 9 demonstrates that the artificial process of aggregation of small to very small in-
dividual eruptions to form larger ones is by itself capable of modifying a hypothetical initial distribution 
of the power law type down to the smallest eruption volumes, producing an overall trend similar to the 
one observed in the data. However, it does not tell us whether that is in fact the correct explanation to the 
observed trend. In other words, it cannot be excluded, but there is no warranty, that the true distribution 
would extend the power law down to much lower volumes corresponding to very small individual erup-
tions. Consequently, the log-normal section characterizing the left side of the volume distribution may not 
reflect any fundamental difference in the mechanisms of small versus large eruptions. While a definite an-
swer requires a level of knowledge that is not supported by the databases, we must accept those databases 
as the current reference, and accept that the global distribution that we extract from them cannot be more 
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Figure 9.  Results of a numerical experiment where an initial power-law distribution (black line) is modified by gathering a progressively larger proportion of 
small events to other randomly chosen events. (a) CDF and (b) survivor functions. For each colored curve, the reported number with the same color (in panel a) 
indicates the events resulting from progressive aggregation. The dashed orange curve is similar to the solid orange curve in terms of proportion of aggregated 
events, but it starts from a power law consisting of 10 instead of 1 million individual events. The CDF of these two curves (panel a) is about superimposed. CDF, 
cumulative distribution function.
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informative than the data themselves. We cannot employ the distribution to determine the expectance in 
terms of individual eruptions below a certain (undefined) small volume threshold. For such small erup-
tions, the expectance emerging from the distribution refers instead to future database population, assuming 
the paradigms for database population will remain unchanged.

5.4.  Extreme Tail of the Global Volume Distribution

On the opposite extreme of the distribution, things are quite different. Here sit the giant eruptions, the oc-
currence of which is expected to have global impacts on climate and environment (Robock, 2000; Robock 
et al., 2009; Self, 2015; Papale & Marzocchi, 2019). Here the global distribution shows negative deviation 
(i.e., less observations than expected) with respect to an open power law, that we have modeled as a tapered 
power-law distribution. Similar right-end negative deviations are observed for a large variety of power law–
distributed phenomena (e.g., Schoenberg & Patel,  2012; Geist & Parsons,  2014; and references therein). 
There are at least two good reasons for such negative deviations, already introduced above: (i) the extremely 
large events are rare, thus they are easily under-sampled; ii) the phenomena under consideration have some 
physical limits that prevent the power-law distribution to continue indefinitely. Obviously, the latter is nec-
essarily true; for example, no volcanic eruption on Earth may produce more mass than the same mass of the 
Earth. However, deviations from power-law distributions are commonly observed much below such obvi-
ous limits, as in the present case where clear deviations are seen for order 1,000 km3, or about 1 billionth of 
the Earth's volume. Statistical methods have been proposed to discriminate between open (observed devia-
tions entirely due to under-sampling) and truncated or tapered (observed deviations representing a property 
of the distribution) power-law distributions; however, such methods are often poorly stable with respect to 
addition or subtraction of just one or two observations (Kagan & Schoenberg, 2001). Here we have adopted 
a tapered power-law distribution, basically on the a-posteriori observation, that we deem as a robust one, 
that if the effective distribution was open, then we would expect to find in the geological record many more 
extremely large eruptions than we do, including a significant number of VEI 9 eruptions that would occur 
with the relatively high frequency of one every 3 million years. In that view, the corner volume in the ta-
pered power-law distribution ( CV  in Tables 2 and 3, and in Figure 7g) takes a physical meaning related to a 
difficulty, or impossibility, for the natural system to increase over certain limits. Exploring the origin of such 
limits is not among the objectives of this work. Here, we only note that understanding the causes of such 
eruption volume limits, if they are true, requires evaluating the observed or reconstructed distribution of 
volumes of igneous intrusions, the relationships between magma accumulation and eruption volume, and 
the factors that can limit the amount of intra-crustal magma accumulation or the proportion of that magma 
that can be discharged in a single eruptive event.

The existence of tapering is however relevant, as it provides a mean and variance to the overall distribution 
whatever the value of the slope parameter k. In fact, an open power-law distribution with  2k  (Table 2) 
would have a finite mean but infinite variance, corresponding to what is generally known as “black swan” 
behavior (Newman, 2005), that is, the irregular occurrence of extreme events corresponding to the far right 
of the distribution. The tapered distribution takes instead a finite variance, ruling out black swan behavior: 
extreme events far above the observed maxima (e.g., a VEI 9 eruption) are still possible, but their likelihood 
quickly decreases with increasing size, making their appearance far less likely than that of black swan 
events. It is noteworthy that  2k  implies that along the power-law section of the distribution, a substan-
tial fraction of the total erupted volume originates from small eruptions. The global eruption rates and the 
relative contribution from eruptions of different sizes are however not explored here, being the subject of 
separate work in preparation.

5.5.  Final Remarks

This study describes a global distribution for subaerial volcanic eruptions on Earth, taking advantage and 
inheriting limits from current knowledge as represented in freely available, open access databases, that we 
have complemented with a database for small eruptions provided in Table S1. Such a global distribution 
tells us something relevant in terms of forecasting capabilities: on one side, it can be employed to make fore-
casts of future eruption discharges, providing constraints to global Earth system models, for example, global 
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tectonic models, models of mantle dynamics, or models of global climate change, as well as providing the 
basic reference for the occurrence of globally impacting volcanic eruptions. On the other side, it suggests 
that deterministic short-term forecasts of the size and impacts of an impending eruption may be impossible 
as a reflection of highly nonlinear dynamics with too many degrees of freedom, translating into a power-law 
distribution of eruption size as for many other natural (and man-made) phenomena observed on Earth.
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