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S U M M A R Y
In a recent study, we showed that convolutional neural networks (CNNs) applied to network
seismic traces can be used for rapid prediction of earthquake peak ground motion intensity
measures (IMs) at distant stations using only recordings from stations near the epicentre. The
predictions are made without any previous knowledge concerning the earthquake location
and magnitude. This approach differs significantly from the standard procedure adopted by
earthquake early warning systems that rely on location and magnitude information. In the
previous study, we used 10 s, raw, multistation (39 stations) waveforms for the 2016 earthquake
sequence in central Italy for 915 M ≥ 3.0 events (CI data set). The CI data set has a large
number of spatially concentrated earthquakes and a dense network of stations. In this work,
we applied the same CNN model to an area of central western Italy. In our initial application
of the technique, we used a data set consisting of 266 M ≥ 3.0 earthquakes recorded by 39
stations. We found that the CNN model trained using this smaller-sized data set performed
worse compared to the results presented in the previously published study. To counter the
lack of data, we explored the adoption of ‘transfer learning’ (TL) methodologies using two
approaches: first, by using a pre-trained model built on the CI data set and, next, by using
a pre-trained model built on a different (seismological) problem that has a larger data set
available for training. We show that the use of TL improves the results in terms of outliers, bias
and variability of the residuals between predicted and true IM values. We also demonstrate
that adding knowledge of station relative positions as an additional layer in the neural network
improves the results. The improvements achieved through the experiments were demonstrated
by the reduction of the number of outliers by 5 per cent, the residuals R median by 39 per cent
and their standard deviation by 11 per cent.

Key words: Europe; Waveform inversion; Neural networks, fuzzy logic; Time-series analy-
sis; Earthquake early warning; Earthquake ground motions.

1 I N T RO D U C T I O N

Having information about earthquake generated ground motions
in the shortest time possible (Minson et al. 2018) is of great im-
portance for earthquake monitoring. For a timescale of 5–10 min
after the earthquake, the ShakeMap software (Wald et al. 1999)
provides maps of ground shaking [in terms of peak ground accel-
eration (PGA), peak ground velocity (PGV) and spectral acceler-
ation (SA) at 0.3, 1 and 3 s periods and macroseismic intensity],
which can be used by disaster risk managers for rapid assessment
of the earthquake impact. On a shorter timescale (few seconds),
earthquake early warning systems (EEWSs) have been developed
in the seismological community (see the reviews of Satriano et al.

2011; Cremen & Galasso 2020). These systems, developed as re-
gional (e.g. Kohler et al. 2018) or on-site EEWS (e.g. Spallarossa
et al. 2019), seek to detect and characterize earthquakes rapidly and
provide warnings to points, or areas, not yet impacted by ground
shaking.

In a recent study, Jozinović et al. (2020, J2020, hereinafter) used
a machine learning (ML) approach to predict the ground shaking
intensity at a pre-defined set of seismic stations within a given seis-
mic area, as quickly as possible. The inputs to the ML model were
7, 10 or 15 s long waveforms (the length of the waveform window
was investigated within the study) from a pre-defined and fixed set
of seismic stations with all traces starting at the earthquake origin
time for simplicity. The outputs of the ML model were the intensity
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measures (IMs; i.e. PGA, PGV and SA at 0.3, 1 and 3 s periods)
on the selected stations. This configuration entails that the strongest
shaking would be recorded on the traces of the stations closest to the
epicentre, while the model would give predictions for the stations
farther from the epicentre. Clearly, the balance between the recorded
and predicted IMs will depend upon the source–receiver acquisition
geometry and the selected traces’ window length. One notable fea-
ture of the model is that it does not require any information about
the earthquake parameters (magnitude, location, etc.) and uses just
the multistation waveforms pattern to give the predictions. The best
compromise between the accuracy and timeliness was found when
10 s windows were used. In J2020, it was also found that the IMs
prediction accuracy was similar to the accuracy attainable using the
ground motion prediction equations (GMPEs) by Bindi et al. (2011)
which require, however, an earthquake location and magnitude as
input. In addition, it was found that the ML model was able to pre-
dict with useful accuracy the IMs at the stations which had no input
data available (and were replaced with a window of zeros). In this
study, we use the model developed in J2020 and apply it to the area
of central-western Italy.

Increasing usage of ML in seismology has led to the development
of ML based rapid earthquake characterization algorithms and rapid
peak ground motion prediction algorithms. Some of the developed
algorithms deal with rapid seismic wave discrimination (e.g. Li et
al. 2018) or rapid earthquake characterization (e.g. Böse et al. 2012;
Hsu et al. 2016; Ochoa et al. 2018; Saad et al. 2020; van den Ende
& Ampuero 2020; Münchmeyer et al. 2021; Zhang et al. 2021).
Böse et al. (2008) have approached the problem of rapid earth-
quake characterization for EEWS using multistation waveforms to
extract a series of chosen parameters and use them as inputs for a
feedforward neural network. Kong et al. (2016) developed an ML al-
gorithm that detects earthquakes on smartphone accelerometers and
uses the information from the triggered smartphones to estimate the
earthquake location. Otake et al. (2020) used a recurrent neural net-
work that adopted waveforms from 4 stations as input, to predict the
shaking intensity at one target location. The study of Münchmeyer
et al. (2020) deals with the EEWS problem with a technique called
TEAM, which takes multistation seismic waveforms as input and
predicts the PGA, which is similar to the technique developed in
J2020 and used in this paper. The main difference between the two
algorithms derives from the use of different neural network model
types. TEAM uses a combination of a transformer and a convolu-
tional neural network (CNN) whereas in J2020 we rely exclusively
on a CNN. The advantage of using TEAM comes from the possibil-
ity to use any set of up to 25 stations as the input to the model, which
provides flexibility in applying the network to different areas with-
out the need to retrain the model. In contrast, the J2020 approach
always uses the same, structured, set of stations as the input to the
model. The advantage of this approach is that the CNN learns the
specifics of ground motion at every station (the number of stations
and their order is fixed—a specific station is always at the exact
same place in the input waveform) and the whole pattern amongst
the stations but it needs to be retrained in order to be applied to a
different area with a different set of stations. This would not be a
limit for the J2020 model for application to a dense set of stations,
like those in J2020, with a large enough training data set. However,
training it for other areas with a sparse network of stations that
has a smaller-sized data set of earthquake waveforms available for
training, would likely lead to poorer results compared to J2020. In
this study, we try to overcome this problem by testing the use of
transfer learning (TL) for model training (Bozinovski 2020; Pan &
Yang 2009 for a review), which is further described in Section 3.1.

TL uses two ML models in the following way: the first, already
trained, model is used for the initialization of the weights of the
second model. More precisely, TL consists of taking a model pre-
trained on a source data set (usually larger) or a source task (e.g.
single-station magnitude determination) and using it (or its parts)
for training a model on a target data set or for a target task (e.g.
multistation IM prediction), where the source and target data sets,
or tasks, are sampled from different underlying distributions. In
doing this, it is expected that the first distribution is similar enough
to the second, most importantly in the input data sets, so that its
use for TL will likely improve model performance compared to
a model having its weights randomly initialized. Note that TL is
effectively the replication of the natural mental processes that occur
in all species of exploiting previous knowledge for new learning.

There has been some application of TL to seismology (e.g. Titos
et al. 2019; Chai et al. 2020; Johnson et al. 2021; Otović et al.
2021) although its use is not yet widespread for applications of ML
in seismology. In the TEAM algorithm, Münchmeyer et al. (2020)
explored the use of TL to improve the PGA prediction for large
events. In this study, we explore the use of TL for improving our
IM prediction algorithm. We use the pre-trained model from the
J2020 study, with the same source task as the task used in this study
(which means that we use the same model architecture as the one
in J2020), but with a different source data set. We also explore TL
from a different source task (magnitude determination from single
station waveforms), trained on a different source data set.

2 DATA

The input data from central western Italy (hereinafter denominated
the CW data set) consist of three-component waveforms of 256
earthquakes with magnitude 2.9 ≤ M ≤ 5.1 (Fig. 1a), from 39
stations. The earthquakes occurred between 2013 January 1 and
2017 November 20. The earthquake depths range from 3.3 to
64.7 km (Fig. 1b). The stations and the earthquakes are located
in the area bounded by latitude [41.13◦, 46.13◦] and longitude
[8.5◦, 13.1◦] (Fig. 2), with epicentral distances ranging from 10
to 498 km (Fig. 1c). The area overlaps slightly with the area of
central Italy used in J2020 from which the pre-trained model ar-
chitecture is taken. To avoid possible data leakage from the pre-
trained model, events that were used in that study were excluded
from our data set. We chose the stations having the largest num-
ber of events recorded while making sure that there is an accept-
able spatial distribution of the stations to cover more area with
stations that are close to earthquake epicentres to simulate possi-
ble early warning use (more details about the stations in Support-
ing Information Table S1). The stations belong to the IV, GU and
MN networks.

The three component, 3C, waveform data were downloaded us-
ing the INGV FDSN web services for HN∗ (acceleration) and HH∗
and EH∗ (velocity) channels, where ∗ ∈ [E, N, Z]. The data were
processed to remove the instrument response, velocity data were
differentiated to acceleration and, if necessary, the data were resam-
pled to 100 Hz. For M < 4 earthquakes, the HH and EH channels
were used after differentiation and for earthquakes with M ≥ 4.0
the HN channels were used. For certain stations and for some earth-
quakes, the waveform data were completely missing and we chose
to replace them with zeros, as in J2020. This data selection and
processing follows the criteria outlined in J2020.

The target variables consisted of the IMs associated with each
recording: PGA, PGV and SA at 0.3, 1 and 3 s periods, which
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706 D. Jozinović et al.

Figure 1. Histograms of the selected 256 earthquakes: (a) earthquake-magnitude distribution, (b) earthquake-depth distribution, (c) epicentral distance
distribution and (d) distribution of PGA [log10(m s−2)]

were extracted from windows that started 5 s before the predicted
P-arrival and ended 10 s after the predicted S-arrival (please note
that this window size is not related to the window size of the CNN
input used in the experiments and mentioned in the later chapters
of the study). For stations that had no data, the IMs were calculated
using the USGS ShakeMap software using the latest configuration
for Italy (Michelini et al. 2020) to ensure no missing output data
(target variables). Since we are using a fixed number of stations for
the input, we must always provide an array of fixed size (cf. J2020).
However, sometimes input data is missing, in this case we use an
array of zeros to fill the missing data (Garcia-Laencina et al. 2010),
which is a natural way to employ the station dropout technique
(Kriegerowski et al. 2019). We have a fixed set of outputs of the

model for which we need to provide training and validation target
data. Although using the ShakeMap approximations introduces fur-
ther assumptions into the model, we consider it the best way to fill
the missing data because we want our model to provide approxima-
tions for a site even when the input data are missing (which could
be important for e.g. EEW purposes). This resulted in the following
composition of target values: 91.4 per cent were observed, while
8.6 per cent were calculated using ShakeMap. We have calculated
the first P arrival times on the stations from the theoretical travel
times using the Java TauP Toolkit by Crotwell et al. (1999) that
calculates theoretical travel times and paths as implemented in the
Obspy Python library (Krischer et al. 2015) and the ak135 veloc-
ity model (Kennett et al. 1995). We performed a visual check of
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Transfer learning for shaking prediction 707

Figure 2. Spatial distribution of the 256 earthquakes (dots—scaled according to earthquake magnitude and coloured according to earthquake depth) together
with the 39 stations (red triangles) selected for this study. Station IV.PII, used in the later analysis, is labelled also with a red text.

several waveforms and it was found that the theoretical travel times
calculated were satisfactory to the purpose of this study.

We use two other data sets for pre-training the models for TL.
The first data set is the J2020 central Italy data set (CI hereinafter)
consisting of 915 earthquakes recorded by 39 stations with the
same sampling rate and target labels as provided in this study. CI
has essentially the same structure as the data set from this study
except for a different set of recording stations.

The other data set used consists of a globally distributed set of
local earthquake waveforms STEAD (Mousavi et al. 2019). This
data set is much larger than CI, and it provides 3C single station
earthquake waveforms, that is the data set structure is different from
the data set of this study. In particular, the waveforms provided by
STEAD are not recordings from a fixed set of stations. This essen-
tially means that we cannot use STEAD to pre-train a CNN model
that has the same, multistation, architecture for IM prediction that
we use in this study although they can be used in the first layers of
our CNN model as explained below. STEAD has a sampling rate of
100 Hz and the amplitude units of data counts. The maximum epi-
central distance is 350 km. We used only the earthquake waveforms
with magnitude M ≥ 3 (the criterion also used for preparing the
data set for this study) providing 106 245 waveforms from STEAD.
Detailed information about STEAD can be found in the respective
article.

We also checked other available data sets, such as LEN-DB (Ma-
grini et al. 2020). However, we chose STEAD because it is a global

data set having the data sampled using the same sampling rate as
the CI and CW data (100 Hz).

3 M E T H O D A N D T R A I N I N G

The CNN model adopts the architecture proposed by J2020, using
the Keras Python library (Chollet et al. 2015). Input to the model
is a combination of all the waveform data (all 39 stations) for a
given earthquake, for an input array size (39, 1000, 3), where 39
is the number of stations, 1000 is the number of samples (with a
sampling rate of 100 samples per second and a 10 s window) and 3
is the number of components. The ordering of the stations is always
preserved. The waveform data for each earthquake starts 3 s before
the estimated P arrival time at the station nearest to the epicentre,
or at earthquake origin time if the estimated P arrival is less than 3
s after origin time (for consistency with J2020 where all the arrivals
at the closest station were maximally 3 s after origin time). The data
are normalized by the input maximum (i.e. the largest amplitude
observed across all stations within the input time window), and this
maximum is saved as a normalization value which is later inserted
into the network. The model outputs are arrays of size (39,5), where
39 is the number of stations, and 5 is the number of predicted IMs
per station (i.e. PGA, PGV and SA at 0.3, 1 and 3 s periods). We
applied the base-10 logarithm to all the IMs (i.e. log10IM). Relative
to J2020, we made a small change to the architecture—we moved the
dropout to the flattened layer, instead of the layer that was combining
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708 D. Jozinović et al.

the metadata and the flattened layer (Fig. 3a). We did this because
in one of the tests we add additional 117 (39 × 3) constant data (the
station distances and azimuths to a reference station and the vS,30 at
the stations) to the metadata layer, and in this way, we ensure that
the constant metadata inserted are always present, throughout the
model-training process.

3.1 Transfer learning

Next, we describe the concept of TL. The outcome of ML opti-
mization techniques involving uncertainty, such as gradient descent
applied to a non-convex cost function, often depends on the initial
values assigned to network weights (e.g. neural network parameter
values). Weight initialization is usually done by random sampling
with augmentation, e.g. He or Glorot (Bengio et al. 2017). Depend-
ing on the outcome of random initialization, the training process is
likely to converge to a local optimum which might or might not be
close to the global one (the one implying good generalization prop-
erties of the model). This is also heavily influenced by the model
topology and also the set optimization characteristics (i.e. the hyper-
parameter values). This problem is further accentuated when using
more-complex-domain data sets, and/or when using smaller-sized
data sets. This effect is to some extent mitigated by the depth of the
neural network—using a deeper network is usually better—albeit
not entirely. Therefore, choosing a good initialization of network
weights is likely to result in a better performing model, and is also
likely to give faster training, that is in fewer epochs because of
faster convergence. TL can be used to enforce a more likely ‘good
initialization’ of network weights, such that will likely result in a
better performing model. More formally, a model M1 learned from
data set D1 can be co-adapted (i.e. specialized) to data set D2, by
using the useful features (i.e. reusable network weights) from M1
to initialize the appropriate features of M2, and then training M2 on
D2. By useful features, we denote those network weights that are
used for feature extraction in deep learning. In a CNN model, these
are usually the weights tied to convolutional filters. The remain-
ing network weights values in M2 are, again, initialized randomly.
The process of training M2 on D2 is usually done analogously
to the training of M1 on D1, however ordinarily by using smaller
learning rates for the transferred weights. By doing this, we pre-
vent erratic changes in the feature extraction layers influenced by
the uncertainty in the classification layers, especially during early
model training, that is in the beginning epochs. In practice, it is not
always clear if the tasks M1 and M2 or data sets D1 and D2 are
similar enough to each other to warrant improvement when using
TL over training the M2 with random weights initialization. In this
study, we have explored the use of TL to answer these questions.
Furthermore, Otović et al. (2021) showed that TL for applications
of CNNs on time-series data can be useful even in the cases where
D1 and D2 are from different domains of time-series (e.g. medicine
and seismology), which makes us more confident that TL is a viable
strategy for improving the results on small data sets in seismological
applications of ML. This processing is somewhat analogous to the
addition of prior information in geophysical inversion. Examples
include the non-linear inversion when locating earthquakes where
the initial location is assigned next to the first recording station,
or when performing 3-D tomographic seismic velocity inversions
where the best fitting 1-D model is used as the starting model of the
non-linear iterative procedure.

3.2 Experiments and training

To investigate the effect of TL on model performance when the
training data are insufficient, we perform a series of experiments.
They are illustrated in Fig. 4 and are explained in more detail below.
First, we train the model from the very beginning using only the
available CW data (first experiment—No TL). Next, we experiment
with TL by using a model pre-trained on the same type of problem
(CI data set; second experiment CI → CW). In addition, we also
experiment with TL from a pre-trained model on a different seis-
mological problem (magnitude characterization; third experiment,
STEAD → CI) to improve the CI model. We then use the improved
CI model as a pre-trained model for TL on CW data (fourth exper-
iment, STEAD → CI → CW). After that, we test the addition of
station (vS,30) and interstation information (distances and azimuths)
as additional inputs to the CNN model (fifth experiment, CI →
CW + additional data). In the last test, we change the output of
the CNN to predict the IMs only at one station (sixth experiment).
Specific modelling choices were made by trial-and-error while ob-
serving model performance on the validation subset.

To train the CNN with random weights initialization (first
experiment—No TL), the weights are initialized using the Glorot
uniform initializer (Glorot & Bengio 2010).

For TL from a pre-trained model, the initial model weights are
taken directly from parts of the CNN model from J2020 (second
experiment, CI → CW). More specifically, only the weights of the
first two convolutional layers are used, while the remaining layers are
initialized using the Glorot uniform initializer. This has been done
since the first two layers in this architecture extract seismogram
features irrespective of the station specifics (geographical pattern,
soil, topography, etc.), while the subsequent layers combine the
extracted features from individual stations exploiting the network
station pattern.

The data set used in J2020 is relatively small, having only 915
earthquakes. Therefore, we use another database of earthquake
waveforms, STEAD, which provides a large number of training
data to improve the feature extractors (i.e. the first two convolu-
tional layers) and exploit TL. To this end, we constructed a CNN
model for magnitude determination from single-station earthquake
waveforms (Fig. 3b), designing an architecture in which the filters
from the first two layers are easily transferable for our task. Then
we used the model pre-trained on STEAD to train the model for
central Italy IM prediction (STEAD → CI, i.e. improving the re-
sults achieved in the J2020 study). After the validation loss stops
improving, all the layers are then fine-tuned, that is set as trainable
with a small learning rate of 10–5, and the training is continued.
The CI CNN model trained using TL was then used (i.e. TL applied
again) as a pre-trained model for training with the CW data set
(fourth, STEAD → CI → CW, experiment).

In the next stage of experimentation (fifth experiment, CI →
CW + additional data), we added the information about the stations
(interstation distances and azimuths, vS,30 of the stations) to the
metadata layer (Fig. 3a). The interstation distances and azimuths
chosen are the distances and azimuths of every station from an
arbitrarily chosen reference station (ASQU), where we used 0 for
the values of the reference station, producing an input of shape
39 × 3.

In the last part of the experiment, we use only a single station for
output (Fig. 3a), station PII, to see how much our algorithm could be
improved when the target task was ‘simplified’ (sixth experiment).
Separately, we also experimented with the adoption of shorter time
windows.
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Transfer learning for shaking prediction 709

Figure 3. The architecture of the CNN models used. (a) Model for IM prediction. Boxes shaded yellow represent filter banks and operators, boxes shaded
green represent inputs and the boxes shaded blue represent the final output. Orange boxes represent modifications of the model during the experimentation
stage, with the title of the boxes denoting the experiment at hand. (b) Model for magnitude determination. Boxes shaded green represent inputs, shaded yellow
represent convolutional layers, shaded orange represent fully connected layers, and box shaded in blue represents the output.

The data of the CW data set had been split randomly into training
(80 per cent) and test (20 per cent) subsets. For evaluation of the
performance of the CNN model, we use fivefold cross-validation,
which splits the randomly permuted data set into five equally sized
disjoint subsets, and uses each of them as the test set to the model
trained on the remaining four subsets. We have done all the modifi-
cations in the model on only one subset, and, when finally defined,
we run the training on all the subsets. We then join the predictions on
the test subsets from all five folds. To test the statistical significance
of the difference in results, we calculated the squared errors of the
different experiments and then used the Wilcoxon signed-rank test
to check if the differences between them are statistically significant
(Wilcoxon 1992). The analysis of the results is presented in the
following section.

The batch size used for optimization was 8, and the mean squared
error (MSE) loss function was used for model optimization. Hyper-
parameter values for model optimization were based on J2020. We
have also used an early stopping procedure, which terminates the
training if the validation loss did not improve for 25 epochs. Together
with the early stopping, we also reduce the learning rate by a factor of
0.2 if the validation loss did not improve for 8 epochs, with the mini-
mum possible learning rate being 10–5. We used an Nvidia 1050 4GB
graphics card for training, which took 13 and 5 min on average, for
training without TL and when TL approach was used, respectively.

4 R E S U LT S

Here, we present the results of all the 6 experiments. For each exper-
iment, the CNN model results from all fivefold cross-validation test
sets are averaged. The mean squared errors were: 1.69 for the no TL
experiment, 1.41 for the CI → CW experiment, 1.42 for the STEAD
→ CI → CW experiment and 1.28 for the CI → CW + additional
data experiment. Residuals R = log10(IMobs/IMpredicted) are calcu-
lated and the outlier records with residuals (of any IM) |R|>1 are
replaced with 1. We replaced the outliers with 1 to limit the effect
of seriously erroneous predictions, which have here been defined
as those predictions that are at least an order of magnitude (i.e. |R|
> 1) different from the observed values. Finally, we calculated the
mean, median and standard deviation of the residuals (hereinafter
referred to as results). All the experimental setups are illustrated
in Fig. 4. In Tables 1–5, we present the results for the experiments
on CW data separated by IM, and in Table 6 we report the num-
ber of outliers. In Fig. 5, we present the results using box-plots for
each IM. For experiments 1, 2, 4 and 5 we report the results on all
the data here, and the results are split into residuals on observed
target labels and ShakeMap-derived target labels in the Supporting
Information. For the other experiments we report here the results
separated into observed target labels and ShakeMap derive target
labels.
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Figure 4. Diagram of the tests performed. The yellow boxes denote the trained CNN models, with the number in the box marking the number of the test. Input
data are represented by the green boxes. Arrows represent input (green) and TL (blue).

Table 1. PGA residual R statistics for the four experiments on CW data set.

Experiment Median Mean STD

No TL −0.061 −0.029 0.508

CI → CW −0.048 −0.019 0.474

STEAD → CI → CW −0.039 −0.019 0.479

STEAD →CI → CW + add. data −0.037 −0.013 0.449

Table 2. PGV residual R statistics for the four experiments on CW data set.

Experiment Median Mean STD

No TL −0.081 −0.04 0.514

CI → CW −0.066 −0.031 0.467

STEAD → CI → CW −0.05 −0.022 0.470

STEAD →CI → CW + add. data −0.047 −0.021 0.444

Table 3. PSA 0.3 s residual R statistics for the four experiments on CW
data set.

Experiment Median Mean STD

No TL −0.055 −0.022 0.508

CI → CW −0.047 −0.014 0.480

STEAD → CI → CW −0.027 −0.008 0.482

STEAD →CI → CW + add. data −0.033 −0.004 0.455

4.1 Training with random weights initialization

The results of the CNN model trained with random weights initial-
ization (using the Glorot uniform initializer) are presented here. The
results are shown in Tables 1–6 and Fig. 5. The results separated
for the data with observed targets and with ShakeMap calculated
targets are available in the Supporting Information Section C.1.
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Table 4. PSA 1 s residual R statistics for the four experiments on CW data
set.

Experiment Median Mean STD

No TL −0.058 −0.023 0.507

CI → CW −0.045 −0.01 0.475

STEAD → CI → CW −0.032 −0.008 0.474

STEAD →CI → CW + add. data −0.034 −0.008 0.459

Table 5. PSA 3 s residual R statistics for the four experiments on CW data
set.

Experiment Median Mean STD

No TL −0.07 −0.035 0.511

CI → CW −0.052 −0.028 0.463

STEAD → CI → CW −0.036 −0.014 0.461

STEAD →CI → CW + add. data −0.046 −0.018 0.451

Table 6. Number of outliers |R| > 1 for the four experiments on CW data
set.

Experiment
Number of outliers (per

cent)

No TL 15.68

CI → CW 12.04

STEAD → CI → CW 12.56

STEAD → CI → CW + add. data 10.55

4.2 Transfer learning from a model pre-trained on central
Italy data set

The results of the CNN model trained using TL from the pre-trained
CI CNN model are shown in Tables 1–6 and Fig. 5. The results sep-
arated for the data with observed targets and with ShakeMap cal-
culated targets are available in the Supporting Information Section
C.2.

When the results are compared with those of the previous section,
we can see that improvement comes in the reduction of the number of
outliers and a decrease in standard deviation of the residuals. There
was a statistically significant improvement for all the five IMs (p-
value < 0.05). We achieved the best results when the weights of the
first two convolutional layers are used from the pre-trained model
with their learning rates set to zero, while the remaining layers are
initialized using the Glorot uniform initializer. We have also tried
to train the CNN model using TL while leaving all layers to be fully
trainable; however, this deteriorated the performance, suggesting
that the feature extractors learned in the first two layers of the pre-
trained CNN model are useful for the training on this data set. This
means that the first two layers in our architecture, that is those that
analyse single station waveforms are transferable between models
used for training on different areas, but should be trained on large,
high-quality data sets.

4.3 Improving the CI model by TL from a different task

The results for CI using a pre-trained model for magnitude deter-
mination from STEAD data are presented here. We report the data
split into residuals on observed target labels and ShakeMap-derived
target labels for an easier comparison with the J2020 study results.
The results have been calculated as in previous chapters, except for
the outliers which were discarded from the calculations (instead of

(a) (b)

(d)(c)

(e)

Figure 5. Boxplots for the residuals log10IMobserved—log10IMpredicted of the
CNN training on the CW data set from Sections 4.1 (No TL experiment),
4.2 (CI → CW experiment), 4.4 (STEAD → CI → CW experiment) and
4.5 (CI → CW + additional data experiment) for different IMs: (a) PGA,
(b) PGV, (c) PSA 0.3 s, (d) PSA 1 s and (e) PSA 3 s. The boxes show the
interquartile range, the white dashed line shows the median and the orange
line shows zero.

being set to have their absolute value to 1) to be consistent with the
J2020 study on CI data. Removal of the outliers resulted in 96.45
per cent data kept for observed IM targets and 93.84 per cent for
ShakeMap generated IM targets. Results are shown in Table 7. We
also report the results from the J2020 trained on CI data in Table 8.
In J2020, large residual values |R|>1 were also removed resulting
in 92 per cent for the observed IMs and 87.49 per cent of the data
kept for the ShakeMap predictions.

Compared to the previous study J2020 (Table 8), we achieved an
improvement by using transfer learning in reducing the number of
outliers, the standard deviation of the residuals and their bias (i.e. the
difference of |R| from 0). We also found that the results are slightly
better when using the STEAD pre-trained model. The results not
separated into the data with observed targets and with ShakeMap
calculated targets are available in Supporting Information Section
C.3.

The best results were achieved when the first layer learning rate
was set to 0 and the weights of the second layer were initialized
with the pre-trained weights but left trainable. We achieved further
improvement in the results by fine-tuning the weights of all the
layers with a learning rate of 10–5.
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Table 7. IMs’ residual R statistics for the STEAD → CI experiment: the CNN predictions on the CI
data set using TL from the pre-trained STEAD model. The results are reported for observed IMs (for
the stations having recorded data) and the ShakeMap predictions (for the stations that had no recorded
data).

IM
Observed

median
Observed

mean
Observed

STD
ShakeMap

median
ShakeMap

mean
ShakeMap

STD

PGA −0.011 −0.005 0.276 −0.010 −0.025 0.331

PGV −0.017 −0.005 0.252 −0.046 −0.040 0.317

SA(0.3) −0.005 −0.0003 0.28 −0.011 −0.011 0.334

SA(1.0) −0.007 0 0.266 −0.058 −0.041 0.319

SA(3.0) −0.013 0 0.287 −0.091 −0.075 0.352

Table 8. IMs’ residual statistics for the CNN predictions for the observed IMs (for the stations having recorded data), ShakeMap predictions (for
the stations that had no recorded data) and the predictions of GMPE by Bindi et al. from the study Jozinović et al. (2020).

IM
Observed

median
Observed

mean
Observed

STD
ShakeMap

median
ShakeMap

mean
ShakeMap

STD
GMPE
median

GMPE
mean

GMPE
STD

PGA 0.038 0.035 0.346 0.059 0.038 0.372 0.013 0.017 0.352
PGV 0.036 0.034 0.338 0.043 0.041 0.380 − 0.174 − 0.151 0.33
SA(0.3) 0.031 0.031 0.34 0.056 0.046 0.37 − 0.284 − 0.252 0.359
SA(1.0) 0.029 0.034 0.338 0.001 0.017 0.374 − 0.207 − 0.198 0.303
SA(3.0) 0.019 0.027 0.374 − 0.037 − 0.012 0.404 0.026 0.083 0.368

4.4 Using the newly trained CI model for TL

Since the results obtained for the CI experiment of J2020 have been
improved compared to the previous study (Section 4.3), we tried to
use the improved pre-trained model trained on CI data to improve
the TL for the CW data set. The results are shown in Tables 1–6
and Fig. 5. The results separated for the data with observed targets
and with ShakeMap calculated targets are available in Support-
ing Information Section C.4. When comparing the results with the
results in Section 4.2 (pre-trained CI model trained with random
weights initialization) we can see that the results were comparable
overall. There was no statistically significant difference for all the
five IMs (all the p-values were > 0.05) when comparing the results
with those in Section 4.2. We also calculated the results using the
STEAD pre-trained model directly on CW data and found similar
results (results available in Supporting Information Section C.5).

4.5 Adding additional knowledge

The results with interstation distances and azimuths as additional
metadata added to the model are reported here. The results are
shown in Tables 1–6 and Fig. 5. The results separated for the data
with observed targets and with ShakeMap calculated targets are
available in Supporting Information Section C.6. In Supporting
Information Section C.7, we show the results of the model with
added interstation distances and azimuths if no transfer learning
was used.

When comparing with the results of the previous sections on
training the model on the CW data set (Sections 4.1, 4.2 and 4.4) we
see an improvement in the smaller number of outliers and reduced
standard deviation. There was a statistically significant improvement
for all the 5 IMs (p-value < 0.05).

The best results were achieved after scaling the distance (ex-
pressed in km) by dividing by the maximum distance (246 km),
and with azimuths specified as sine and cosine of the azimuths. The
addition of vS,30 did not improve the results.

4.6 Results for station PII

We have extracted the residuals between the true values and the
CNN model predictions trained using TL described in Section 4.5
for the station PII (part of the original set of 39 stations). Station
PII was chosen as an example of usage of our algorithm for EEW
purposes, where the warnings received at station PII could be used
for a point of interest nearby (e.g. an industrial plant, a high risk
monument, etc.). Using the same criteria for outliers as before, the
mean, median and standard deviations of the residuals were calcu-
lated and are shown in Tables 9–14 (experiment marked as Original
in the tables). We report the results for the observed targets and
ShakeMap predicted targets separately and we note that the station
PII had missing input waveforms for 42.9 per cent of earthquakes.
This is likely the reason why the results for the data with waveforms
present in the input show a deterioration of the results in the number
of outliers and standard deviation compared to the data with input
waveforms not present for the station PII. They also show slightly
lower (absolute) bias, with the bias having opposite signs.

4.7 Using station PII as the only model target

The previous results in Section 4.6 are showing the results for
station PII when the targets were the IMs at the 39 stations. In
this section, we report the results when we use only the station PII
as the model target. Using the same criteria for outliers as before,
the mean, median and standard deviations of the residuals were
calculated and are shown in Tables 9–14 (experiment marked as
10 s PII target in the tables). Compared to Section 4.6, where 39
stations were used as a target, we see an improvement in all the
metrics for the observed target values. For the target labels derived
from ShakeMap predictions, the results for the standard deviation
are similar in some IMs, whereas the bias and the number of outliers
are always reduced.

We also test how reducing the waveform window length affects
the results by using a window length of 7 s (in all the previous sec-
tions the waveforms had a window length of 10 s). Using the same
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Table 9. PGA residual R statistics for the four experiments on station PII.

Experiment
Median

(Observed)
Mean

(Observed)
STD

(Observed)
Median

(ShakeMap)
Mean

(ShakeMap)
STD

(ShakeMap)

Original 0.171 0.208 0.455 −0.256 −0.222 0.44
10 s PII target 0.116 0.089 0.419 −0.117 −0.117 0.42
7 s PII target 0.105 0.114 0.463 −0.122 −0.118 0.446
GMPE 0.419 0.411 0.281 – – –

Table 10. PGV residual R statistics for the four experiments on station PII.

Experiment
Median

(Observed)
Mean

(Observed)
STD

(Observed)
Median

(ShakeMap)
Mean

(ShakeMap)
STD

(ShakeMap)

Original 0.133 0.136 0.417 −0.187 −0.199 0.415

10 s PII target 0.073 0.055 0.379 −0.137 −0.089 0.391

7 s PII target 0.082 0.082 0.453 −0.079 −0.082 0.417

GMPE 0.162 0.147 0.269 – – –

Table 11. PSA 0.3 s residual R statistics for the four experiments on station PII

Experiment
Median

(Observed)
Mean

(Observed)
STD

(Observed)
Median

(ShakeMap)
Mean

(ShakeMap)
STD

(ShakeMap)

Original 0.256 0.238 0.425 −0.301 −0.254 0.449

10 s PII target 0.125 0.123 0.416 −0.21 −0.153 0.441

7 s PII target 0.162 0.161 0.454 −0.191 −0.141 0.447

GMPE 0.353 0.331 0.268 – – –

Table 12. PSA 1.0 s residual R statistics for the four experiments on station PII.

Experiment
Median

(Observed)
Mean

(Observed)
STD

(Observed)
Median

(ShakeMap)
Mean

(ShakeMap)
STD

(ShakeMap)

Original 0.096 0.112 0.439 −0.17 −0.118 0.441

10 s PII target 0.046 0.035 0.411 −0.107 −0.043 0.427

7 s PII target 0.024 0.04 0.452 −0.041 −0.054 0.456

GMPE 0.001 −0.017 0.337 – – –

Table 13. PSA 3.0 s residual R statistics for the four experiments on station PII.

Experiment
Median

(Observed)
Mean

(Observed)
STD

(Observed)
Median

(ShakeMap)
Mean

(ShakeMap)
STD

(ShakeMap)

Original 0.022 0.057 0.387 −0.126 −0.064 0.463

10 s PII target 0.014 0.013 0.37 −0.035 −0.016 0.415

7 s PII target −0.002 0.033 0.411 −0.032 −0.14 0.454

GMPE 0.117 0.122 0.365 – – –

criteria for outliers as before the mean, median and standard devia-
tions of the residuals were calculated and are shown in Tables 9–14
(experiment marked as 7 s PII target in the tables).

We also calculate the predictions for the station PII using the
GMPE of Bindi et al. (2011), for which we used the final earthquake
location and magnitude. We used the station magnitude (station

PII) to calculate the GMPE predictions if it was available through
INGV web services. The predictions were calculated only for the
earthquakes for which the station PII had recorded data in Tables 9–
14). The residuals R were calculated as for the CNN predictions. The
median, mean and standard deviation of R are reported in Tables 9–
14 (experiment marked as GMPE in the tables). By comparing the

Table 14. Number of outliers |R| > 1 for the four experiments on station PII.

Experiment
Number of outliers (Observed)

(per cent)
Number of outliers (ShakeMap)

(per cent)

Original 8.55 11.4
10 s PII target 7.24 7

7 s PII target 9.2 10.5

GMPE 12.82 –
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results in Tables 9–14, we can see that the GMPE of Bindi et al.
(2011) performs better on station PII in terms of variability, while
CNN performs better in terms of bias of the results and the number
of outliers.

5 D I S C U S S I O N

In the study, we have shown that the introduction of TL in our CNN
model can compensate for the lack of data and improve the results
for rapid prediction of earthquake IMs, We have found that using
a pre-trained CNN model, trained on CI in J2020, improved the
results obtained using only the CW data set (Section 4.2, Fig. 5).
Improvements (mean of the improvements of the five IMs) include:
reducing the number of outliers by 4 per cent, the residuals median
by 21 per cent and their standard deviation by 7 per cent. These
results suggest that TL is a viable technique to improve model per-
formance on small-sized data sets. The convolutional filters in the
first two layers of the CNN model (i.e. those used for TL) are the
same for all the stations, which means that they have to be general
enough to be able to extract features from the inputs regardless of
which station they are currently analysing. The third layer, which
looks at cross station information (i.e. the station pattern of the
ground motion and station-specific site amplifications due to soil
type, topography, etc.), did not improve the results when included
in TL for our problem. This was expected since the convolutional
filters used in the third layer are of height 39 and span the specific ge-
ometrical/geographical pattern of the recording stations. Therefore,
inserting a sequence of recording traces for TL unrelated to that
target problem will worsen the results, unless the same geographi-
cal pattern is used and the stations reflect the same characteristics
in terms of local site amplifications—a highly unlikely situation in
practice. Given that our first two layers use single station filters, we
could use the first two layers of the pre-trained model regardless of
the number of stations used to create the input data. This can be
useful if we want to train our model for an area that has a different
number of stations available.

We also show in Section 4.3 that parts of the CNN model, which
was trained for a different problem (single station magnitude deter-
mination), can be used for TL on our CNN model, with an improve-
ment on the results of the J2020 study in the number of outliers, the
standard deviation of the residuals and their bias. Lower levels of
improvement on the stations with missing data could be explained
by the fact that the pre-trained model (i.e. trained on STEAD) did not
have stations in which the waveform data were not present, which
is instead the case for 7 per cent of the data in CI. It is, however,
noteworthy that the CNN model was still able to compensate for
the missing data even if the first two layers (pre-trained on STEAD)
were not pre-trained with missing data. The STEAD waveforms
were velocity waveforms in counts, that is different units as the
waveforms used for CI and CW. However, as the first two layers of
our model operate on normalized waveforms without absolute am-
plitude information, and the normalization constant is only inserted
later in the model, the use of data in counts for pre-training the first
two layers should not adversely affect the model performance.

STEAD consists of earthquake waveforms recorded on available
stations up to a specified distance from the earthquake epicentre,
in contrast to our use of a fixed set of stations with waveforms
for a set of earthquakes for training our IM prediction model. This
difference essentially means that we cannot use these data sets to
pre-train a CNN model that has the same, multistation, architecture
for IM prediction as we use in this study. However, this problem was

circumvented by pre-training a single station and magnitude deter-
mination model instead, and then reusing its specific transferable
layers for IM prediction, which is our target goal.

When using the pre-trained model trained on the same problem
(CI IMs prediction, Section 4.2), the best results were achieved
when the learning rate of the first two layers was set to 0. When
using the model trained on the different problem instead (magnitude
determination, Section 4.3), they were achieved when the first layer
learning rate was set to 0 and the second remained trainable. This
suggests that the features extracted by the first layer of the magnitude
determination model can be directly used for IM prediction, without
the need for further parameter fine-tuning. Model performance can
be improved, however, by fine-tuning the second layer parameters
to the target domain (i.e. the IM prediction). Moreover, further
improvement achieved by fine-tuning all the layers showed that
even the weights of the first layer, which was used from the pre-
trained model, could be further adapted to better fit the new domain.
This was achieved by using a smaller learning rate for fine-tuning,
whereas, on the other hand, using greater learning rates did not
improve model performance. When we tried to fine-tune the first
two layers using a TL model in the same domain, the results did not
improve, and fine-tuning led to overfitting.

The comparison of the results in Sections 4.2 and 4.4 suggests
that the weights of the first two pre-trained layers were already sat-
isfactory for TL on our problem and that the training bottleneck was
in the deeper layers of our model. The CNN model is learning the
interstation relations (locations, distances) and the characteristics of
the stations implicitly during the training, as no station information
has been given to it. Explicitly providing the interstation distances
and azimuths improved the results of the model (Section 4.5). This
is not a form of TL, but it does follow a very similar philosophy
in that we guide the model to obtain useful features that describe
the data without needing to learn how to extract them from more
implicit representations. Normalizing the interstation distances by
the maximum of the distances improved the results, which follows
the suggested normalization for neural network inputs (LeCun et al.
2012). The azimuth between the stations, Az, was initially provided
in degrees and radians without any results improvement. The results
were improved with the use of sin(Az) and cos(Az), which are ef-
fectively normalizing azimuth description to the range [−1,1]. This
azimuth description also gives the neural network a more meaning-
ful measure of the closeness of two angles and removes the possible
ambiguity that could come from using the angles (e.g. the angles
360◦ and 0◦ are the same angle, but the numerical difference between
them is 360). Giving only the sine or cosine would also confuse the
model, as they are both non-injective functions; however, providing
both allows for an accurate description of the angle. In contrast,
the addition of vS,30 did not improve the results of the CNN model.
Overall, when we compare the results in Sections 4.5 and 4.1, we
can see that the improvement from the use of TL comes in terms
of reducing the number of outliers by 5 per cent, the residuals R
median by 39 per cent and their standard deviation by 11 per cent.
The main improvement comes from using the pre-trained models,
as can be seen from a comparison of the results in Section 4.2 and
Supporting Information Section C.7.

The data in our data set are not uniformly distributed: the larger
values of IMs are underrepresented in the data set (Fig. 1a). This is
a natural consequence of the Gutenberg-Richter power-law earth-
quake distribution. Biased data sets usually produce biased ML
models. In Fig. 6, we plotted linear regression fits to the PGA pre-
dictions from our four experiments on CW data set, and a true = pre-
dicted line for comparison. We can see that models across all of our
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Figure 6. True versus predicted PGA scatter plot of the experiment STEAD
→CI → CW + additional data (grey points). The blue line represents the
true = predicted values. The other lines represent a linear regression fitted to
the PGA predictions of the four models: No TL model (yellow line), CI →
CW model (red line), STEAD →CI → CW model (green line) and STEAD
→CI → CW + additional data model (purple line).

four experiments were biased: they were underpredicting large PGA
values and overpredicting small PGA values. We can also see that
the introduction of TL and additional data somewhat reduced the
bias of our models. The improvement, however, was not large. We
also tried to use sample weights (see e.g. Wu & Datta 2021) when
training the model (described in detail in Supporting Information
Section C.8), which did not reduce the model bias. Münchmeyer et
al. (2020) used oversampling of large events during the pre-training
and training phase, and by adding data of large magnitude earth-
quakes from other regions during training. Our CNN model can only
accept data that always come from the same input stations, making
it impossible to add data from other regions. We, however, tried to
change the magnitude distribution in our pre-training data set: we
used only earthquakes with magnitude > 4 from the STEAD data
set (24 774 earthquakes) for training the magnitude determination
model. We then trained the STEAD → CW + additional data model
(with the first layer set to not being trainable) and found that the
modification of the pre-training subset does not reduce the bias of
our CNN model on large IM values.

We performed an example of the usefulness of our algorithm for
EEW purposes at the station PII: we calculated the differences Tp

between the first P arrival times on the station PII (IV network) and
the start time of the input waveforms, and show them in Fig. 7 (blue
histogram bars). In Fig. 7, we see that, for many earthquakes, the
CNN model would be able to give an early warning in the vicinity of
station PII, depending on the length of the input window used. This
rate is greater if we consider that the peak ground motions originate
from S and surface waves, which arrive later, giving some more
warning time before the strongest shaking. Therefore, in Fig. 7
we also show the differences Tpga (light orange histogram bars)
between the recorded PGA times at the station PII and the input
waveform start times. These results do not account for the times
needed for running the algorithm (very minor indeed) and for data

Figure 7. Histograms of waveform arrival and peak ground motion delay
times. Blue bars show the difference between the P arrival time at the station
PII and the input waveform start time Tp. Light orange bars (reddish when
overlapping with the Tp blue bars) show differences between the recorded
PGA time and the input waveform start time Tpga. Green and magenta
vertical lines show the end of the 7 and 10 s input waveforms, respectively.
The bars on the right of those lines show the number of events, with possible
warning times before the P arrival or the PGA time on station PII. The total
number of events shown for Tp is 266, while for the Tpga only the 152 events
with recorded waveforms (i.e. recorded PGA time) are shown.

transmission. It follows that the timing relation for Tp and Tpga

shown in Fig. 7 support the use of our CNN model as an EEW
system for the area around Pisa, as the large majority of Tpga occur
well after the 10 s input waveform end time (pink line in Fig. 7)
so there would be warnings before the strongest shaking for a large
majority of earthquakes. Moreover, if we reduce the input waveform
length (Section 4.7), we can see in Fig. 7 that these warnings for
a large number of earthquakes could be given even before the first
P arrival at PII (i.e. the large majority of Tp are after the 7 s input
waveform end time (green line)). An example earthquake input
waveforms are shown in Supporting Information Fig. S1, with an
epicentral distance from station PII of 66 km, with Tp = 9.42 s and
Tpga = 18.82 s.

The results shown in Section 4.6 suggest that the algorithm would
give useful and timely predictions, for cases both with and with-
out waveform data for station PII. Contrary to the results in the
sections before, the CNN performs better on the data without the
input waveforms present. The main difference in the case of sta-
tion PII compared to the other stations used is the lower number
of earthquakes for which the input waveforms are available (152 of
266 earthquakes). This means that it has less training data to learn
how to predict the actual IMs recorded on the stations, and more
data to learn how to predict from the ShakeMap derived values at
those stations. It is also interesting to note that the CNN model is
underpredicting the IMs for earthquakes for which the input wave-
forms exist, and overpredicting for earthquakes for which there are
no input waveforms on the station PII, with the absolute values of
mean and median smaller of the residuals R on the observed data.
However, on the stations with missing data, the CNN results are be-
ing compared to ShakeMap predictions, which are calculated using
a GMPE of Bindi et al. (2011) and geospatial interpolation of the
observed values at the stations (Worden et al. 2020). We calculated
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the IMs on the station PII by using the GMPE of Bindi et al. (2011),
which uses the final earthquake location and magnitude, for the
earthquakes for which observed IMs exist. We then calculated the
residuals R and found that the GMPE is also underpredicting the IM
values, with a higher median than the CNN model on the same data.
This suggests that the overprediction of CNN for the ShakeMap
predictions comes from the CNN results having a smaller bias on
recorded IM values.

When using only the station PII as a target, we can see that the
results of the CNN are improved. This is expected because we are
reducing the number of IMs, which are unknown variables to the
model, from 195 to 5. In practice, it means that the model layers
can be focused exclusively on the information required for pre-
dicting the shaking at a single station (PII). This suggests that for
achieving the best results for a specific site of interest, individual
training should be done. However, the training data does not need
to be changed, only the output location. It is also interesting to note
that the results were mostly improved, compared to Section 4.6, for
the earthquakes with recorded waveforms. Reducing the length of
the window, expectedly, led to poorer model performance and larger
uncertainties, although there is a trade-off between additional warn-
ing time achieved and loss in accuracy. An optimal ratio between
accuracy and timeliness can be selected for every application indi-
vidually. This trade-off also suggests that in a real-time application
of the methodology progressively larger time windows could be
employed after an earthquake occurs to obtain increasingly accu-
rate predictions (e.g. the approaches of Münchmeyer et al. 2020 or
Zhang et al. 2021).

6 C O N C LU S I O N S

We used a CNN model to predict IMs (PGA, PGV and PSA at 0.3,
1, 3 s) at 39 stations using 10 s long, multistation waveforms, that
start 3 s before the first P-wave arrival. The training set has only
266 earthquakes (with M > 3) and TL was used to improve the IMs’
prediction accuracy.

We show that TL is a powerful methodology to use in waveform
data analysis for cases with insufficient training data. The TL can
be done by using a pre-trained model trained on the same problem
(IM prediction) or a different one (magnitude characterization)—
with both cases improving the model accuracy. We also show that
the inclusion of additional knowledge to the model (the interstation
relations) can improve the training results.

We find with TL that the first two layers of the pre-trained model
are the most important for our problem because they are used for
feature extraction from single station inputs, therefore being the
only layers that can be reasonably transferred, and that the learning
rate of these layers can be set to 0. Therefore, when doing TL
using our proposed model, only the third, cross-station layer needs
to be retrained. This also implies that the adoption of 39 stations
to construct the input waveforms for TL is arbitrary and can be
varied according to the target problem, as we use TL only for the
single-station feature extractors.

The experiment to predict the IMs at only one station (PII) showed
that the simplification of the problem (i.e. reduced indeterminacy
deriving from many fewer unknowns) led to performance improve-
ments. We also show that in a theoretical application of our model
as an EEW system for points of interest for the area in the vicinity of
the station PII, our CNN model could be used to provide warnings
for a large number of earthquakes of the selected data set.

7 DATA A N D R E S O U RC E S

Earthquake catalogue and waveform data have been downloaded
through the INGV FDSN web services (http://terremoti.ingv.it/en/w
ebservices and software; INGV Seismological Data Centre 2006;
Emersito Working Group 2018). Waveforms have been downloaded
and processed using python library Obspy (Beyreuther et al. 2010).
IMs for the stations with no data have been calculated using USGS
ShakeMap 4 (http://usgs.github.io/shakemap/sm4 index.html). The
CNN model has been developed using the Keras Python Deep
Learning library (Chollet et al. 2015). The models and the data of
this paper are available on https://github.com/djozinovi/TLpredIM.
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S U P P O RT I N G I N F O R M AT I O N

Supplementary data are available at GJI online.

Figure S1. Input example with the normalized traces for an M = 4.4
earthquake
Figure S2. Non-normalized input example for an M = 4.4 earth-
quake.
Figure S3. The CNN model results for log10PGA > 2 of the different
sampling weights approaches used. The blue line represents the
log10PGAtrue = log10PGApredicted and the red, green and purple lines
represent the regression lines for no weights model, model that used
the maximum of the IM for the weights and the model that used the
earthquake magnitude for the weights, respectively.
Table S1. The stations used in the study and some of their charac-
teristics.
Table S2. IMs’ residual statistics for the CNN predictions for the
observed IMs (for the stations having recorded data) and for the
ShakeMap predictions (for the stations that had no recorded data).
Table S3. IMs’ residual statistics for the CNN predictions for the ob-
served IMs (for the stations having recorded data) and the ShakeMap
predictions (for the stations that had no recorded data).
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Table S4. IMs’ residual R statistics for the STEAD → CI exper-
iment: the CNN predictions on the CI data set using TL from the
pre-trained STEAD model.
Table S5. IMs’ residual statistics for the CNN predictions for the ob-
served IMs (for the stations having recorded data) and the ShakeMap
predictions (for the stations that had no recorded data).
Table S6. IMs’ residual R statistics for the STEAD → CW exper-
iment: the CNN predictions on the CW data set using TL from the
pre-trained STEAD model.

Table S7. IMs’ residual statistics for the CNN predictions for the ob-
served IMs (for the stations having recorded data) and the ShakeMap
predictions (for the stations that had no recorded data).
Table S8. IMs’ residual statistics for the CNN predictions.
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