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Abstract

Dst (Disturbance Storm Time) is an hourly index of magnetic activity computed from the measured intensity of the globally symmet-
rical equatorial electrojet (Ring Current) obtained by a series of near-equatorial geomagnetic observatories. We selected and trained an
Artificial Neural Network (ANN) to give the estimation of the Dst index through the magnetic data measured by the Swarm three-
satellite mission. From November 2014 to December 2019, we selected a balanced number of quiet and disturbed days, to get the most
uniform set of Dst index values as possible. We then collected a big data collection of Swarm magnetic signals, confined to three very
narrow belts of low-to-mid latitude: this choice allows it to better resemble the geographic distribution of the geomagnetic observatories
contributing to the calculation of Dst. We also extended the analysis to mid latitude locations to increase the number of satellite samples.
Once we determined by means of simulations the best network topology, we trained the network and tested its capabilities. The outcomes
show that the ANN is able to give a reliable fast estimation of the Dst index directly from Swarm satellite magnetic data.
� 2021 COSPAR. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/
by-nc-nd/4.0/).
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1. Introduction and motivation

The processes underlying the geomagnetic activity are
rather complex. Geomagnetic storms have a great impact
on the terrestrial space environment, which can affect
power lines, spacecraft operations, and telecommunica-
tions (Ayala Solares et al., 2016). In turn, they can affect
electronic devices and Global Positioning Systems (GPS)
on Earth causing a lot of damage to the technological
infrastructures. A geomagnetic index describes the intensity
of the geomagnetic disturbance for a certain period of time,
all over the globe or regionally. There are sets of indices
used to describe such phenomena in Geomagnetism: some
of them describe the general level of geomagnetic activity at
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global scale, as Kp or Ap (planetary indices); and some
others describe a particular type of geomagnetic activity
in specific areas, such as the Dst or AE (Auroral Electrojet)
indices, useful for characterizing equatorial or auroral
region magnetic activity, respectively. In this work, we
focused on the estimation of the Dst index because it char-
acterizes the geomagnetic storm evolution (Wanliss, 2004).

The hourly Dst index represents a measure of the inten-
sity of the symmetrical part of the ring current near the
equator (Wanliss, 2004). This current is mainly due to the
drift of both the positive and negative charged particles
bouncing back and forth polarward along the magnetic
field lines resulting in a net current lying in the equatorial
plane and circulating clockwise around the Earth (when
viewed from the north) at a distance of 3 to 8 Earth radii
(RE).
ommons.org/licenses/by-nc-nd/4.0/).
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The Dst is calculated from the horizontal magnetic field
component at four low-latitude magnetic observatories:
Honolulu, San Juan, Hermanus1 and Kakioka, properly
chosen because they are well distributed in longitude and
quite far from both the auroral and equatorial electrojets
(Wanliss, 2004).

Since it is conceived to measure the perturbations caused
near the equator by the current systems flowing above the
ionosphere, both Solar Quiet (Sq) contribution of the day-
side currents in the ionosphere and the secular variation
due to internal sources are considered for each observa-
tory. In particular, for taking into account the secular vari-
ation, the baseline for each observatory is calculated
through a quadratic fit to the yearly average values of the
five quietest days of each month for each year, according
to the procedure described in Sugiura and Kamei (1991)
(see also Temerin and Li, 2015): hence, its definitive value
requires the end of the current year and is released after
many months. Meanwhile, the provisional Dst is usually
delivered by the World Data Center for Geomagnetism
(Kyoto - Japan, http://wdc.kugi.kyoto-u.ac.jp/).

The complexity behind its calculation and the delay in
its release are the reasons why we explored the possibility
of giving a rapid evaluation of the Dst index exploiting
the property of ANN at application stage, once it com-
pleted its training phase. In other words, starting from
the virtually quasi real-time magnetic data, measured by
the European Space Agency (ESA) Swarm satellite mis-
sion, we try to find out whether it is possible to retrieve
the Dst definitive values as accurately as possible by means
of a properly designed artificial neural network (ANN).
Although recently a Swarm-based Dst index has been
derived by Balasis et al. (2019), as far as we know, this is
the first time that a nonlinear approximation method as
the ANN is applied to Swarm magnetic data for the pur-
pose of estimating the Dst index.

ANNs have demonstrated their ability to model nonlin-
ear physical systems (Rumelhart et al., 1995) involving
complex behaviours, taking into account any nonlinear
relationship between the explanatory and dependent vari-
ables, especially when they use multiple layers or Deep
Learning architecture (Lek and Guegan, 1999; Witten
et al., 2017).

ANNs seem to perform more accurately than other
techniques such as statistical ones, especially if functional
space is particularly complex and the input data might have
different statistical distributions (Benediktsson et al., 1990,
1993; Schalkoff, 1992).

Cybenko (1989), Hornik et al. (1990) and Hornik (1991)
demonstrated the capability of feed-forward architecture of
approximating any continuous function: this capability
goes by the name of ‘‘universal approximation theorems”
(Kratsios, 2021).
1 Now called SANSA Space Science, previously the Hermanus Magnetic
Observatory (HMO).
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Their ability comes from a process that allows them to
learn from data and make predictions: at the start, the
model represented by the ANN is fit on a training dataset
(a set of input–output pairs of tuples as examples) used
to compute the ‘‘weights” of connections between neurons,
through a ‘‘supervised” learning and an optimization
method. The fitted model is then used to predict the
response to a second dataset (called the validation dataset):
this dataset is held back from the training dataset and is
used to give an unbiased evaluation of the model skills,
thus helping in tuning the parameters of the model. Usu-
ally, a final dataset (called test dataset) is used to provide
the score of the optimum model obtained in the training
stage. At the end of these processes, i.e. once the so-
called learning phase has been completed and the model
is optimized, it can be applied very quickly to new data,
in order to drastically reduce the computational load
required for data management (e.g. James et al., 2013 for
more details on this topic).

The approximation properties of the ANNs are useful in
many fields of application, for example the forecasting of
some physical phenomena in which it is necessary to solve
direct or inverse problems. In particular, the technique has
been proved successful in Remote Sensing (Atkinson and
Tatnall, 1997; Mas and Flores, 2008) by addressing various
geophysical issues, such as: retrieve surface wind speed
(Krasnopolsky et al., 1995), height-resolved ozone recover-
ies (Müller et al., 2003; Iapaolo et al., 2007), temperature
estimates (Butler et al., 1996), estimate of humidity profiles
(Blackwell, 2005; Cabrera-Mercader and Staelin, 1995);
and more recently, for the quantitative estimate of volcanic
emissions (Picchiani et al., 2011, Piscini et al., 2014a,
Piscini et al., 2014b), the monitoring of volcanic activity
for the lava flow detection (Piscini and Lombardo, 2014)
and the earthquake damage assessment (Piscini et al.,
2017).

Recent studies have shown the use of several different
kinds of ANNs for diverse geomagnetic indices forecast,
by making use of the solar wind parameters and indices
from interplanetary magnetic field measured by the
Advanced Composition Explorer (ACE) spacecraft at the
libration point L1: e.g. the Bala model, based on ANN,
was introduced to forecast three indices: Kp, Dst, and
AE at 1 h, 3 h and 6 h in advance (Bala and Reiff, 2012).
Other studies have introduced sophisticated techniques/al-
gorithms: for example long short-term memory (LSTM)
algorithm for Dst and Kp estimation (e.g. Myagkova
et al., 2021,2017; Efitorov et al., 2018; Tan et al., 2017);
multiscale radial basis function (MSRBF) (Wei et al.,
2007); Support Vector Machine (SVM) and Distance Cor-
relation (DC) (Lu et al., 2016). Correctly, their approach
tried to model the dependence of the geomagnetic effects
on their sources, i.e. the solar activity, from the large vari-
ation of the solar wind parameters and the Interplanetary
Magnetic Field (IMF) orientation. A very recent noticeable
improvement of this approach is represented by the direct
inclusion of the observations of radiative phenomena on
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the solar disk by Tasistro-Hart et al. (2021), which also
provides a brief review of articles devoted to forecasting
the Dst index.

As explained before, our aim and consequently our
approach to the problem of the geomagnetic indices esti-
mation is different. In fact, in recent times many Low Earth
Orbit (LEO) satellite missions, like Ørsted (1999),
CHAllenging Minisatellite Payload (CHAMP, 2000–2010)
and the newly Swarm (2013) from ESA, have been devel-
oped for a better study and understanding of the geomag-
netic field closest to the Earth by collecting a global
mapping of it. Our aim is to explore the feasibility of deriv-
ing an estimation of the magnetic index Dst, as accurately
as possible, from a neural network trained to recognize and
model the relationship between the magnetic components
measured by LEO ESA Swarm satellites (at least one of
them) and that global index. In addition, we want to find
out what degree of reliability we get by using a neural net-
work approach for magnetic index retrieval, because with
this type of networks, as soon as the magnetic data of
the satellite missions (present and future) are released, it
would be possible to provide a quick estimate of the Dst
index.

The article is organized as follows: Section 2 presents the
data (from selection to transformation) and methods (neu-
ral architecture) adopted; Section 3 describes the results of
the ANN and the test to unseen data; Section 4 discusses
the main results and Section 5 mentions the most impor-
tant conclusions and some possible future developments.

2. Data and methods

The ESA Swarm satellite mission (Friis-Christensen
et al., 2006) has been successfully orbiting since November
2013: at the time of writing this manuscript, the three iden-
tical satellites of the mission are still monitoring the geo-
magnetic field and its variations: each satellite has both
scalar and vector magnetometers, together with additional
complementary instruments to monitor the ionospheric
plasma density, temperature and composition. The three
satellites are often indicated as Alpha, Bravo, and Charlie,
or indifferently Swarm A, Swarm B and Swarm C. The
orbital configuration is selected to achieve the various mis-
sion objectives: Alpha and Charlie fly close each other at a
separation of about 150 km at an altitude of about 445 km
and Bravo satellite is on a higher orbit of about 517 km (at
May 2021) and almost perpendicular to the other two.

Generally, ESA provides Swarm data within 3–4 days
from acquisition time. In this paper, we made use of the
magnetic field data with a resolution of 1 Hz from April
2014 to April 2020.

Hornik et al. (1990) showed that the ANNs in general,
and the multilayer perceptrons (MLPs) in particular, are
capable to approximate any kind of highly nonlinear func-
tions, once they are trained to generalise those functions
when new unseen data are presented (Cybenko,1989).
3

A MLP is composed of a net of interconnected percep-
trons (Rosenblatt, 1962), the so-called ‘‘neurons” (the
nodes), which constitute a nonlinear mapping between
the input [xi] and the output vectors [yj]. Each node is con-
nected to the others through weights and output signals,
the latter being the response of the simple nonlinear func-
tion, the transfer or activation function, to the sum of
the inputs to the node. When the network combines the
inputs (also named ‘‘features”) to obtain a given output,
the ANN ‘‘learns” the unknown function y ¼ f xð Þ that
mimics the desired response (Principe et al., 2000).

A back-propagation neural network (BPNN) is a MLP
consisting of an input layer with nodes representing input
variables to the problem, an output layer with nodes repre-
senting the dependent variables (i.e. what is being mod-
elled), and one or more hidden layers containing nodes to
help capture non-linearities in the data, in which the neu-
rons can be fully or partially interconnected (Hecht-
Nielsen, 1990).

This work uses a BPNN with several hidden layers,
which falls into the so-called ‘‘Deep Neural Network”
(Witten et al., 2017, chap.10). Such networks are widely
used for their flexibility and adaptability in modelling a
broad spectrum of problems in many application areas
(Rumelhart et al., 1986). Moreover, Gardner and Dorling
(1998) and Hsieh and Tang (1998) showed how this kind
of ANNs can be highly effective in the solution of atmo-
spheric inverse problems, and successful in classification
and regression problems as well (Tasistro-Hart et al.,
2021). For example, for remote sensing applications, usu-
ally, the input layer collects data values (the spectral signa-
ture of the respective pixel of the image) such as radiances
or brightness temperatures from different spectral bands,
with the number of nodes equal to the number of bands;
meanwhile the output layer provides the corresponding
retrieved geophysical parameter value. In this perspective,
as typical for an ANN (Nilsson, 1996), we can consider
the Dst index as the result (output) of a nonlinear mapping
through the network (layers) of the magnetic measure-
ments acquired by the magnetometer on-board the Swarm
satellite along with some other features (input), which are
as much as possible representative of the underlying phy-
sics: we will describe all of them in detail below.

One of the most important preliminary phases of the
machine learning approach is the ‘‘feature extraction”: this
stage aims at eliminating the redundancy present in input
data, and facilitating generalization during the training
phase. Therefore, we focused on the minimum number of
data that reflect the dynamics of the external driving forces
and environmental conditions and capture the essential
patterns, at the same time.

First, from the World Data Center for Geomagnetism

(http://wdc.kugi.kyoto-u.ac.jp/qddays/index.html) in the
time interval between November 2014 and December
2019, we selected all disturbed days (five per month), and
around the 20% of quiet - and quietest - days in the same

http://wdc.kugi.kyoto-u.ac.jp/qddays/index.html
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period: in this way we tried to reduce the predominance of
Dst values corresponding to quiet days with respect to the
less numerous disturbed ones. Then, in order to disrupt any
possible time dependence to sequentiality and to further
mix the distribution of Dst values, we shuffled this list of
dates.

Then, according to the shuffled list of dates, we selected
magnetic data (X, Y, Z components) of the Swarm C satel-
lite only: the reason why we did not consider Swarm A is
that it does not add significant information, being it prac-
tically parallel to its twin satellite C. For what concerns
Swarm B, in this work we did not consider making use of
its data in order to possibly avoid unnecessary bias or com-
plexity, due to different measurement conditions (higher
altitude and different local time) with respect to the other
satellites.

To resemble the geographic distribution of the four low-
latitude magnetic observatories (Honolulu, San Juan, Her-
manus and Kakioka) participating to the usual Dst compu-
tation, we limited to data within three narrow belts of
latitude, each with 0.1� width at 20�, 30� and 40� both
north and south (Fig. 1).

Since we are interested in the effects of the external con-
tributions to geomagnetic signals only, we removed from
the three components X, Y, Z the correspondent internal
(core and lithosphere) sources computed through the
CHAOS-7.3 model (Finlay et al., 2020; this version was
the most up-to-date available when preparing the datasets):
in this way we removed the contribution of the longest
wavelengths, including the secular variation of the geomag-
netic field. For illustrative purposes, we plot the residual
magnetic components of both the ANN training and vali-
Fig. 1. The geographical distribution of the whole input data: the blue dots re
usual computation of the Dst index. The red lines are the thin bands of latitud
observatories. (For interpretation of the references to colour in this figure leg
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dation datasets, distributed as shown in Fig. 2: it is note-
worthy the symmetry around zero of both the residual Y
and Z components. On the contrary, the residual X appears
asymmetrically distributed: this can be easily explained by
the particular sensitivity of this horizontal component to
variations or increases in the ring current.

Swarm satellite trajectories are designed to drift moving
across the different local times during its mission while
moving along a quasi-polar orbit. Therefore, we needed
to cope with the different conditions affecting the measure-
ments spanning six years: dayside, nightside, seasonal solar
position etc. To this purpose, we tried to reduce those dif-
ferences, or at least to take them into account, by trans-
forming the geographic coordinates into magnetic
latitude, longitude and local time in the altitude adjusted
corrected geomagnetic (AACGM) coordinate system
(Shepherd, 2014; Laundal and Richmond, 2017) which,
together with the satellite height above the surface and
the residuals magnetic components (X, Y, Z), constitute
the ‘‘features” to give as input to the network. Please, note
that according to that reference system, AACGM coordi-
nates are undefined in some small regions close to the mag-
netic equator, the largest of which lies between Africa and
South America (see Laundal and Richmond, 2017 for more
details). Therefore, we systematically removed all data fall-
ing within those regions, which however constituted a very
negligible fraction of the total.

In conclusion, taking into account the above considera-
tions and to include both the dynamics of the external driv-
ing forces and the environmental measurement conditions,
we have selected the following seven variables as input
‘‘features” to the network: the magnetic latitude, longitude
present the location of the four geomagnetic observatories involved in the
e where the data inputs were selected to overlap the latitude of the ground
end, the reader is referred to the web version of this article.)



Fig. 2. The distribution of the three residual magnetic components for both training and validation datasets after removing the internal (core and crust)
contribution from CHAOS-7.3 model. Note that the residual Y and Z components are symmetrically distributed around zero. On the contrary, the
residual X shows an evident asymmetry towards the negative values, reflecting the effect of the magnetic disturbance caused certainly (but not only) by the
enhancement of the ring current.
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and local time (MLat, MLon and MLT, respectively), and
the satellite height together with the three geomagnetic
component residuals (res. X, Y and Z).

As output for the ANN, we considered the Dst values,
each associated with the corresponding input tuple. As a
whole, the dataset consists of more than 236,000 tuples:
about 189,000 and 47,000 for the training and validation
stage, respectively.

The distributions of the Dst index for the two datasets
are given in Fig. 3. We notice that the differences in the tails
of their distribution evidence the predominance of small
values (quiet days) compared to the larger ones: of course,
this is due to the limited number of disturbed days. This
limited number is also the reason why we intervened man-
ually when the most disturbed day values were accidentally
included in the validation dataset, so the network could
learn to recognize cases of more severe magnetic storms.

We used the MLP which trains using backpropagation,
with no activation function in the output layer (i.e. using
the identity function), and the tanh as the activation func-
tion for the rest of the nodes. We also chose the Levenberg-
Marquardt backpropagation algorithm as the solver, which
uses the Jacobian for calculations, because it is one of the
fastest backpropagation algorithms, particularly useful
when dealing with tens of thousands of training samples.

One of the main issues in Neural Network is the selec-
tion of the ‘‘optimal” network architecture: with this term,
we mean a collective name for network topology, training
algorithm and parameters, among others (Twomey and
Smith, 1995).
5

In order to select the optimal network topology for our
purpose, we performed a sort of ‘‘trial and error” prelimi-
nary test to assess it, to avoid both overfitting and poor
generalization capability.

Through a MATLAB� (Matlab, 2020) script conceived
for this scope, we first divided data into two sets, which we
call the ‘‘Training” and the ‘‘Validation” dataset, respec-
tively: the first one was used during the training stage,
when the software further created three subsets (called
training, testing and validation in the proportion of 70%,
20% and 10%, respectively, as described in the Introduc-
tion); the second one was used to validate the results, i.e.
to test the capability of the network to generalize, since
those inputs were never presented to the network before.
We emphasize that not only do the datasets include both
magnetically quiet and disturbed periods, but that they
are also homogeneous with each other, all belonging to
the same six-year time span; in addition, we point out that
the Validation dataset is used to determine the best topol-
ogy, as described shortly after.

Then, in order to find the best network, we recursively
explored the performances of a series of topologies (with
one, two and three hidden layers) each with the same input
and output datasets: we proceeded from one to three hid-
den layers by progressively increasing the number of neu-
rons in each layer: from 7 to 60 for the one-layer, and
from 3 to 25 (for each layer) of the two hidden layer net-
work. Instead, for the three-layer network, we chose a sym-
metric scheme (�2i� i neurons, with i ranging from 1 to 9)
for two reasons: first, because a systematic variation in the



Fig. 3. Linear-log distribution of the Dst index collected for both the training and validation stages. These two datasets are almost identical, but the lowest
Dst values are associated with the training (see main text for more details).
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neuron numbers in each of the three hidden layers would
have been very time-consuming; second, because symmetry
is important in a number of situations, for instance, in
order to reproduce some particular nonlinear phenomena
(Bishop, 1995).

In literature (e.g. Twomey and Smith, 1995), there are
different parameters used to measure the performance of
the networks: among them, the Mean Absolute Error
(MAE)

MAE ¼
PN

k¼1 yk � pkj j
N

; ð1Þ

with yk being the actual value, pk the predicted one and
N the number of the samples; the Mean Squared Error
(MSE) and the Root Mean Squared Error (RMSE), this
latter being simply the square root of MSE:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffi
MSE

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
k¼1 yk � pkð Þ2

N

s
ð2Þ

We chose to measure the performance of a trained NN
by means of the RMSE computed according to Eq. (2).

For each combination, we collected and compared the
RMSE both for the Training and Validation datasets: the
resulting performances, as a function of the different topol-
ogy and number of neurons, are shown in Fig. 4.

The three panels of Fig. 4 show the RMSE obtained
during Training (black line) and Validation (red line) for
one, two and three hidden layers. Focusing on the perfor-
mance on validation (red curve) for both the one and three
hidden layer networks, we see that they show a common
behaviour: a decrement which reaches a minimum, fol-
lowed by a rising. The minimum corresponds to 27 neurons
6

and 7–14-7 for the networks with one and three hidden lay-
ers, respectively. On the contrary, for the network with two
hidden layers we can notice a cycling behaviour between
minima and maxima along a general stable plateau: that
is why we decided to continue our investigation of the first
and last topologies, i.e. the more interesting ones. There-
fore, we compared the performances of the one hidden
and three hidden layers with the aforementioned number
of neurons (27 and 7–14-7, respectively), corresponding
to the minimum of the RMSE for the validation dataset:
incidentally, it is worth noting that the number of neurons
in those networks results in a very similar number of model
parameters (around 250).

As resumed in Table 1 and shown in Fig. 5 (which col-
lects the scatter plots between the actual and the predicted
Dst values for both topologies for the Training dataset) the
general behaviour of the networks is very similar during the
learning phase. Although the standard deviation of their
outputs and the R coefficient are all comparable with each
other, slight differences seem to emerge when visually com-
paring them: at the lower Dst values, the dispersion of data
is apparently less for the three-hidden than for the one-
hidden layer network. For practically equivalent results
in terms of performance, we decided to choose the network
that better ‘‘predicted” the lower Dst values, corresponding
to the most disturbed magnetic conditions: therefore, we
selected the one with three hidden layers made of 7, 14
and 7 nodes, respectively.

3. Results

The generalization capability and retrieval accuracy of
our ANN was evaluated for some distinct independent



Fig. 4. The topology selection through training-validation trials and evaluation of the RMSE for the different cases: training (black) and validation on the
unseen dataset (red). We focused on the validation results because our aim was the ‘‘best case network”, in terms of its ability to generalize. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
Comparison of the results for the two network topologies in terms of number of samples, RMSE, standard deviation (target and model) and correlation
coefficient.

Samples RMSE Sigma
(target Dst)

Sigma
(output Dst)

R

One Hidden Training �189 k 8.95 18.77 16.52 0.879
Three Hidden Training �189 k 8.92 18.77 16.54 0.882
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datasets, including both quiet and disturbed samples in
order to evaluate ANN performance in different electro-
magnetic conditions. To do so, we compared the prediction
error for both the Training and the Validation stages
shown in Fig. 6. As a rule of thumb, it is commonly
assumed that the accuracy of a regressive neural network
is assessed when the RMSE is less than the standard devi-
ation (STD) of the target dataset ykf g : a comparison of
their values in Table 2 shows that this is the case for our
network, being the RMSE much less than the standard
deviation.

It is noticeable that the application of the ANN model
to the validation set shows the RMSE value, 10.15, well
7

below the corresponding values of the target standard devi-
ation (STD), 22.71.

Another way to verify whether the network generalizes
well is by means of the error distribution: the error is meant
as the difference between the actual and the computed Dst
values yk � pk; k ¼ 1:::Nð Þ . Looking at the error his-
tograms for both the Training and Validation stages
(Fig. 7) what emerges is that in most cases the absolute
value of the error is less than around 10 nT for both cases
(56% and 59%, respectively); in addition, around 94% of
the outcomes stay confined within the interval �17; 17½ �
nT: this may indicate a good generalization capability of
the network.



Fig. 5. Scatter plot between the target and the modelled Dst for two different topologies: (right) the results of the network with 1 hidden layer; (left) the
result of the network with 3 hidden layers.

Fig. 6. Scatter plot between Dst target and model for training set (left) and validation set (right).

Table 2
Summary of training and validation sets in terms of number of samples,
RMSE, standard deviation (target and model) and correlation coefficient.

Samples RMSE Sigma
(target Dst)

Sigma
(output Dst)

R

Training �189 k 8.84 18.77 16.59 0.882
Validation �47 k 10.15 22.71 20.95 0.8959
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In order to test further the network performance in an
operational fashion, we applied our ANN model to other
unseen data. We selected a total of six days in 2020, three
8

quiet and three disturbed, and prepared the corresponding
input from the Swarm C data. We then applied the net-
work to each corresponding dataset: the selected dates
and the associated results are listed in the next Table 3,
and the Fig. 8 and Fig. 9 show the regression (right) and
the distribution of the prediction error (left) for each test
case.

First, looking at Table 3 we can notice that just in two
cases the RMSE is lower than the standard deviation of
the target: the 20 April and 31 March 2020, which are inter-
estingly classified as geomagnetically disturbed. Results
about the first case (20 April) are depicted in Fig. 8A,



Fig. 7. Distribution and percentage of the prediction error of the network on the training (seen) and validation (unseen) datasets. It is noticeable that
almost 56% (59%) of the cases are distributed around zero (±10 nT); 94% (93%) stay within the interval [-15 17] ([-17 17]) nT for the training (validation)
dataset.

Table 3
Summary of the results of the ANN on unseen data for three quiet (Q) and three disturbed (D) days in 2020.

Type
Disturbed

Quiet

Date Samples R RMSE Sigma
(target Dst)

Sigma
(output Dst)

Q 2020 02 03 281 0.45 6.21 4.40 4.81
Q 2020 03 14 294 0.06 4.35 2.17 3.49
Q 2020 04 30 288 0.72 7.75 3.95 3.82
D 2020 04 20 297 0.86 12.23 23.92 20.68
D 2020 03 31 287 0.69 7.47 9.35 8.91
D 2020 02 07 290 0.22 7.06 4.66 6.40
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which shows a good accordance between target and model,
and the error distribution is centered on quite small values.

By looking at the figures of the results for the three dis-
turbed days, we note that the greater the absolute value of
9

the Dst is, the more the network is able to follow its trend.
This is particularly true for the case of the 20 April and 31
March 2020: noticeably, they are the two cases in which the
RMSE is lower than the standard deviation of the target.



Fig. 8. Test cases for disturbed days (04–20, 03–31 and 02–07). (Left) Scatter plot and regression parameters; (right) histogram of the prediction error in nT.
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Fig. 9. Test cases for quiet days (02–03, 03–14 and 04–30). (Left) Scatter plot and regression parameters; (right) histogram of the prediction error in nT.
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Not only that: even when the alignment along the bisec-
tor tends to get lost (i.e. when the ‘‘disturbances” become
less intense) we find that the error does not differ from
the interval ± 20 nT that we identified with the average pre-
diction error (cfr. Fig. 7).
11
Regarding the behavior of the network during the
inspected quiet days (when the Dst absolute values are [
20 nT), we note that, although the regression seems to lose
its meaning, the tendency to overestimate seems more
prominent and the RMSE is comparable (but always
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higher) to the target standard deviation, in general the
response of the network falls within the range of uncer-
tainty mentioned above for Training and Validation (i.e.
the errors distribution are centered on small values); in
one case (30 April, Fig. 9C) the distribution is not centered
around zero, rather we find an unbalanced distribution
towards overestimated values. These results bring to con-
sider that the obtained ANN does not show a good gener-
alization capability for quiet geomagnetic cases.
Nonetheless, the analysis puts in evidence how the neural
network model seems more reliable in monitoring a geo-
magnetic disturbed situation.

As we reported in the Introduction section, Balasis et al.
(2019) derived a Swarm-based Dst index. The authors
showed that during three periods in 2015 (precisely, in
March, June and December) when geomagnetic storms
occurred, the Swarm-derived Dst index was able to follow
the standard ground-based Dst with a correlation greater
than 0.9 (Balasis et al., 2019). In order to test the perfor-
mance of our results with Swarm-based indices computed
by other methodologies, we considered the Dst derived
by Balasis et al. (2019).

From our dataset spanning from 2014 to 2019, we
selected the same three months of the 2015 analysed by
Balasis et al. (2019), i.e. March, June and December. Then,
we computed the correlation coefficient of the results of the
neural network (DstNN) with the standard ground-based
Dst. Please, note that due to the way we selected our data-
set, discontinuity in our time series was unavoidable.

Table 4. compares our results with those found by
Balasis et al. (2019).

It is noteworthy that the results of the present study
show a very good compatibility with the other Swarm-
based index by Balasis et al. (2019), despite the discontinu-
ity in the data series.

4. Discussion

We expected that the ANN model we obtained will
retrieve, in particular, good estimation of the ‘‘disturbed”
Dst values: when we look at the three scatter plots (and
regression curves) in Fig. 8 (the three unseen disturbed days
in 2020) we could appreciate the ANN capability to give
good response to large external contributions, concluding
that our neural network model seems more reliable in mon-
itoring a geomagnetic disturbed situation.

But we are also interested in better understanding the
causes of both the wide dispersion of the outputs at Dst
Table 4
Correlation coefficients between the Dst and the DstNN, the network output, in
correspond to those analysed by Balasis et al. (2019), periods affected by strong
intervals and the good agreement with the previous result by Balasis et al. (20

DstNN vs Dst

Timespan March 2015 June 2015
Correlation 0.945 0.930
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values less than �100 nT (more evident in Fig. 6, where
the output of the Validation dataset is represented), and
the spread of the results for small Dst values (‘‘quiet
hours”). Indeed, although we can see there is a quite good
response of the network, as the output values distribute
along the bisector with a relatively small spreading,
nonetheless this dispersion increases around �50 nT and
rapidly gets very noticeable from Dst values less than
�100 nT: in particular, we note an asymmetry with the pre-
dominance of overestimated outputs.

To look for an explanation, this outperformance behav-
ior was analyzed more in detail for the more numerous Val-
idation dataset. First, we inspect the relationships between
the results and the ANN input variables, by considering
separated datasets, as depicted in Fig. 10. There, we consid-
ered three distinct groups: the first one comprises those
outputs whose differences (D) with true values are
between + 20 and �20 nT (light blue), independently of
the target Dst. Note that this interval is comparable to
the width of the distribution around zero of the prediction
error, so it is reasonable to consider this group as ‘‘good
results” when compared with the other two groups. These
latter are selected starting from the values of the target
Dst less than �100 nT, with an absolute difference |D| from
the true value greater than 20 nT: they are further distin-
guished according to whether they are overestimated (dark
red) or underestimated (red).

To understand the origin of even large deviations from
the true values, we focus on the input data of the three
datasets and their specific characteristics and mutual differ-
ences. In Fig. 11, we have represented, for comparison, the
normalized distributions for the Central, High (the overes-
timated) and Low (the underestimated) input data points.

In general, the distributions of the residual Y and Z
magnetic components and of the magnetic spatial coordi-
nates MLat and MLon (Fig. 11B, C, D and E, respectively)
are compatible with each other. Curiously, a significant dif-
ference for the three data groups emerges when inspecting
the distributions of both the residual compo-
nent X (Fig. 11A) and the magnetic local time MLT
(Fig. 11F).

Indeed, by looking at Fig. 11A, we notice that the cen-
troids of the distributions of the
residual X corresponding to the overestimated and under-
estimated data are largely shifted towards the increasingly
negative values if compared to the central group: almost
certainly this indicates that the residual X component
strongly drives the results, but we cannot exclude the action
the periods of March, June and December 2015. These months practically
geomagnetic storms. It is noteworthy both the good correlation for all time
19).

Swarm-based Dst (Balasis et al. (2019))

December 2015 2015
0.918 J 0.90



Fig. 10. Scatter plot target vs model considering three distinct subsets: the
first includes those values which are close to the actual corresponding
values, i.e. the difference D lays within the ± 20nT interval (light blue); the
other subsets comprise the values higher than �100 nT (very disturbed
conditions) indicated with the green vertical line. In turn, they are divided
depending on whether their differences with the actual value (D) are
greater (red) or lower (dark red) than ± 20 nT, respectively, for further
analyses and considerations. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this
article.)
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of other causes, such as (among others) the uncertainties
accompanying the use of the model CHAOS-7.3 used to
obtain the residuals. In fact, we also notice that many data
points of the ‘‘central” residual X components are associ-
ated with very low values of Dst and yet the corresponding
distribution maintains not far from zero, i.e. does not go
towards low values. For what concerns the relationship
of the three inspected datasets with MLT in Fig. 11F, an
evident asymmetry emerges for the two High and Low
groups of dispersed data: the concentration of their distri-
butions around 8–10 and 22–24 MLT. We may hypothesize
that this behaviour is related to the effects of the onset and
termination of the large ionospheric currents and photo-
chemical processes driven by the direct exposure to
sunlight.

In light of the result in Fig. 11A, we first moved further
to inspect the correlation between the residual
geomagnetic X component, Dst target and output, respec-
tively for the three dataset described above, a relation
depicted in Fig. 12, Fig. 13 and Fig. 14.

Fig. 12 shows the scatter plot between both the actual
and modelled Dst, and the residual X component for the
first dataset (the ‘‘good” one): we notice that they show a
good correlation, although the model is characterized by
a slightly minor spreading, maybe due to low noise in the
input signal or to a smoothing capability of the ANN.

When inspecting the same correlation with the
residual X component of the two other datasets in
Fig. 13 and Fig. 14 (the over- and underestimated groups),
we notice a greater dispersion for the actual than for the
modelled Dst: the model reveals a high correlation
13
with X component of geomagnetic field and it seems as if
the network carries out a sort of signal filtering, as internal
noise removing. Since the residual X component depends
only on the external component of the geomagnetic field
because of the internal components removal, it seems that
the neural model behaves more coherently with variation
of magnetic field induced from the external sources. We
believe that this aspect deserves more attention and much
analysis in the future for a better comprehension of the
input data and of the results of the network.

After analyzing the relationships between the
residual X components and the Dst (input and output)
and having also noted that the points of the three datasets
are distributed uniformly in space (Fig. 15), we decided to
turn our attention to the possible mutual dependence of
those two quantities on the magnetic local time MLT, i.e.
the other input parameter whose distributions for the three
groups (Fig. 11F) showed an evident differentiation.

Fig. 16 and Fig. 17 show the dependence on MLT by the
residual X component and target Dst, respectively. They
both show the presence of bunches corresponding to par-
ticular MLT: 7–8; 10–11; 19–20 and 22–24. Looking at
Fig. 17, we observe that the clusters are characterized by
both central and under-overestimated network estimates.
Therefore, the performance of the ANNs does not depend
on MLT.

Since the introduction of Dst, more data are available
and now we know that complex and rapid interactions
and large particle fluxes take place during the diverse
phases of a magnetic storm. That is why some authors
question the adequacy of Dst hourly index to represent
the ring current effect and its rapid variations (e.g. Camp-
bell, 2004), although some others found that compared to
the 1-minute SYM-H index, Dst may be used as the low-
resolution version of that (Wanliss and Showalter, 2006).

Therefore, when evaluating the output of the network,
we need to bear in mind that many difficulties may arise.
First, we must consider that complex behavior marks both
the solar activity and the indices introduced to describe
their geomagnetic effects, and the hasty variations in their
characteristics make it difficult to model and predict them
(Mirmomeni et al., 2010). The procedure of determining
both the baseline and the average of the four values of
Dst computed by each observatory, together with the
removal of Solar quiet (Sq) currents and of the asymmetric
part of the ring current, may introduce a smoothing of the
rapid change of the external conditions: added to the fact
that the given value is hourly, this can determine a certain
degree of inadequacy of this index to follow the rapid vari-
ations which, on the contrary, are accurately measured by
the satellite instruments: we argue that the residual mag-
netic components feeding the ANNs are certainly affected
by the enhancement of the ring current during the magnetic
storms, as evidenced by the scatter plot between Dst and
the residual X component in Fig. 13 and Fig. 14; but we
also believe that the hourly Dst index is not able to describe
the effects of other different ionospheric phenomena which,



Fig. 11. Histograms of the inputs: the three residual magnetic components (X, Y and Z) and of the three magnetic time–space coordinates: magnetic
latitude (MLat), longitude (MLon) and local time (MLT) corresponding to the three groups of data points (named Central, High and Low) described in
Fig. 10. We notice that the distributions of the residual Y and Z components are mutually compatible, meaning that we should not expect they give origin
to the large dispersion. That is not the case of the residual X component: they differ consistently and this difference may be at the base of the large
dispersion for large negative values of Dst. For what concerns the space–time coordinates, we notice that their distributions are mutually compatible,
meaning that we should not expect they are the origin of the large dispersion, except for MLT (see main text for more details).
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Fig. 12. Scatter plot between residual X component and the Dst (target and modelled) for the ‘‘Central” (light blue) values on Fig. 10. It is remarkable that
they show almost the same behavior. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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acting on small spatial and time scale, may superpose to the
larger spatial and time scale of the ring current, giving ori-
gin to both the dispersion in the retrieved Dst and the
wrong estimation.

Another element to be considered is the model used for
the removal of the internal contribution of the field, sup-
posed to be well represented in space and almost constant
in the time interval of data selection. Nonetheless, each
model carries a certain degree of uncertainty. Therefore,
it is possible, for example, that the discrepancies between
the modelled values and the real ones may have the effect
of feeding the dispersion of the network results.

5. Conclusions

We explored the possibility to instruct an ANN to pro-
vide a very quick estimation of the Dst geomagnetic index,
on the basis of the near real time magnetic measurements
collected continuously by the ESA Swarm constellation
of satellites.

The proposed method represents a reliable new
approach for Dst index retrieval and due to its fast applica-
tion in the operational stage it also demonstrates its useful-
ness in near real time ionospheric irregularities monitoring.

However, we realized that for the ANN to be effective it
is necessary to pre-treat the data so to remove the internal
field contributions (core and crustal) by means of the
15
CHAOS-7.3 model, resulting in residual components cer-
tainly affected by the external sources; as well as to take
into account the different local hours explored by the satel-
lite, which of course can lead to different effects on the
measurements.

Since the study has highlighted the imperfect correlation
of Dst with the residual X component of the geomagnetic
field in some ‘‘extreme” situations, for the future there
are other further steps we can take thanks to the experience
we got with this work: it may be appropriate to consider
Dst samples consistent with the residual X component of
the geomagnetic field, to obtain a more performing
retrieval/forecast; but we think also it is worth considering
a high-resolution index as the SYM-H, because it should
have the ability to better follow the rapid variations we
expect to emerge in magnetic data.

It would be worth considering the possibility of using
the geomagnetic index F10.7, based on solar flux, as a more
suitable output of the neural model.

Furthermore, we envisage the possibility to increase the
input dataset by including Swarm B satellite magnetic data:
differently from Swarm A (which is practically parallel and
very close in space and time to Swarm C), it flies at a higher
altitude with different orbital parameters. Thus, simultane-
ously with Charlie, Bravo explores regions of the iono-
sphere that differ in local time and magnetic conditions,
enriching the diversity of the dataset.



Fig. 13. Scatter plot between the residual X component and Dst (target and modelled) for the values indicated as ‘‘High‘‘ (red) on Fig. 10. Their
comparison puts in evidence a higher correlation between the residual X component and the modelled Dst than the actual one. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 14. Scatter plot between the residual X component and Dst (target and modelled) for the values indicated as ‘‘Low” (dark red) values on Fig. 10.
Their comparison puts in evidence a higher correlation between the residual X component and the modelled Dst than the actual one. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 15. In magnetic coordinates, the location of data belonging to the datasets named Central (considered as ‘‘good”), High and Low, these latter
resulting in under- and overestimated Dst values. It is evident that data are distributed uniformly.

Fig. 16. Distribution of input residual X corresponding to the three
groups datasets in function on MLT, selected for Dst values below �100
nT.

Fig. 17. Distribution of target Dst corresponding to the three groups
datasets in function on MLT, selected for Dst values below �100 nT.
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