

Site characterization report at the seismic station IT.FOS – Foligno (PG)

Report di caratterizzazione di sito presso la stazione sismica IT.FOS – Foligno (PG)

Working Group Geology: Brunori C.A. Geophysics: Famiani D., Brunori C.A., Cultrera G., Mercuri A., Milana G., Pucillo S., Riccio G.	Date: December 2020
Subject: Final report illustrating the site characterization for sei IT.FOS	smic station

In	troduc	ction	3
A.	Geolo	ogical setting	3-12
	1.	Topographic and geological information	3
	2.	Geological map	5
	3.	Lithotechnical map	6
	4.	Survey map	7
	5.	Geological model	8
		5.1 General description	
		5.2 Geological section	
		5.3 Subsoil model	
B.	V _s pr	ofile	13-20
	1.	Geophysical Investigations	13
		1. Ambient noise HVSR analysis	
		2. Dispersion curves from passive and active array measurements	
	2.	Seismic Velocity Model	18
	3.	Conclusions	21
Re	ferenc	ces	22
Di.	sclaim	er and limits of use of information	24

INTRODUCTION

In this report we present the geological setting, geophysical measurements and results obtained in the framework of the 2019-2021 agreement between INGV and DPC, called *Allegato B2: Obiettivo 1 - TASK 2: Caratterizzazione siti accelerometrici (Responsabili: G. Cultrera, F. Pacor)* for the site characterization of station IT.FOS (Foligno).

Location and coordinates are reported in Table 1.

Table 1.

CODE	NAME	LAT [°]	LON [°]	ELEVATION [m]
IT.FOS	Seggio (fraz.	43.01459*	12.83513*	954*
ADDRESS	Località Seggio, 1, (Foligno) 06034 PG, Italy			

* Reference table from ITACA (December 2020)

A. Geological setting

A1. TOPOGRAPHIC AND GEOLOGICAL INFORMATION

Topographic information related to the site is reported in Table 2.

Table 3 summarizes all available geological maps from literature for geological analyses.

Table 2.

Topography	Description	Topography Class	Morphology Class	EC8 Class
	Flat top of isolated relief with slope i<=15°	T1	VC*	В

Table 3.

Geological map	Source	Scale
IT.FOS	Geological map of Italy sheet <i>N.131</i> (Foligno)	1:100.000
IT.FOS	Geological Map - Umbria Region, Servizio Geologico, sheet N.314010 (Foligno) - 2014	1:10.000
IT.FOS	CARTA GEOLOGICA D'ITALIA alla scala 1:50.000 - Barchi and Lemmi, 2015 (Foglio 324 - FOLIGNO)	1:50.000
IT.FOS	Litho-morphological map – Seismic Microzonation (Foligno / PG)	1:5.000
IT.FOS	Carta geologica dell'area di Colfiorito-Geologica map of the Colfiorito area. 1:25000 Servizio Geologico e Sismico-Regione Umbria - Barchi et al., 2012	

In Table 4 Geological and Lithotechnical Units (according to Seismic Microzonation classification; Technical Commission SM, 2015) are described and are concerned with maps of following chapters. The term "original" means the result comes from a pre-existing cartography (Table 3); the term "deduced" means the result comes from an interpretation of a pre-existing cartography according to the nomenclature of corresponding cartography.

Table 4

	LITHOTECHNICAL UNITS Carta Geologico-Tecnica Microzonazione Sisu di Liv. III Comune di Foligno (MZS) (original)		
ll'Umbria, Servizio			
description	code	description	
Landslide deposit. For shallow landslides it includes the scarp	GW	Washed gravels with well-matched particle size, mixture of gravel and sand.	
Coarse-grained, fan- shaped debris deposits, loose sand and gravel in a silty matrix.	GMca	Silty gravels, mixture of alluvial far gravel, sand and silt - moderately thickened	
Fine-grained floodplain sediments made of clays and sandy clays	GC	Fine grained deposits with clasts variable size, mainly derived fr weathering of the substratu accumulated in situ (eluvium) emplaced due to diffuse r (colluvium). These deposits oc both on the flanks and in the bott of minor valleys.	
Scaglia Rossa	SFLPS	Lapideo, stratificato fratturato/ alterato	
Scaglia Bianca	SFLPS	Lapideo, stratificato fratturato/ alterato	
Marne a Fucoidi	CO	cohesive overconsolidated marls	
Maiolica	LPS	Stony, stratified	
	l'Umbria, Servizio description Landslide deposit. For shallow landslides it includes the scarp Coarse-grained, fan- shaped debris deposits, loose sand and gravel in a silty matrix. Fine-grained floodplain sediments made of clays and sandy clays Scaglia Rossa Scaglia Bianca Marne a Fucoidi Maiolica	LITHOTI'Umbria, ServizioCarta Ge di Liv. IIIdescriptioncodeLandslide deposit. For shallow landslides it includes the scarpGWCoarse-grained, fan- shaped debris deposits, loose sand and gravel in a silty matrix.GMcaFine-grained floodplain sediments made of clays and sandy claysGCScaglia RossaSFLPSMarne a FucoidiCOMaiolicaLPS	

ISTITUTO NAZIONALE DI GEOFISICA E VULCANOLOGIA

A2. GEOLOGICAL MAP

In Figure 1 Geological Map is reported in a 1km x 1km square around the station.

Figure 1. Geological map of seismic station IT.FOCC. Scale 1:10.000. Geological units come "Carta Geologica 1:10.000, Regione dell'Umbria Servizio Geologico, 2014 ".

A3. LITHOTECHNICAL MAP

In Figure 2 Lithotechnical Map is reported in a 1km x 1km square around the station.

Figure 2: Lithotechnical map of the seismic station site IT.FOS - scale 1:5.000. The lithotechnical units are attributed according to the nomenclature of Seismic Microzonation study (Technical Commission SM, 2015).

A4. SURVEY MAP

Figure 3 shows the Survey Map reporting both previous investigations and geophysical surveys conducted by INGV Working Group.

Figure 3: Map of the geophysical surveys made in the sectors around the seismic station IT.FOS - scale 1: 5.000. The box at the bottom right contains a zoom of the area with the detail of the geophysical investigation conducted by INGV Working Group for the seismic characterization of the site (Convenzione DPC-INGV 2019-21, Allegato B2-WP1, Task B, Velocity profile at the seismic station report IT.FOS).

Convenzione DPC-INGV 2019-21, All.B2- WP1, Task 2: "Caratterizzazione siti accelerometrici" (Coord.: G.Cultrera, F. Pacor) Cite as: Working group INGV "Agreement DPC-INGV 2019-21, All.B2- WP1, Task 2", (2020). Site characterization report at the seismic station IT.FOS – Foligno (PG) - http://hdl.handle.net/2122/15090

A5. GEOLOGICAL MODEL

5.1 General description

The investigated area is located in the Colfiorito 1997 seismic sequence region and within the Umbria-Marche Apennines, upon a Late Miocene fold-and-thrust sheet (the 'Inner Anticlinorium' of Lavecchia and Pialli, 1980) bounded eastward by a thrust plane (Figure EE). The Quaternary normal faults here outcropping cross-cut and dislocate the pre-existing fold-and-thrust belt structures. The maximum displacement along the normal faults is of the order of 400–500 m (Calamita et al., 1999).

Figure 4: Left panel: Umbria Region, in background, the shaded relief derived from DTM 10 m (TINItaly, Tarquini et al.,), in yellow and light blue the recent and quaternary formations filling the Tiberina Valley (TB) and the Middle Umbria valley Basin (MVUB). The study site is located in the eastern carbonatic ridge. Right panel: simplified geological map of the Umbria valley and Appennine ridge. The FOS station is located in the inner edge of Appennine carbonatic ridge. The black boxes (in the left panel the same are represented with orange boxes), locate the zoomed area on the right panel showing principal formations of this Appeninic sector and the small black box locates historical earthquakes of this sector of Italy (CPTI15; Rovida et al., 2016)

Convenzione DPC-INGV 2019-21, All.B2- WP1, Task 2: "Caratterizzazione siti accelerometrici" (Coord.: G.Cultrera, F. Pacor) Cite as: Working group INGV "Agreement DPC-INGV 2019-21, All.B2- WP1, Task 2", (2020). Site characterization report at the seismic station IT.FOS – Foligno (PG) - http://hdl.handle.net/2122/15090

5.2 Geological Section

The FOS station is located in the Seggio village, on the top of reliefs bordering the Northern side of the Piano di Ricciano basin. The latter basin is the southern termination of the Colfiorito and Annifo basins, edged in its north-Eastern side by the fault systems responsible for the 1997 seismic sequence (main shock 26/09/1997, 5.7 and 6.0-- Ml). The stratigraphy of the FOS subsoil is represented by Late Thithonian to Late Albian formations of the Umbria Marche carbonatic sequence. These limestones are stratified with the thickness of the strata decreasing from 40 cm of the Maiolica (MAI) to the 50-70 cm of the Scaglia Bianca (SBI) and 30 cm of the upper Scaglia Rossa. Between MAI and SBI the Marne a Fucoid marls consists of varicoloured pelagic marlstones and marly limestones, with diffuse Chondrites (informally called fucoids), and frequent interbedded black shales. in The Figure 5 the geological profile. In the first 200 m of the FOS station area are not present tectonic structures cutting the limestone sequence above described.

Figure 5: Schematic geological cross section, oriented NE-SE (seet the A-A' trace in the Fig. 1), showing the stratification of carbonatic units of the Umbria-Marche sequence.

5.3 Subsoil model

The FOS station is located in the central-Northern sector of the Apennines chain. In this sector of the Apennines the upper crust is made up of four main lithological units each about 1.5–2 m. thick. From bottom to top there is a phyllitic basement (not exposed at the surface), UpperTriassic evaporites (alternated and dolostones), Jurassic to Oligocene multilayered carbonates (Figs. 5 and 6). The present-day tectonic setting derives from the superimposition of two main tectonic phases, compressional structures related to arc-shaped folds and thrusts (Late Miocene) and extensional structures related to NW-SE trending normal faults (Late Pliocene-Quaternary). The easternmost and more recent NW-SE extensional structures have been named as the Umbria Fault System. These SW dipping normal faults represent the prominent extensional structures of the region, controlling the onset and evolution of neo-autochthonous continental intermountain basins located on the hanging wall of the subsiding areas.

Figure 6: **Top** panel - Tectonic structures mapped in the Colfiorito and FOS - Seggio area; the NE-SW black line is the trace of the geological section in the **Bottom** panel - Geological section and stratigraphy of the Colfiorito area. The Geological map and profile are by Mirabella and Pucci (2002).

B. Vs profile

B1. GEOPHYSICAL INVESTIGATIONS

The collected geophysical measurements consist in:

i) one ambient-vibration measurement executed next to the station IT.FOS :

ii) a 1D linear array of geophones close to the station in active acquisition (MASW);

iii) a 2D array of velocimeters with spiral shape and passive acquisition. During data analysis we selected a sub-array configuration made by the following stations :1, 2, 3, 4, 5, 10. These measurements provide results in terms of dispersion curves that are inverted to obtain the shear-wave velocity (V_s) profile for the studied area. The obtained results are suitable for assigning the soil class according to the current Italian seismic code (NTC18) and the current Eurocode (EC08).

Figure 1 shows the map of all the geophysical investigation performed by INGV: the location of station IT-FOS (Latitude 43.01459, Longitude 12.83513 WGS84) installed in Seggio hamlet (Foligno - PG) and the line of geophones used for the 1D linear array (MASW) and the 2D array.

Figure 1: Map of investigations for Foligno Seggio station (IT.FOS) (image from Google Earth <u>http://</u><u>www.earth.google.com</u>): the position of IT-FOS station (red triangle) and the near noise measurement (green triangle), the line of 48 geophones (red line) used for the linear active survey and the spatial distribution of the seismic stations for the 2D-array. The spiral geometry of the ten 3-c velocimeters (yellow placemarks) used in passive acquisition. The green and red lines represent the shorter and longer interstation distances respectively

Convenzione DPC-INGV 2019-21, All.B2- WP1, Task 2: "Caratterizzazione siti accelerometrici" (Coord.: G.Cultrera, F. Pacor) Cite as: Working group INGV "Agreement DPC-INGV 2019-21, All.B2- WP1, Task 2", (2020). Site characterization report at the seismic station IT.FOS – Foligno (PG) - http://hdl.handle.net/2122/15090

The ambient noise has been acquired with a medium-period seismometer (i.e., Lennartz Le3d-5s) and it lasted about an hour and twenty minutes. The sampling rate was set to 200sps.

To assess the resonant frequency of the site, the horizontal-to-vertical (H/V) spectral analysis has been calculated, using the *Geopsy* software (http://www.geopsy.org).

Figure 2 shows the Fourier spectra of the three components (NS, EW, UP), the directional H/V and the H/V curves (mean and plus/minus one standard deviation).

Figure 2: Summary of the analyses on the ambient-vibration measurement. Top: Fourier spectra of the three components. Bottom left: directional H/V. Bottom right: H/V curve (with mean and standard deviation).

The H/V curve is quite flat above 1 Hz and spectral ratios reach higher amplitudes for frequencies below 1 Hz, attesting the f0 at around 0.3 Hz according to SESAME criteria (SESAME Guidelines, 2004) but its shape is very broad and we consider it not meaningful.. The 3c-spectra show increasing energy of the ambient noise going towards low frequencies and rotated spectral ratios also highlight a slight polarization of the signal at these frequencies. This can also be observed for the ten 3-component stations installed for the 2d array in a nearby field. But in that case, the H/V peaks have slightly different frequencies (Figure 3). They may be more visible in the entire H/V curve because of the windy weather conditions during the investigation which increase the energy of the spectra in the horizontal components of the noise wavefield.

Figure 3: Ambient noise spectral ratios of the ten stations installed for the 2D array. Single plots (left) and average and standard deviations (right).

The 1D active linear array (red line in Figure 1) consisted of 48 vertical geophones (4.5Hz as natural frequency) placed at 1 mt of distance each other, for a total length of 47 mt. We used seven shot positions: -5mt from geophone #1, -1mt from geophone #1, at geophones #12, #24, #36, #48, +5mt from geophone #48. For each of them we hammered three times a metallic plate. We recorded signals with a sampling rate of 8000sps for 2 seconds. The 2D spiral array consisted of ten 3-component velocimetric stations. For this array we collected more than two hours of noise with a sampling rate of 200sps.

ISTITUTO NAZIONALE DI GEOFISICA E VULCANOLOGIA

a. 1D linear active array

We first analyzed the 1D linear array in active acquisition. Figure 4 shows the comparison between the dispersion curves (DCs) obtained with the FK analysis for some shots located -5 mt from geophone #1, in central position, +5 m from geophone #48).

Figure 4: FK analysis for shots located -5 from geophone #1, at geophone #24 and +5 from geophone #48 (from left to right)

It is possible to notice that the shot at the middle of the line of geophones (central plot in Figure 4) does not give good results in terms of dispersion curve suggesting a superficial lateral heterogeneity along the line. To confirm that, the shots at the two edges of the line give a dispersion curve with same Vs values at around 20 Hz but lower velocities for higher frequencies. This difference can be due to the fact that the characteristics of the superficial soil are modified by the effect of decades of plowing for the first part of the line (plot on the left in Figure 4). The first part of the line is also closer to the 2D array performed for the same site. This condition leads us to consider more reliable the dispersion curve obtained stacking the shots located -5,0 mt from geophone #1. We stacked the three shots at -5m from geophone #1 and retrieved the auto-picked dispersion curve (Figure 5). The dark windows of the plot are discarded and the central part of the plot is considered reliable for the following inversion step.

ISTITUTO NAZIONALE DI GEOFISICA E VULCANDLOGIA

Figure 5: Stacked FK analyses and picked dispersion curve for shots in the first part of the 1D linear array.

We interpret and assume that the final dispersion curve consists of the fundamental mode of the Rayleigh dispersive waves. The lower part of the dispersion curve will be completed with results of the FK analysis on 2D array data.

b. 2D array

The 2D array installation was designed as a spiral geometry made by ten 3-component velocimetric stations. Data collected were first analyzed as single stations with the HVNSR technique to check the mono-dimensional hypothesis.

Results of HVNSR are reported in Figure 3 and show quite similar spectral ratios curves for almost all the stations.

FK analysis of data was performed in order to cover frequencies also below the limits of the linear active survey.

Using the entire number of stations for the FK analysis, the dispersion curve is poorly visible in the f-k domain (left plot in Figure 6), and only in the frequency band between 7 and 12 Hz (red lines in Figure 6). This could be due to the fact that in general for rock sites as this one, surface waves can hardly propagate for distances in the subsoil similar to the entire array aperture (130 m). For this reason, we decided to extract a subset of stations closer to each other (maximum aperture of 90 meters) and compute again the FK analysis (right plot in Figure 6). This time, results are more satisfactory at higher frequencies (12 and 16 Hz) and another branch of the DC curve is visible in black in the f-k domain as reported in the right plot of Figure 6.

Figure 6: FK analyses of the 2D Array (left) and 2D sub-Array (right). The sub-array configuration optimized the DC detection at high frequency. The black curves are the limits of the array (left) and the sub-array (right) and the picked dispersion curves are plotted on the two figures.

Convenzione DPC-INGV 2019-21, All.B2- WP1, Task 2: "Caratterizzazione siti accelerometrici" (Coord.: G.Cultrera, F. Pacor) Cite as: Working group INGV "Agreement DPC-INGV 2019-21, All.B2- WP1, Task 2", (2020). Site characterization report at the seismic station IT.FOS – Foligno (PG) - http://hdl.handle.net/2122/15090

ISTITUTO NAZIONALE DI GEOFISICA E VULCANOLOGIA

B2 SEISMIC VELOCITY MODEL

To proceed with the inversion, we decided to:

- 1) Invert the dispersion curve shown in Figure 7;
- 2) Not to consider the ellipticity constrain, because the H/V curve shows a peak at low frequency which is not easy to interpret as a stratigraphic peak.

Figure 7: Targets of the inversion: in red the DC from 2D Array, in black the DC from the 2D sub-Array and in blue the DC from MASW.

The geology of the area where the IT.FOS station is installed is characterized by the presence of the Umbria-Marche stratigraphic sequence. This succession is made in general by limestones and marlstones which can be defined as a geologic bedrock. With this information in mind, we decided to use a simple starting model with three layers over half-space. Shear wave velocities (V) were

set to vary for the three layers and half-space within the ranges of: 150-3500 m/s. Several tests have been carried out and the final result of the inversion is shown in Figure 8 along with the fit with the dispersion curve.

Figure 8: Left: Vs profile obtained through the inversion of the dispersion curve of Figure 7. Right: fit between the experimental dispersion curve and the theoretical dispersion curves of the investigated models.

The inversion is able to reproduce fairly well the experimental dispersion curve. The V_p profile is poorly constrained, and then we decided not to mention it in this report. The best -fit model of V_s is represented in Figure 9 and Table 1.

Figure 8: Best-fit model of Vs values

From	То	Thickness (m)	Vs (m/s)
0	3.53	3.53	264
3.53	6.42	2.89	378
6.42 20.39	20.39	13.97	628 973

Table 1: Best-fit model

B3. CONCLUSIONS

According to the current Italian seismic code [1], if the bedrock (Vs > 800 m/s) is more than 30 m in depth, the equivalent velocity ($V_{s,eq}$) is equal to the $V_{S,30}$. From Figure 8, the velocity of 800m/s is reached at 20.39 meters depth. Therefore $V_{S,30}$ retrieved from the inversion of the dispersion curves is 564.9 m/s, $V_{s,eq}$ computed at 20.4 meters depth is 469.4 m/s and the site is classified in the soil category B for both the NTC18 and EC8 seismic classifications (Table 2).

We have to take into account that the inversion process of the data array is poorly constrained by other independent information for this site. The results can change adding this info, whenever available.

V _{s30}	V _{seq}	Soil class	Soil class
[m/s]	[m/s]	(NTC 2018)	(EC8)
564.9	469.4	В	В

Table 2: Soil Class

REFERENCES

Barchi M.R., Boscherini A., Collettini C., Deiana G., De Paola N., Mirabella F., Motti A., Pierantoni P.P., Pucci S. (2012). Carta geologica dell'area di Colfiorito-Geologica map of the Colfiorito area. Serv. Geologico e Sismico-Regione Umbria ed. doi. 10.13140/2.1.3889.6003

Barchi, M.R., Lemmi, M., 2020. Note illustrative della Carta Geologica d'Italia, scala 1:50,000 - Foglio 324 - Foligno. Servizio Geologico d'Italia

SGA (2019) Litho-morphological map 1:5000 – Seismic Microzonation (Foligno / PG)

Lavecchia G. and G. Pialli. (1980) Appunti per uno schema strutturale dell'Appennino umbro-marchigiano. 2) La copertura. Volume 06 (1980) http://193.204.8.201:8080/jspui/bitstream/1336/57/1/Vol. %206%20Capitolo%202.pdf

Mirabella, F. and Pucci, S. (2002), Integration of geological and geophysical data along a section crossing the region of the 1997-98 Umbria-Marche earthquake (Italy). Bollettino della Società geologica italiana.

Calamita F., Coltorti M., Pieruccini P. & Pizzi A. (1999). Evoluzione strutturale e morfogenesi plio-quaternaria dell'Appennino umbro-marchigiano tra il preappennino umbro e la costa adriatica. Boll. Soc. Geol. It., 118, 125-139

Commissione Tecnica per la Microzonazione Sismica (2015). Microzonazione sismica. Standard di rappresentazione e archiviazione informatica, Versione 4.0b (Commissione tecnica inter-istituzionale per la MS nominata con DPCM 21 aprile 2011)

Famiani, D., Brunori, C. A., Pizzimenti, L., Cara, F., Caciagli, M., Melelli, L., ... & Barchi, M. R. (2020). Geophysical reconstruction of buried geological features and site effects estimation of the Middle Valle Umbra basin (central Italy). Engineering Geology, 269, 105543. https://doi.org/10.1016/j.enggeo.2020.105543

Rovida, A., Locati, M., Camassi, R., Lolli, B., Gasperini, P., 2016. CPTI15, the 2015 Version of the Parametric Catalogue of Italian Earthquakes. Istituto Nazionale di Geofisica e Vulcanologia https://doi.org/10.6092/INGV.ITCPTI15.

Umbria Region, Servizio Geologico (2014) Geological Map - Foglio N.314010 (Foligno)

GENERAL INFORMATION

Authors	Institutions	Contacts [email]	Compiling date [DD/MM/YY]
D. Famiani, C.A. Brunori	INGV	daniela.famiani@ingv.it,	14/12/2021
		carloalberto.brunori@ingv.it	

Station description

Station name	Network code	Latitude [WGS84]	Longitude [WGS84]	Sensor depth [m]
FOS	IT	43.01459	12.83513	0

Site characterization summary

Indicators]			
	Value	none	Quality index Qi1	
fo +/- std [Hz]	References			
	URL of report			
	Value	yes	Quality index Qi1	0.67
Velocity profiles	References			
	URL of report			
	Value	564.9	Quality index Qi1	0.67
Vs30 +/- std [m/]	References			
	URL of report			
	Value	Rock site	Quality index Qi1	1
Surface geology [short description]	References	See this report		
	URL of report			
	Value		Quality index Qi1	
Seismological bedrock depth +/- std [m]	References			
	URL of report			
	Value	В	Quality index Qi1	0.67
Site class EC8	References			
	URL of report			
	Value	20.4	Quality index Qi1	0.67
Engineering bedrock depth +/- std [m]	References			
	URL of report			

Distance	from the	Final quality index	Comments
seismic s	tation [m]	(Final_QI)	
min	min	0.46	QI2= 0.52 ;QI3 = 0.4

RESONANCE FREQUENCY

fo +/- STD [Hz]

none

Quality index 1

Sou	irce	Earthquake			Ambient r	oise					
Ambient noise			Method		H/V	Elli	pticity	Other]		
		fo	+/- std [Hz]		none				_		
		Experi	ment date [DD	/MM/YY] Distance	from st	ation [m]	Lat. [WGS84]	Lon.	[WGS84]	
			07/06/2021			10		40.014630	12.8	838258	
Environr	nent			E	Equipmer	nt					
Weather	Sunny	Windy	Rain		Sensor	Туре	e [acc/vel]	manufacture	r cut-	off frequen	cy [Hz]
conditions							vel	Lennartz		0.2	
Soil-senso	r Earth	Asphalt	Artificial		Digitizer		Туре	Manufacture	r Samp	oling freque	ncy [Hz]
coupling	/					N	larsLite	Lennartz		200	
Urbanizatio	n None	Dense	Scattered	M	leasuremen		lumber	Duration [min]		
			~				I	140			
Analysis				F	o uncert	ainty	estimat	te from			
Software		Geopsy			Fo from ind	ividual	H/V curv	ve width Ma	nual pick	ing	
Smoothing Konno-Ohmach	ype (e.g. triangula ,)	ar, Windo	w length [s]		Wildow	<u> </u>					
Konne	Ohmachi		40								
Fartho	uake		Method		HVSR SS		SR	GIT	C	ther	
		fo	fo +/- std [Hz]								
Recording	g period [DD/N	IM/YY]	Number of ear	i earthquakes Epice			m to from		agnitude	e range	
		0				om			n	10	
	Seismic	Р	S (Coda	S + coda	All		window	Min	Max	
пурк	phase							duration [s]			
	-						_				
	Seismic	Р	S C	Coda	S + coda	All		window	Min	Max	
SSR	Poforonoo	Lat (M(2 5 84) 0		294)			duration [s]			
	station			1. (Was	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
	Station										
	Parameters		Free (to b	e invert	ted)			Impos	əd		
GIT											
	Reference										
	paper										
-	Reference	Lat. (Wo	Lat. (WGS84) Lon (WGS84)								
	station	-	I]						

Source

Non-invasive methods (active and/or passive seismics)						
Active surface waves	/	Refraction				
Passive surface waves	~	Refection				
HV / ellipticity						

Invasive methods (measurement in borehole)					
Cross-hole / Down-hole					
Geotechnical methods (CPT, SPT,)					
PS-Logging					

Non-invasive : surface waves methods

Experiment date [DD/MM/YY]	Distance from	m station [m]	Lat. [WGS84]	Lon. [WGS84]	
28-09-2021	Min	Мах	center location	center location	
	44	158	43.013923	12.835163	

Active surface waves acquisit	ion layout	Geophone cut-off frequency (Hz)	4.5
Minimum receiver spacing (m) 1		Geophone type (vertical / horizontal)	vertical
Profile length (m)* 47		Geophone manufacturer	GeospaceGS11
Geophones number	48	Source (hammer, vibrator,)	hammer
Number of profiles	1	Digitizer type	geode
* Provide the length for the various profiles (e.g. 46 m, 94 m)		Digitizer manufacturer	Geometrics

Weather	Sunny	Windy	Rain	Soil-sensor	Earth	Asphalt	Artificial		None	Dense	Scattered
conditions		~		coupling	~			Urbanization			~

Passive surface waves acquisition layout

Number of sensors	10
Minimum array aperture	15
Maximum array aperture	130
Number of arrays	1
Minimum duration [min]	

Sensor cut-off frequency (Hz)	20
Sensor type (vertical / horizontal)	3C-velocimeter
Sensor manufacturer	Lennartz
Digitizer type	MarsLite
Digitizer manufacturer	Lennartz

Dispersion curves

Weather	Sunny	Windy	Rain	Soil-sensor	Earth	Asphalt	Artificial		None	Dense	Scattered
conditions		~		coupling	~			Urbanization			~

Type of dispersion and/or H/V estimates

Reference paper (Name, Journal, DOI) Rayleigh Rayleigh DC 3C-FK on passive data (geopsy code) 10 Min wavelength (m) 121 Max. wavelength (m) Love DC 3C-FK on passive data (geopsy code) 430 Min. phase vel. (m/s) Max. phase vel. (m/s) 850 Ellipticity Modes (R0, L0, ...) R0, L0 H/V (DFA, EHVR) H/V or Ellipticity curves Min. frequency (Hz) Max. frequency (Hz) H/V (SH) Inversion

Rayleigh waves 🖌 Love waves	llipticity curves	H/V (DFA, EHVR)	H/V (SH)	resonance frequency			
A priori information used in inversion seismic refraction stratigraphic log 🖌 geotechnical information water table depth							
Inversion algorithm/code	dinver						
Reference	Wathelet M (2008) An improved neig	ghborhood algorithm: parameter conditions and dy	namic scaling. Geophys Res I	.ett 35(9) https://doi.org/10.1029/2008GL033256			

Love

Non-invasive : body waves methods

Experiment date [DD/MM/YY] Distance from station [m]			Lat. [WGS84]	Lon. [WGS84]	
	Min	Max	center location	center location	

Acquisition layout	Geophone cut-off frequency (Hz)
Receiver spacing (m)	Geophone type (vertical / horizontal)
Profile length (m)*	Geophone manufacturer
Geophones number	Source (hammer, vibrator,)
Number of profiles	Digitizer type
Shot spacing (m) - reflection meas.	Digitizer manufacturer
* Provide the length for the various profiles (e.g. 46 m. 94 m)	

Weather	Sunny	Windy	Rain	Soil-sensor	Earth	Asphalt	Artificial		None	Dense	Scattered
conditions	s coupling					Urbanization					

Processing methods

	Reference paper (Name, Journal, DOI)
classical refraction	
refraction tomography	
classical reflection	
advanced method	

Invasive methods

						OTHER
	Down-Hole	Cross-Hole	PS-Logging	SPT	СРТ	
Borehole depth (m)]					
Geophone type						
Source type						
Distance between wells						
Depth resolution (m)]					
Latitude (WGS84)						
Longitude (WGS84)						
Distance from station (m)						
P-wave velocity						
S-wave velocity]					

Processing methods

	Reference paper (Name, Journal, DOI) or ASTM norm
Down-Hole	
Cross-Hole	
PS-Logging	
SPT	
СРТ	
OTHER	

Authoritative velocity profile

Note: You do not have to fill in all the columns. You can provide either single values for Vp or Vs (e.g. profiles derived from borehole measurements) or either a range for Vp and Vs (e.g. profiles derived from stochastic surface waves inversion)

ls Vs de	erived from \	/p?	/es	No	/				
						Vs ra	ange	Vp ra	ange
Top depth (m)	Bottom depth (m)	Vp (m/s)	STD Vp (m/s)	Vs (m/s)	STD Vs (m/s)	Vs min (m/s)	Vs max (m/s)	Vp min (m/s)	Vp max (m/s)
0	3.53	480		260					
3.53	6.42	907		378					
6.42	20.39	1715		628					
20.39	30	2359		973					

Surface geology

Quality index 1

1 1

Source	Cartography (geological, lithological,)		Field su	Irvey Stratigraphic log		
Geolo	ogical	Map reference	Carta geologica dell'area di Colfio	iorito-Geologica map of the Colliorito area. 1:25000 Servizio Geologico e Sismico-Regione Umbria - Barchi et al., 201		
map		Map scale	1:25.000			
	۹Þ	Map sheet	Carta geologica dell'ar	rea di Colfiorito-Geologica map of the Colfiorito area.		
			Name :	Scaglia Rossa		
			Description :	Pink, dark red or white marty limestone, calcilutites and marts, with red or pink chert in nodules and ribbon. Thick grey or white calcarenites levels are also present.		
		Predominent	Age :	Turonian p.p Lutetian p.p.		
		geologic/lithologic unit	Thickness :	150-300 m		
			Rock mass structure :	2 Decimeters rock strata		
		Fault presence				
		Weathering				
		Cross-section				
Field 9	survev	Map reference	Working group INGV *Agreement DPC-INGV 2019-21, All.B2- WP1, Task 2*, (2020). Site characterization report at the seismic station 11.F1			
	santoy	Map scale	1:25.000			
			Name :	Scaglia Rossa		
			Description :	Pink, dark red or white marly limestone, calcilutites and marls, with red or pink chert in nodules and ribbon. Thick grey or white calcarenites levels are also present.		
		Predominent	Age :	Turonian p.p Lutetian p.p.		
		geologic/lithologic unit	Thickness :	150-300 m		
			Rock mass structure :	: Decimeters rock strata		
		Fault presence		_		
		Weathering				
		Cross-section				
Stratio	araphic	log depth (m)				

log

iog acptil (III)		
Top depth (m)	Bottom depth (m)	Stratigraphic description
)	220	SAA - Scaglia Rossa
220	280	SBI - Scaglia Rossa
280	350	FUC - Marne a Fucoidi
350	600	MAI - Maiolica

Surface geology

Мар

1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	

		Site class	6	Site class Quality index 1	B 0.67
Reference (EC8-1,	building code for site cl EC8-2, NEHRP, national	assification code,)	L		
Source	Geophysical measurements	, Geotechnical I measurements	Digital Elevatio Model (DEM)	Geology	DEM & Geology
Reference re soil class	lationship geology -	NTC18: Ministero delle Infrastrutture e dei Trasporti (2018). Aggi 42 del 20 febbraio 2018 (in Italian).	ornamento delle Norme Tecniche pe	r le Costruzioni. Part 3.2.2: Categorie di sottosuolo e condiz	ioni topografiche, Gazzetta Ufficiale n.
Reference re DEM - soil c	lationship slope from lass				
Reference re DEM - geolog	lationship slope from gy - soil class				

Parameters for deriving soil class as prescribed in building code	Vs30, bedrock depth and its mean Vs (Vs equivalent)

Seismological bedrock depth

Quality index 1

Source	Vs	profiles		Geology			Other (gravity, seismic refraction, TDEM,)		
Resona		nce frequency	Sti	Stratigraphic log					
Vs prof	ile			Non-invas methods	ive s	Invasiv	ve seismic ethods	Geotechnical methods	
		Bedrock depth +	⊦/- STD(m)				I		
		Bedrock Vs +/-	- STD(m)						
		Bedrock Vp +/-	- STD(m)						
		Is Vs derived fr	rom Vp ?	Yes	N	0			
			·						
Rasona	nco	Bedrock depth +	⊦/- STD(m)						
Fraguan		Reference relation	onship Fo -						
lequei	icy	bedrock de							
Geolog	у	Bedrock depth + Bedrock geolog Reference	+/- STD(m) gical unit ce						
Stratigr log	raphic	Bedrock depth + Bedrock geolog Reference	⊧/- STD(m) gical unit ce						
Other method	Is		Bedrock dept STD(m)	h +/-			Reference		
		Gravity							

	STD(m)	Reference
Gravity		
Seismic refraction	-	
Seismic reflection	-	
TDEM	-	
	Gravity Seismic refraction Seismic reflection TDEM	Seismic refraction TDEM

Engineering bedrock depth			Depth +/- STD [m]	20.4
			Quality index 1	0.67
Reference Vs related to engineering bedrock in m/s >=800 Reference building code for site classification (EC8-1, EC8-2, NEHRP, national code,)				
Source	Vs profile	Geology	Geology Stratigraphic log	
Vs profile		Non-invasive methods	Invasive seismic Ge methods n	otechnical nethods
	Bedrock depth +/- STD(m)	20.4		
Is Vs derived from Vp ?		Yes	No	
Geology	Bedrock depth +/- STD(m)			
electory,	Bedrock geological unit			
	Reference	_		
Stratigrap	hic Bedrock depth +/- STD(m)			
log	Bedrock geological unit			
•	Reference	-		

