

ISTITUTO NAZIONALE DI GEOFISICA E VULCANOLOGIA

BOLLETTINO SISMICO ITALIANO

DOI 10.13127/BSI/202003

settembre DICEMBRE 2020

GRUPPO DI LAVORO

L. Pizzino, S. Monna, C. Montuori, R. Tozzi, T. Sgroi, P. Baccheschi, C. Thermes, A. Battelli, M.T. Mariucci, A. Lisi, G. Modica, M. Berardi, L. Arcoraci, P. Battelli, A. Nardi, A. Marchetti, C. Castellano, L. Miconi, N.M. Pagliuca, C. Melorio, L. Colini, R. Di Maro, A.M. Lombardi, S. Pinzi, A. Sciarra, A. Smedile, S. Spadoni, R. Tardini, B. Cantucci, D. Cheloni, A. Frepoli, B. Castello, M.G. Ciaccio, M. Pirro, A. Rossi, D. Latorre, A. Bono, V. Lauciani, A. Mandiello, S. Pintore, M. Quintiliani

COLLABORANO

L. Improta, L. Margheriti, F.M. Mele, L. Scognamiglio

I parametri dei terremoti registrati dalla RETE SISMICA NAZIONALE ITALIANA, localizzati nella sala di monitoraggio di Roma, sono immediatamente disponibili sul web, alla pagina http://terremoti.ingv.it/, e nell'Italian Seismological Instrumental and parametric Data-base (ISIDe working group (2016) version 1.0, DOI: 10.13127/ISIDe). Gli analisti del BOLLETTINO SISMICO ITALIANO (BSI) ricontrollano i parametri dei terremoti ottenuti, inserendo pesi e polarità degli arrivi delle onde sismiche e integrando, inoltre, i dati letti in sala con tutti quelli disponibili nel sistema di acquisizione. Dal 1985 i dati del bollettino sono consultabili nel data-base ISIDe.

La revisione da parte degli analisti del BSI della sismicità registrata in Italia dal 1 settembre al 31 dicembre 2020 ha riguardato tutti i terremoti di magnitudo M≥1.5, mentre i parametri dei terremoti di magnitudo inferiore a tale valore sono quelli calcolati in tempo reale, nella sala di sorveglianza sismica

di Roma.

I terremoti più forti (M≥3.5), e pochi altri di particolare interesse [vedi Marchetti et al., 2016, DOI: 10.4401/ag-6116], sono stati revisionati dagli analisti del BSI, mediamente nelle 24 ore successive al loro accadimento. Nel periodo analizzato, così come nel guadrimestre precedente,

i terremoti localizzati si distribuiscono secondo caratteristiche tipiche della sismicità italiana: nell'Appennino centrale il rilascio di energia è continuo e avviene sotto forma di microsismicità, mentre in altre zone dell'Italia gli eventi risultano mediamente più concentrati in sciami o in sequenze sismiche.

Nel terzo quadrimestre 2020

l'evento più forte registrato in Italia si è verificato il 22 dicembre in provincia di Ragusa e ha avuto una magnitudo Mw= 4.4. Inoltre, ci sono stati altri 10 terremoti di M≥3.5 tutti avvenuti nel mese di dicembre;

GRAFICO DEL NUMERO GIORNALIERO DI TERREMOTI

avvenuti nel terzo quadrimestre 2020, per le diverse classi di magnitudo (colonne colorate dal verde al giallo al rosso), e andamento del numero cumulato di terremoti (punti neri). In questo quadrimestre, l'ANDAMENTO del numero cumulato di terremoti giornalieri è costantemente LINEARE, se si esclude il mese di ottobre e la fine di dicembre dove sono avvenute delle sequenze sismiche in Calabria e in Sicilia. di questi, i più significativi sono quelli del giorno 2 in provincia di Vibo Valentia (Mw=3.7), del 17 in provincia di Milano (M_L=3.8), del 19 in provincia di Reggio Calabria (Mw= 3.9), del 29 in provincia di Varese (Mw= 3.9) e gli ultimi due avvenuti il 31 nella zona etnea, rispettivamente di M_L= 3.6 e Mw= 3.8.

Si segnala, infine, una sequenza sismica iniziata nel mese di dicembre in Croazia, caratterizzata da un mainshock di Mw=6.3 avvenuto il giorno 29.

GRAFICO DEL MOMENTO SISMICO (M_o) GIORNALIERO

in scala logaritmica (per la conversione da M_L a M₀ si utilizza la relazione di Castello et al., 2007 http://dx.doi.org/10.1785/0120050258). Il notevole numero di sciami e sequenze sismiche di bassa magnitudo avvenuti nel quadrimestre, è evidenziato dal MOMENTO SISMICO GIORNALIERO che ha valori compresi tra 10¹³ e 10¹⁵ Nm. Tale soglia è comunque superata spesso in occasione dei numerosi terremoti di M>3.5 e raggiunge un valore superiore a 10¹⁸ Nm in occasione della sequenza sismica in Croazia.

MAPPA DEI TIME DOMAIN MOMENT TENSOR (TDMT)

calcolati per il terzo quadrimestre 2020. Il TDMT dell'evento del 9/09 (Mw=3.5) a Salemi (TP), è di tipo trascorrente, così come quello lungo la costa ionica crotonese del giorno 21. Il 5/11, il terremoto nel Mar Tirreno meridionale (Mw=3.6) presenta un meccanismo trascorrente con orientazione NNE-SSW. Nel mese di DICEMBRE gli eventi del 2 in provincia di Vibo Valentia (Mw=3.7) e del 19 in provincia di Reggio Calabria (Mw=3.9) sono invece distensivi con orientazione NNE-SSW. L'evento del 22/12 (Mw=4.4) presso Vittoria (RG) presenta un meccanismo trascorrente quasi puro, mentre l'evento in provincia di Verona (29/12; Mw=3.9) è compressivo con assi orientati NNE-SSW. Del 29/12 è anche il terremoto principale della sequenza croata (Mw=6.3) con TDMT di tipo puramente trascorrente. Il terremoto etneo del 31/12 (Mw=3.8) ha un

meccanismo principalmente trascorrente.

MECCANISMI FOCALI

ottenuti utilizzando le polarità dei primi arrivi (FPFIT code; Reasenberg and Oppenheimer, 1985) per il terzo quadrimestre 2020. Quattro degli eventi per i quali è riportato il TDMT hanno anche un meccanismo calcolato con le prime polarità (dati riportati nella tabella in ultima pagina e nella figura a fianco). Tra questi gli eventi in provincia di Vibo Valentia (2/12, Mw 3.7) e in provincia di Reggio Calabria (19/12, Mw=3.9) presentano un meccanismo distensivo ma con una componente trascorrente non presente nei TDMT. In mappa anche l'evento del 22/12 (Mw=4.4, provincia di Ragusa) con meccanismo focale trascorrente con componente distensiva, molto simile a quello del TDMT. La soluzione del terremoto del 29/12 Mw=3.9 (VR) è di tipo compressivo con componente trascorrente, quest'ultima non presente nel TDMT.

Nel terzo quadrimestre 2020, la MAPPA DELL'INDICE DI QUALITÀ DELLE STAZIONI SISMICHE della

RSN fotografa una situazione simile a quella dei precedenti quadrimestri. Le stazioni con rendimento maggiore sono quelle installate su tutto l'arco alpino e molte di quelle posizionate lungo la dorsale appenninica, in siti poco antropizzati e con litologie coerenti. Al contrario, le stazioni presenti in Pianura Padana, lungo la costa tirrenica e adriatica e in buona parte della Sicilia hanno un basso indice di qualità, così come la maggior parte di quelle installate nelle aree vulcaniche della Campania e in Irpinia, dove sono presenti molte stazioni accelerometriche della rete ISNet. Le stazioni sismiche della RSN nel nord-est, sia italiane che estere, hanno mostrato quasi tutte un elevato rendimento legato alla notevole sismicità registrata in occasione della sequenza sismica iniziata nel mese di dicembre in Croazia.

MAPPA DELLA RETE SISMICA NAZIONALE

che mostra il contributo di ogni stazione al BOLLETTINO SISMICO ITALIANO (BSI), in termini di percentuale di fasi P registrate a ogni stazione. La dimensione del simbolo è funzione del numero teorico di terremoti che una stazione sismica installata in condizioni ottimali (lontano da disturbi antropici e naturali) avrebbe dovuto registrare, secondo la relazione magnitudodistanza riportata nel GRAFICO SOTTOSTANTE. Il colore del simbolo rappresenta il rapporto tra il numero di eventi registrati effettivamente e il numero teorico.

I DETTAGLI TECNICI SUL CALCOLO DEGLI IPOCENTRI E DELLE MAGNITUDO sono descritti nel QUADERNO DI GEOFISICA N. 85 (http://istituto.ingv.it/it/le-collane-editoriali-ingv/quaderni-di-geofisica/quaderni-di-geofisica-2010. html). Per il periodo che va dal gennaio 2002 al 16 aprile 2005 i dati del BSI, in formato GSE, sono reperibili anche nella pagina http://bollettinosismico.rm.ingv.it/; mentre per il periodo che va DA GENNAIO 2015 AD OGGI il bollettino è reperibile in formato QUAKEML su http://terremoti.ingv.it/bsi

SOLUZIONI DEI PIANI NODALI DEI MECCANISMI FOCALI **SETTEMBRE** DICEMBRE 2020

	Data tempo origine (UTC)	Lat	Long	Prof (Km)	Mag	Piano di faglia strike dip e rake
*1	2020-12-02T18:19	38.5225	16.1670	13.84	3.7 Mw	40 35 -140
2	2020-12-17T15:59	45.4943	9.1328	48.43	3.8 M _L	160 55 -40
*3	2020-12-19T10:57	38.1038	15.9458	14.55	3.9 Mw	75 35 -70
4	2020-12-21T01:22	43.1243	13.4898	25.95	3.5 M _L	60 90 140
*5	2020-12-22T20:27	36.9637	14.4487	29.26	4.4 Mw	80 75 -180
*6	2020-12-29T14:36	45.2412	11.0763	15.71	3.9 Mw	10 70 50

(*) Eventi per cui sono disponibili i corrispondenti TDMT (http://terremoti.ingv.it/tdmt).

SOLUZIONI DEI PIANI NODALI DEI MECCANISMI FOCALI SETTEMBRE - DICEMBRE 2020, calcolati utilizzando le polarità dei primi arrivi (**FPFIT code; Reasenberg and Oppenheimer, 1985**). I parametri ipocentrali sono ottenuti rilocalizzando gli eventi con Hypoellipse (**Hypoellipse code; Lahr, 1999**).

Appendice

SEQUENZA SISMICA IN CROAZIA - Dicembre 2020

Con il terremoto di M_L=5.2 del 28 DICEMBRE inizia una sequenza sismica in CROAZIA in località Petrinja (a circa 60 km in direzione SSW rispetto a Zagabria), il cui **evento principale** (Mw=6.3), è avvenuto il 29 DICEMBRE.

La sequenza si prolungherà nei mesi successivi e la Rete Sismica Nazionale ne registrerà gli eventi più forti che saranno localizzati nella Sala Operativa di Roma e successivamente revisionati con tempi rapidi sopra la soglia di ML≥ 4.0 dagli analisti del Bollettino Sismico Nazionale.

MECCANISMI FOCALI

I meccanismi focali per il terzo quadrimestre 2020, relativi alla SEQUENZA SISMICA IN CROAZIA, sono stati ottenuti utilizzando le polarità dei primi arrivi (FPFIT code; Reasenberg and Oppenheimer, 1985) (dati riportati nella tabella sotto e nella figura a fianco). Dei 5 meccanismi focali in figura, solo l'EVENTO PRINCIPALE [29 DICEMBRE, Mw 6.3] presenta

anche il TDMT.

I meccanismi calcolati presentano meccanismi prevalentemente trascorrenti con componente distensiva, mentre la soluzione del terremoto del 30 DICEMBRE è di tipo quasi puramente compressivo.

MAPPA DELLE STAZIONI

Mappa delle stazioni della RETE SISMICA NAZIONALE, integrata con stazioni delle RETI REGIONALI (FRIULI VENEZIA GIULIA, TRENTINO, SUD-TIROLO) e STRANIERE (CROAZIA, SLOVENIA, AUSTRIA), che hanno contribuito al calcolo del meccanismo focale del TERREMOTO PRINCIPALE (numero 2 in tabella), il cui **epicentro** è rappresentato in mappa con la **stella blu**

SOLUZIONI DEI PIANI NODALI DEI MECCANISMI FOCALI DELLA SEQUENZA CROATA - **DICEMBRE 2020**

	Data tempo origine (UTC)	Lat	Long	Prof (Km)	Mag	Piano di faglia strike dip e rake
1	2020-12-28T05:28	45.3550	16.2557	8.90	5.5 M _L	80 45 20
*2	2020-12-29T11:19	45.3620	16.2147	8.51	6.3 Mw	55 75 30
3	2020-12-29T17:57	45.3918	16.2162	18.31	4.0 M _L	50 80 40
4	2020-12-30T08:21	45.3972	16.1303	19.43	4.2 M _L	140 10 120
5	2020-12-31T08:15	45.4878	16.0907	13.00	3.9 M _L	80 75 -180v

(*) Eventi per cui sono disponibili i corrispondenti TDMT (http://terremoti.ingv.it/tdmt).

SOLUZIONI DEI PIANI NODALI DEI MECCANISMI FOCALI DELLA SEQUENZA CROATA del DICEMBRE 2020, calcolati utilizzando le polarità dei primi arrivi (**FPFIT code; Reasenberg and Oppenheimer, 1985**). I parametri ipocentrali sono ottenuti rilocalizzando gli eventi con Hypoellipse (**Hypoellipse code; Lahr, 1999**).