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Abstract: On 24 August 2016, a Mw 6.0 earthquake started a damaging seismic sequence in central
Italy. The historical center of Amatrice village reached the XI degree (MCS scale) but the high
vulnerability alone could not explain the heavy damage. Unfortunately, at the time of the earthquake
only AMT station, 200 m away from the downtown, recorded the mainshock, whereas tens of
temporary stations were installed afterwards. We propose a method to simulate the ground motion
affecting Amatrice, using the FFT amplitude recorded at AMT, which has been modified by the
standard spectral ratio (SSR) computed at 14 seismic stations in downtown. We tested the procedure
by comparing simulations and recordings of two later mainshocks (Mw 5.9 and Mw 6.5), underlining
advantages and limits of the technique. The strong motion variability of simulations was related to
the proximity of the seismic source, accounted for by the ground motion at AMT, and to the peculiar
site effects, described by the transfer function at the sites. The largest amplification characterized the
stations close to the NE hill edge and produced simulated values of intensity measures clearly above
one standard deviation of the GMM expected for Italy, up to 1.6 g for PGA.

Keywords: strong ground motion; earthquake simulation; near-source; Amatrice earthquake; seismic
sequence; site effects

1. Introduction

In recent years, the increased number of permanent and temporary seismic stations
have allowed researchers to record strong ground motions close to the seismic source, high-
lighting the large complexity of the waveforms due to the mixture of source, propagation,
and site effects [1–3]. The ground motion simulation in the near field is then very difficult
to perform, especially when the surface geology and morphology are highly heterogeneous.
Several advanced simulation techniques have been implemented so far, to account for
complex source and site effects, such as full-wavefield simulations (e.g., [4]), empirical
Green’s function approaches (useful for reproducing the recorded seismograms in a large
frequency band without any knowledge of the underground medium; e.g., [5]), hybrid
broadband techniques (e.g., [6]), or dynamic models (e.g., [7]). Despite the increasing level
of accuracy, the advanced simulation methods have limitations in frequency range and
require an accurate knowledge of the propagation medium and rupture process [5,8]. All
these uncertainties affect the synthetic earthquake seismograms, whose variability can be
induced by the rupture behavior and errors in propagation [9], and limit the reproduction
of the experienced ground motion, such as for understanding peculiar effects on the dam-
age distribution in the near-source area. This is the case of Amatrice village (Italy), whose
historic center has been destroyed by a Mw 6.0 earthquake that occurred on 24 August
2016. The so-called Amatrice earthquake started a long seismic sequence in central Italy
(Figure 1), causing 299 fatalities and about 30,000 to become homeless. It was followed
on 26 October by a Mw 5.9 (Visso earthquake) ∼25 km to the north, and on 30 October
by a Mw 6.5 (Norcia earthquake), that nucleated in between the source regions of the two
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previous mainshocks; the activated zone was about 70-km-long and 10-km-thick along the
central Apennine chain direction [10].

The damage in the epicentral area of the Amatrice earthquake appears rather complex
and strongly dependent on the high vulnerability of the traditional dwellings, as well as on
the geological conditions [11]. In particular, the historical center of Amatrice was affected
by either heavy damage or total collapses reaching 85% of the whole building stock [12,13].
Its non-uniform spatial distribution may be due to the different high vulnerability of the
building heritage, the ground motion variability within a few hundred meters, or possibly
due to the vicinity of the seismic source and the peculiar site effects.

Source effects are claimed by several authors to have affected the resulting ground
motion in Amatrice. The mainshock ruptured a WSW dipping normal fault, with promi-
nent bilateral rupture and two well-separated slip patches [14–16]. In particular, ref. [7]
suggested that the rupture propagation along the SE portion of the fault contributed to the
ground motion amplification in Amatrice: the initial up-dip directivity caused a pulse-like
ground motion at the close AMT station [14], where the recorded values reached a PGA
of 8.5 m/s2 on the EW component and largely exceeded the Italian code spectrum [2,17].
The analysis of the recordings at stations belonging to the Italian accelerometric networks
revealed that PGAs, PGVs, and PSAs at short periods were likely dependent on the source
directivity [2,18–21].

Other effects might have accentuated locally the amplitude of the ground shaking
(e.g., crustal propagation and anelastic attenuation [16,22–24], site effects, topographic
effects), superimposing their features on the directivity pattern and contributing to the
observed damage [14,19]. Most of all, local site effects probably affected the ground motion
experienced in Amatrice.

The village was built on an alluvial terrace 60–80 m higher than the surrounding
valley (Amatrice basin) and elongated in NW–SE direction with a length of about 2000 m
and a maximum width of about 600 m [25] (Figure 1). It is bounded both at NE and SW
by two river valleys and bordered by a steep slope to the north and to the west, and by
a gentler slope to the south. This morphology, together with the low cohesion and the
poor geotechnical properties of the covering terrain, causes a lot of landslides (collapse,
overturning, sliding or falling): the landslide of the north flank is nowadays active with
a fall or overturning mode, whereas the southern flank is characterized by a lot of slope
instabilities in a quiescent mode [26]. The Amatrice basin is filled by about 60-m-thick
Quaternary fluvial deposits, laying above the Messinian siliciclastic deposits of the Laga
Formation, which play the role of seismic bedrock for the area [27,28]. They are made
by conglomerates and sands alternations, few tens of meters thick, which can generate a
seismic impedance contrast that, together with the topographic effects, is able to generate a
strong amplification effect [25,29,30].

The analysis of earthquakes and ambient noise, recorded on the Amatrice terrace and
around it for microzonation purposes, has revealed spatial variation of site
effects [25,31–33]: the diffuse amplification of ground motion reaches its maximum values
in the downtown area, at the western limit of the terrace, with a resonant frequency of
about 2.0–2.5 Hz. Here, the amplification is larger in the northern sector and varies from
the central part to the edge, where [25] observed a clear directionality of the resonant peak
(on the contrary, [34] concluded that maximum directions are linked to the presence of
noise sources). These observations suggest a lateral variability of the geological conditions,
due to the spatial variation of the impedance contrast, and the presence of topographic
effects, due to the morphology of the area [25,29,30].
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Figure 1. (A) Map of the study area with the strongest earthquakes that affected central Italy from
1997 to 2016 and the associated TDMT focal mechanisms (http://cnt.rm.ingv.it/tdmt, accessed on 24
April 2021; [35]); blue, red, and yellow dots represent the location of the seismic events used in this
study. (B) Schematic geological map of the Amatrice downtown (modified after [27]) generated by
GIS (base map source: Esri, user community, geographic information system. Coordinate system and
projection: World Geodetic System 1984–Web Mercator Auxiliary Sphere); black triangle represents
the position of seismic stations whose recordings are used for the analysis.

This short review highlights that there is no single interpretation on the explanation of
the ground motion experienced in Amatrice, neither on the causes of the variability of heavy
damage [25,29,30,34]. Indeed, the ground motion complexity, due to a combination of near-
source and site effects, is difficult to reproduce with standard simulation techniques [21,29].

To overcome the limitations in terms of frequency band, spatial resolution, and knowl-
edge of source and propagation models, we propose a simple methodology for reproducing
the ground motion in Amatrice downtown during the 24 August 2016, Mw 6.0 mainshock,
in absence of recording stations in the most damaged area. Empirical transfer functions
were used to recover the ground motion that could have hit the downtown during the

http://cnt.rm.ingv.it/tdmt
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mainshock, through the convolution with the only record available for that earthquake a
few hundred meters away from the historical center (AMT station).

The applied methodology was tested on the 26 October (Mw 5.9) and 30 October
(Mw 6.5) 2016 mainshocks, with the aim to highlight strengths and weaknesses of the
approach. We then simulated the Mw 6.0 earthquake of 24 August by using the recordings
at AMT and the empirical transfer functions at several sites in downtown. The results have
been discussed in terms of time series and intensity measures (PGA, PGV, Arias intensity,
significant duration).

2. Available Data

In this study, we used seismic signals of 35 earthquakes of the 2016–2017 central Italy
seismic sequence (Table 1 and Figure 1A), recorded by 20 seismic stations located in the
Amatrice village (Table 2 and Figure 1B).

Table 1. Location and magnitude of earthquakes whose recordings were used in this study (available at http://cnt.rm.
ingv.it/, accessed on 23 April 2021). Last column lists the stations that recorded the event used for the transfer function
computation (SSR).

UTC Time Latitude
[◦N]

Longitude
[◦E]

Depth
[km]

Mag
Type Magnitude Transfer

Function

2016-08-24T01:36:32 42.70 13.23 8 Mw 6.0 AMT
2016-10-16T09:32:35 42.75 13.18 9 Mw 4.0 T1299,AMT
2016-10-26T17:10:36 42.88 13.12 8 Mw 5.4 T1299,AMT
2016-10-26T19:18:07 42.91 13.09 10 Mw 5.9 MZ,MZ08,AMT
2016-10-26T21:42:01 42.86 13.12 10 Mw 4.5 T1299,AMT
2016-10-27T03:19:27 42.84 13.14 9 Mw 4.0 T1299,AMT
2016-10-27T08:21:45 42.88 13.10 9 Mw 4.3 T1299,AMT
2016-10-28T02:13:19 43.03 13.12 8 ML 3.5 MZ,MZ08,AMT
2016-10-29T16:24:33 42.81 13.10 11 Mw 4.1 T1299,AMT
2016-10-30T06:40:17 42.83 13.11 10 Mw 6.5 MZ
2016-10-30T07:13:05 42.69 13.23 11 ML 4.2 T1299,AMT
2016-10-30T11:58:17 42.85 13.06 10 Mw 4.0 T1299,AMT
2016-10-31T08:37:33 43.03 13.08 8 ML 3.5 MZ,MZ08,AMT
2016-10-31T12:30:16 42.92 13.01 11 ML 2.9 MZ,MZ08,AMT
2016-11-01T03:19:05 42.90 13.29 24 ML 3.8 MZ,MZ08,AMT
2016-11-01T04:09:15 42.59 13.34 17 ML 3.0 MZ,MZ08,AMT
2016-11-02T15:53:02 43.03 13.05 9 ML 3.4 MZ,MZ08,AMT
2016-11-02T19:26:47 42.92 13.21 8 ML 3.1 MZ,MZ08,AMT
2016-11-02T19:37:49 42.88 13.06 8 Mw 3.7 MZ,MZ08,AMT
2016-11-03T00:35:01 43.03 13.05 8 Mw 4.7 MZ,MZ08,AMT
2016-11-03T11:59:17 42.91 13.21 9 ML 3.5 MZ/MZ08,AMT
2016-11-03T14:41:29 42.99 13.07 9 ML 3.5 MZ/MZ08,AMT
2016-11-08T20:00:56 42.82 12.78 9 ML 3.2 MZ/MZ08,AMT
2016-11-10T13:50:59 42.88 13.13 8 ML 3.6 T1299,AMT
2016-11-10T15:57:33 42.98 13.05 7 ML 3.4 MZ,MZ08,AMT
2016-11-12T03:54:59 43.01 13.07 8 ML 3.1 T1299,AMT
2016-11-12T22:51:10 42.92 13.21 8 ML 3.2 T1299,AMT
2016-11-14T01:33:43 42.86 13.16 11 ML 4.1 T1299,AMT
2016-11-15T22:57:52 42.75 13.21 10 ML 3.3 T1299,AMT
2016-06-28T10.30.04 42.62 13.32 9 ML 1.8 -
2016-06-28T14.12.02 42.91 13.18 8 ML 2.2 -
2017-06-29T08.52.29 42.63 13.22 11 ML 2.6 CS,T1299,AMT
2017-06-29T08.55.46 42.63 13.21 11 ML 3.1 CS,T1299,AMT
2017-06-29T09.24.20 42.64 13.21 11 ML 1.5 -
2017-06-29T10.24.07 42.77 13.17 11 ML 1.8 -

http://cnt.rm.ingv.it/
http://cnt.rm.ingv.it/
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Table 2. List of the seismic stations installed in the Amatrice municipality (see [25,31]). For each station, the geographic
coordinates and the working periods are reported. Stations CS01–04 (in italic) were not used for the 24 August 2016
simulation.

Station Code Latitude
[◦N]

Longitude
[◦E]

Altitude
[m] Working Period

AMT 42.6325 13.2862 950 7 April 2003–today
T1299 42.6342 13.2822 940 29 August 2016–today
MZ08 42.6330 13.2870 897 20 September–17 November 2016
MZ10 42.6250 13.3000 979 20 September–17 November 2016
MZ12 42.6280 13.2920 958 20 September–17 November 2016
MZ28 42.6214 13.3080 992 14 October–17 November 2016
MZ29 42.6304 13.2930 881 27 October–17 November 2016
MZ30 42.6264 13.2906 951 27 October–17 November 2016
MZ31 42.6250 13.2900 878 27 October–17 November 2016
CS01 42.6304 13.2873 929 28 June 2017–28 June 2017
CS02 42.6297 13.2871 935 28 June 2017–28 June 2017
CS03 42.6294 13.2869 933 28 June 2017–28 June 2017
CS04 42.6294 13.2873 940 28 June 2017–28 June 2017
CS13 42.6270 13.2958 946 29 June 2017–29 June 2016
CS14 42.6288 13.2892 949 29 June 2017–29 June 2017
CS16 42.6299 13.2892 930 29 June 2017–29 June 2017
CS17 42.6282 13.2893 948 29 June 2017–29 June 2017
CS20 42.6293 13.2906 940 29 June 2017–29 June 2017
CS23 42.6290 13.2910 951 29 June 2017–29 June 2017
CS24 42.6285 13.2911 953 29 June 2017–29 June 2017

The selected events were characterized by epicentral distances between 7 to 48 km
from Amatrice downtown and magnitudes in the range ML ≥ 1.5 and Mw ≤ 6.5, including
the three mainshocks of the sequence (Mw 6.0 on 24 August, Mw 5.9 on 26 October,
and Mw 6.5 on 30 October 2016). The recordings were downloaded from the European
Integrated Data Archive (EIDA, http://eida.ingv.it, accessed on 24 April 2021; [36]) and
the Italian Strong Motion Network (RAN, http://ran.protezionecivile.it, accessed on 24
April 2021; [37]) databases. They were selected accounting for a signal-to-noise spectral
ratio greater than two or three (depending on the stations) in a wide frequency band, and a
clear P and S wave arrivals.

The closest seismic station to Amatrice downtown that recorded the 24 August, Mw
6.0, earthquake was AMT, belonging to the National Accelerometric Network [37] and able
to record seismic events with a Ml ≥ 2.5 [17]. AMT was at an epicentral distance of about
8.5 km (Rjb = 1km; [38]) and recorded the maximum horizontal PGA for the event on the
EW component (8.5 m/s2; [2]); the difference with the NS component, that recorded half of
the PGA value, was probably caused by topographic effects [29], seismic amplification [25],
or directivity effects [14].

Another reference station, T1299, was installed by the INGV mobile seismic network
about 800 m NW of Amatrice downtown, at the base of the hill [25,39].

Moreover, to record the aftershock sequence and to investigate the local amplification
effects for microzonation purposes, a total of 50 temporary seismic stations were installed
by INGV in four municipalities, including Amatrice (MZ stations, belonging to the 3A
network [40]; see also [25,31–33]). In this study, only six stations distributed along the
NW-SE elongated Amatrice terrace were considered: the stations MZ10, MZ12, MZ28
were installed at the top of the sandy conglomeratic deposits of the Amatrice–Sommati
units [27], whereas the stations MZ29, MZ30 were located in a NE–SW direction across the
Amatrice hill.

According to [25], the station MZ08 was installed a few meters far from the AMT
station, to extend the detection capability at the site towards the lower magnitude events.
For events before 4 November 2016, we verified a 13◦ clockwise orientation difference of
AMT with respect to MZ08. However, after that date, the sensor at AMT was changed and

http://eida.ingv.it
http://ran.protezionecivile.it
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the orientation was corrected. The slight difference in the sensor’s orientation does not
significantly affect the seismic recordings, showing very similar signals (see Figure S1 on
Supplementary Materials).

Later on, an array of 24 seismic stations was installed for few hours of activity in the
heavily damaged historical center [25]. Out of 12 stations (CS01 to CS12) that worked
during 28 June 2017, only four stations (CS01 to CS04) recorded a clear seismic signal of
two earthquakes with ML 1.8 and 2.2. Otherwise, 12 stations (CS13 to CS24) worked during
the second day of activity, but only seven of them (CS13, CS14, CS16, CS17, CS20, CS23,
CS24) recorded four seismic events with a ML between 1.5 to 3.1.

3. Simulation Method

During the Amatrice earthquake, no station was available in the historical center
except for AMT. Later on, tens of temporary stations were installed in Amatrice village and
they recorded many earthquakes simultaneously to the reference station.

To overcome the limits of the available data and the network geometry, we imple-
mented a strategy for simulating a given earthquake (e.g., the Amatrice mainshock) at
stations (e.g., Table 2) close to the reference one (e.g., AMT) that recorded the event. The
strategy is summarized in Figure 2 and explained in the following steps:

1. The target event is recorded at a reference station, for which we calculated the Fourier
transform (FFT phase and amplitude).

2. Several earthquakes are recorded simultaneously at the reference station and at
the other neighboring sites (in this way we can assume similar source effects at
all stations), allowing us to calculate the empirical transfer functions respect to the
reference site by means of the standard spectral ratio (SSR).

3. FFT amplitude of the target event recorded at the reference station is multiplied by
the SSR of each station; the result is an amplitude spectral content, modified by the
contribution of a transfer function.

4. The modified FFT amplitude spectrum is back-transformed to the time domain
through the IFFT, using the FFT phase of the reference station.
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Figure 2. Simulation strategy proposed in this study, where numbers 1 to 4 refer to the numbered list of Section 3. Red lines
represent the recorded time series and the relative phase and amplitude spectra at the reference station (AMT) for the Mw 6.5
earthquake. Number 2: orange thick line represents the standard spectral ratio (SSR) of T1299 (E–W component) with respect
to AMT, thin black lines represent the 18 horizontal components of the SSR rotated every 10◦ and 1 vertical component.
Numbers 3 and 4: blue lines represent the simulated signal at T1299 with its phase and amplitude spectra, respectively.
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The proposed procedure overcomes the complexity of the source and site effects:
the near-source influence is included in the strong motion recording at the reference site,
whereas the relative site effects are accounted for by the site transfer functions.

However, we are aware that the use of the same phase spectrum at all stations results
in an unlikely coherence at high frequencies between the signals recorded at different
sites, whereas the high frequency incoherency is related to the heterogeneities of the
propagation path and it is largely site dependent, but also regionally dependent [41–43].
Considering that the spatial coherency decreases with increasing frequency and distance
between measuring points [44], the same authors showed that the coherence for high-
frequency intensity measures (such as PGA) is still high within a separation distance of
one to a few kilometers, which makes the stations configuration in Amatrice reliable for
our methodology.

Another possible weakness, due to the use of the same phase spectrum, relates to the
inability to capture the increase of the ground-motion duration for 2–3D site effects, which
can act to decrease the peak amplitudes.

Finally, the small-magnitude events for the SSR computation do not account for
possible nonlinear soil behavior, whose main effect would be a shift of the amplification
towards lower frequencies and a decrease of the peak amplitudes [45].

4. Data Processing

The seismic recordings used for the SSR computation are listed in Table 1, together
with the stations that recorded each event.

The time series have been band-pass filtered between 0.5 to 20 Hz, corrected by
subtracting the mean value and the best-fit line, cut between −0.5 to 30 s with respect to
the P-wave arrival (manual picking), and tapered before computing the Fourier spectra.
Only the frequencies with a signal-to-noise ratio (s/n) ≥ 3 were used for the recordings at
T1299 and MZ stations and (s/n) ≥ 2 for the CS stations, to maximize the information of
the few low-magnitude earthquakes available.

As described in [46], the SSR were computed on 18 horizontal components, each
rotated every 10◦ clockwise, and on the vertical component. After rotation of the time
signals, their Fourier spectra were smoothed with Konno–Ohmachi algorithm [47] (b = 40
and fmax = 20 Hz) and divided by the reference ones. The spectral ratios for each station
were then averaged (geometrical mean) on all the used seismic events (Figure 3).
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Figure 3. Standard spectral ratio (SSR) of T1299 with respect to AMT. (A) average SSR and the associated standard deviation
along the N–S direction; (B) average SSR calculated along 18 horizontal directions every 10◦; (C) polar plot showing the
amplification along different azimuthal directions from 0 Hz (center of polar plot) to 20 Hz.

We computed the SSR of the T1299, MZ, and CS stations with respect to AMT or MZ08
(they are equivalent), using different earthquakes (Table 1 and Figure 1)—for T1299 we
used 15 earthquakes with magnitude between 2.6 and 5.4, recorded simultaneously at
T1299 and AMT, whereas for the MZ stations we considered 12 events of magnitude range
3.1–5.9, using MZ08 as reference (Figure S2 in Supplementary Materials).
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Regarding the CS stations in downtown, the CS13-14-16-17-20-23-24 recorded four
seismic events simultaneously to AMT, but only two, with magnitude 2.6 and 3.1, were
recorded by AMT and showed a signal-to-noise ratio greater than 2 in a wide frequency
band (Figure 4 and Figure S3 in Supplementary Materials). Unfortunately, we could not
use CS01-02-03-04 stations because they recorded two seismic events only, having too low
magnitude to be recorded by the accelerometric station AMT (Table 1).
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To quantify the intensity measures of the seismic signals, several parameters have
been taken into account: the peak ground acceleration (PGA) and velocity (PGV), providing
limited insight to the shaking at high and intermediate frequencies, respectively; the Arias
intensity; the significant duration. The Arias intensity (AI) represents the cumulative
energy perceived at the site, in a specific time interval during a seismic event, and it is
expressed in m/s [48]; we computed it for the total duration of the seismic signal (from
t = 0 to t = tmax):

AI = Ia (0, tmax), where Ia(t1 , t2) =
π

2g

∫ t2

t1

a(t)2dt. (1)

The significant duration (SID) uses Equation (1) and measures the time interval (t2–t1),
in which Ia is between 5% and 95% of the total.
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For the intensity measures on horizontal motion, we used the maximum between the NS
and EW components. See [46] for a detailed description of the signal processing procedure.

5. Results

The proposed simulation procedure has been first tested by comparing simulated and
recorded seismograms for two mainshocks (Mw 5.9 and 6.5 on 26 October and 30 October
2016, respectively) at some stations in Amatrice, using AMT and MZ08 as a reference site.
Then, we simulated the expected ground motion in Amatrice downtown during the Mw
6.0 earthquake on 24 August, by means of the recordings at AMT station.

5.1. Standard Spectral Ratio (SSR)

The site effects of the Amatrice stations have been already discussed in [25,33], al-
though their reference station was T1299; however, we list here some main findings inferred
from their and our analyses (see Figures 3 and 4 and Figure S2 in Supplementary Materials):

• T1299 is affected by a slight deamplification with respect to AMT up to 10 Hz; above
this value, the amplification increases by up to 2.5 (Figure 3).

• MZ10, MZ12, and MZ28 are amplified with respect to the reference site (MZ08 or
AMT): MZ10 has a strong amplification of about 7.5 above 10 Hz with a NW–SE
polarization; MZ12 and MZ28 show an average amplification of about 4 and 3, re-
spectively, along the entire frequency range and with NNW–SSE polarization; MZ29,
located at the base of the terrace close to the northern edge, has a high-frequency
amplification (f > 10 Hz) most likely due the slope debris, whereas MZ31, located
at the base of the southern slope, does not show any amplification (Figure S2 in
Supplementary Materials).

• CS13-14-16-17-20-23-24, in Amatrice downtown, show an amplification larger than
2 in the frequency range 0.7–3.5 Hz, with a double peak between 1.5 to 2.5 Hz and
a preferred NE–SW direction: the maximum amplitude of the peaks exceeds 5 at
stations CS20, CS23, and CS24, and it reaches a value of about 4 at CS13, CS14, and
CS17 (for this station the SSR has been evaluated only between 0.5 to about 7 Hz);
CS16 appears as the most amplified seismic station in a wider frequency range (up to
10 Hz), with a maximum amplification of about 7.3 in the NE–SW direction (Figure 4
and Figure S2 in Supplementary Materials).

5.2. Tests

The simulation strategy has been tested to investigate the contribution of the transfer
functions and the effect of the reference station phase used in the IFFT (Figure 5). We
evaluated PGV, PGA, Arias intensity (AI) and signal duration (SID) of the simulated and
recorded seismic signals of Mw 5.9, 26 October (Test 1 to 3), and Mw 6.5, 30 October (Test 4),
at MZ08-10-12-28 stations (Figure 6).

PGA and PGV were also compared with the GMM valid for shallow crustal earth-
quakes in Italy (ITA18; [49]); the recorded values of the Mw 5.9 earthquake at MZ08 and
MZ10 stations were close to the GMM predictions plus 1 standard deviation, while MZ12
and MZ28 showed values larger than those predicted. For the Mw 6.5 earthquake (test 4),
the recordings overestimated the GMM values by a larger extent, especially for MZ12 and
MZ28, where recorded values almost doubled the prediction plus 1 standard deviation.

To estimate the goodness of fit of the simulations with respect to the observations
(GoF), we computed the relative difference as follow:

GoF =
(IMsim − IMrec)

IMrec
(2)

where IMsim is the intensity measure from the simulated time series and IMrec is computed
from real records. The obtained values of GoF for the 4 tests can be found on Table S1
(Supplementary Materials).
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FFT, fast Fourier transform; IFFT, inverse fast Fourier transform; TF, transfer function (SSR).

The first test (TEST 1 in Figure 5) was carried out to verify the formal correctness of
the procedure, whereas the second test (TEST 2 in Figure 5) aimed to investigate the
use of the FFT phase of reference station (MZ08) in the IFFT process. The recorded
intensity measures were well reproduced for Test 2 (Figure 6), except for MZ28 where the
simulations underestimated the recorded PGV and PGA (GoF equal to −34% and −26%,
respectively). As expected, the use of the reference phase in the IFFT caused a time shift
of the simulated signals with respect to the recorded ones, proportional to the distance
between the considered station and the reference site (Figure 7).

The third test (TEST 3 in Figure 5) was performed to investigate the use of the SSR
average on 12 earthquakes (Table 1 and Figure S2, Supplementary Materials). As for Test 2,
the fit was very good for all the indicators and it got better for the PGA; MZ28 was again
underestimated by an amount of −42% for PGV and −22% for PGA (Figures 6 and 8).
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MZ28 (B) for Test 3. Red (blue) line represents the recorded (simulated) signal between 0.5–20 Hz.

The fourth test (TEST 4 in Figure 5) mimicked Test 3 but for the Mw 6.5 earthquake,
to investigate the use of small-magnitude SSR in case of possible nonlinear effects for a
larger magnitude event. Figure 9 shows the different ingredients of the simulation strategy
applied to MZ12: recordings of the reference station MZ08 (Figure 9A); recorded and
simulated accelerations at MZ12, showing a slight amplification of the simulated signal
with respect to the recorded one (Figure 9B); amplitude Fourier spectra of recorded signals
at both MZ08 and MZ12, compared with the simulated FFT at MZ12 (Figure 9C); SSR used
to correct the amplitude FFT spectrum of MZ08 (Figure 9D).

The comparison of the intensity measures (Figure 6) showed that the PGV at all
stations were well fitted, slightly overestimating the recorded values at MZ10 and MZ28 of
about 10% and 20%, respectively. The PGA values were well reproduced at MZ12, but we
overestimated the recorded values of about 47% and 32% at MZ10 and MZ28. The Arias
intensity values were well reproduced at MZ10 and MZ12, with a GoF of about ±15%,
while at MZ28 we overestimated the recorded values of about 65%. The signal duration
(SID) showed an increase of about 35% at MZ12, and ±5% at MZ10 and MZ28.

5.2.1. 24 August 2016 Simulation

The Mw 6.0 earthquake on 24 August 2016, was simulated at 14 seismic stations,
located mainly in downtown Amatrice, using AMT as a reference site (Table 2, Figure 1).
The large number of seismic events recorded by T1299 and MZ and the two events at CS13
to CS24 allowed us to reproduce reliable seismic signals in the 0.5–20 Hz frequency band
(Figure 10): the highest ground shaking was concentrated in the first seconds after the
P-wave arrival and the signal duration was similar at all the stations (4 to 6 s in Figure 11D).

Moreover, there was a large variability of the peak values at the different station
locations (Figure 11 for the maximum of horizontal components, Figure S4 for the vertical
component), and almost all the stations had PGA and PGV values up to three times the
mean plus one standard deviation of the GMM valid for the area (Figure 11). During
the Mw 6.0 shaking, the AMT station recorded a PGV value of 0.3 m/s (maximum on
the horizontal components), slightly above one standard deviation of the GMM expected
value [49]. With the exception of four stations, whose simulated PGV values were similar
to AMT (GoF = −15% to −21% at T1299-MZ29-MZ31, GoF = +14% at MZ10), the other
stations showed larger values with GoF ranging mostly from 50% to 100%, and with a
maximum of 150% or 200% for CS20 and CS16, respectively (Figure 11A).
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Figure 9. Comparison between recorded and simulated signals (EW component) at MZ12 for Test 4, in the frequency
band of 0.5–20 Hz: (A) recorded signal at MZ08; (B) recorded and simulated signals at MZ12; (C) comparison of the FFT
amplitudes between the signals recorded by MZ08 and MZ12, and the signal simulated at MZ12; (D) SSR ±1 standard
deviation (gray) on the EW direction (MZ12 on MZ08).

Regarding PGA, AMT recorded a value of about 8 m/s2, largely above one standard
deviation of the GMM (Figure 11B). Again, T1299-MZ31 had smaller values (GoF about
−50%), whereas CS14-CS20-MZ12-MZ28-CS16 exceeded the AMT values by more than
40% (GoF = 100% at CS16). The other stations varied between −20% to 20% of AMT values.

The Arias intensity (AI), shown in Figure 11C, was between 100% and 200% larger
than AMT, with two stations reaching 350% and 600% (CS20 and CS16, respectively). T1299
and MZ31 decreased by more than 60%, whereas MZ10 and MZ29 were very similar to
AMT. The significant durations (SID, Figure 11D) of the simulated signals were similar to
the recorded one at AMT, characterized by a total duration of about 4 s.

Finally, the intensity measures for the vertical component (Figure S4 in Supplementary
Materials) were always larger than AMT with the exception of T1299 and MZ31, and they
never exceeded the 100% of AMT for PGA and PGV. Arias intensity values, instead, were
larger than AMT by about 100–350%. The significant duration of the simulated signals
showed a slight variation, with a maximum increase of about 1.1 s with respect to AMT.
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information system. Coordinate system and projection: World Geodetic System 1984–Web Mercator Auxiliary Sphere).
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Figure 11. Comparison between the recorded (red dot) and simulated (blue square) intensity measures for Mw 6.0 (24 August
2016) at the stations in Amatrice (maximum horizontal components): (A) PGV; (B) PGA; (C) horizontal Arias intensity (AI);
(D) significant duration (SID). Green lines are the GMM mean ±1 standard deviation [49] for Rjb = 1 km [38] and site class
B (Vs30 = 670 m/s at AMT).
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6. Discussion

We proposed a procedure that has been tested on recorded earthquakes to evaluate the
strengths and the weakness of the implemented method, checking for the contribution of
the phase (Test 2) and of the average transfer functions on small earthquakes to reproduce
strong shaking (Tests 3–4). The tests showed a fairly good agreement between simulations
and recordings, both in terms of time series and intensity measures.

However, there are some limits due to the use of the same phase spectrum for all
the stations and to the small-magnitude transfer functions. First of all, the reference site
phase in the IFFT procedure implied the same P-wave arrival times at all the stations
(Figures 7 and 8) and it did not allow us to simulate the variation of the seismic duration
due to local site response (Figure 6D). Secondly, the use of SSR produced signals whose
intensity measures were lower than the recordings (Test 2 versus Test 3 in Figure 6) in the
case of spectral amplification of the target event larger than the average SSR (Figure S5 in
Supplementary Materials). Instead, when the transfer function is lower than the average
SSR, such as for the strongest mainshock (Test 4; Figure 9 and Figure S5 in Supplementary
Materials), we overestimated both the total energy AI and the PGV (Figure 6), probably
because we were not accounting for possible nonlinear effects of the subsoil during the
strong shaking. As a general conclusion, we can assess that our procedure evaluates an
upper bound of the expected intensity measures at the target sites.

The proposed methodology has been applied to simulate the 24 August, Mw 6.0
earthquake at sites in the town of Amatrice: seven CS stations located in the historical
center and seven farther sites (T1299 and six MZ stations) located on the top and at the
base of the Amatrice terrace (Figures 10 and 11). The largest amplification characterized
the stations at the proximity of the NE hill edge and tended to decrease in the SW direction
toward the central part of downtown. The lack of lateral confinement, due to the morpho-
logical escarpment, produced a NE oriented amplification of the low frequencies at the
CS stations, on the direction orthogonal to the morphological elongation of the Amatrice
terrace. Instead, the amplification at frequencies above 8 Hz were variable in amplitude
and preferential orientation, suggesting that the top of the hill is affected by highly variable
seismic amplification, due to the presence of low-velocity deposits.

The strong accelerations reproduced at the historical center of Amatrice is then related
to the vicinity of the seismic source, accounted for by the ground motion at AMT, and
by the local site effects, described by the SSR transfer function at the sites. The presence
of layers with different impedance contrasts, together with the steep slopes bounding
the Amatrice terrace, is able to generate seismic amplification effects, resulting in the
increase of the intensity measures simulated on the top of the hill. The largest motion
was simulated at CS16 and CS20, which showed horizontal PGA clearly exceeding the
gravitational acceleration (about 16 and 12 m/s2, respectively). Similarly, the stations
MZ10-12-28-30-31 were characterized by seismic amplification with respect to the reference
site: MZ12 and MZ28 showed horizontal PGA of about 14 m/s2, whereas MZ10-29-30
had values between 7 to 9 m/s2. The two stations at the base of the terrace, MZ31 and
T1299, were deamplified with respect to AMT and showed lower intensity measures,
highlighting the high variability and the seismic behavior between the base and the top of
the Amatrice hill.

Furthermore, the 24 August simulated signals showed a slight variation of the signal
duration with respect to AMT (SID in Figure 11). This effect was due to the use of the
reference phase spectra in the IFFT procedure, and to the near-source conditions, which
concentrated the energy radiation in the direct wave arrivals. Conversely, in case of far-field
conditions, as for the low-magnitude earthquakes recorded at CS stations, we verified that
the seismic amplification in the Amatrice historical center was associated to an increase of
SID up to three times with respect to AMT station (see also [25]).

The PGA and PGV values recorded by AMT, and the simulated ones at the stations,
were clearly above one standard deviation of the GMM predictions (Figure 11), suggesting
that the Amatrice historical center, especially in the eastern part of downtown, has been
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subjected to a severe ground shaking larger than the expected average. As already dis-
cussed, the proposed procedure did not allow us to simulate the nonlinear effects and it
concentrated the energy in a time interval controlled by the reference site, suggesting that
we estimated the upper limit of intensity measures in case of a seismic event characterized
by similar magnitude and epicentral distance.

7. Conclusions

The proposed procedure is suitable for simulating strong ground motions of a past
earthquakes recorded by at least one reference station close by. In this way, it is possible to
overcome the limits of other simulation techniques for which the computation needs the
description of the rupture process and propagation model from the source to the site.

This is the case of the 24 August 2016, Mw 6.0, earthquake signals which have been
reproduced at the historical center of Amatrice, by using the transfer functions with respect
to the closest seismic station (AMT) that recorded the event. We simulated the strong
ground motion at 11 seismic stations located on the top of the Amatrice hill, out of which
seven were installed in the historical center. The largest motion was reproduced at the
north-eastern edge of the downtown, where the horizontal PGA values exceeded the
gravitational acceleration. The simulated ground motions decreased away from the edges
of the hill, suggesting that the topographic effect and the lack of lateral confinement are
the predominant factors of the site effect. Two stations located at the base of the terrace
showed lower intensity measures with respect to the reference site, highlighting the high
variability and the seismic behavior between the base and the top of the Amatrice hill.

The strong ground motion variability during the Mw 6.0 event could help to under-
stand the damage distribution that affected Amatrice downtown (X-XI of MCS; [50]). It is
worth noting that the buildings of the historical center belonged to the most vulnerable
classes [11,12] and were moderately to completely destroyed by the earthquake. The most
damaged buildings were in the eastern part of the town [13], in proximity to the steep
slopes of the hill, which was affected by the largest shaking.

Further studies could assess the performance of the simulation strategy for large-
magnitude earthquakes having different focal mechanisms and rupture models. Moreover,
it should be tested on sites with different geological and morphological conditions (such as
soft sediments, fractured rock, or different topographies) and using more than one reference
station close by, in order to make a robust evaluation of the simulated intensity measures.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/geosciences11050186/s1, Figure S1: Comparison of the AMT recorded time series of Mw 6.5
earthquake, NS–EW vs. 13◦ clockwise rotated components. Figure S2: Comparison between the time
series and the FFT amplitude recorded by AMT and MZ08 for the Mw 6.5 earthquake (NS, EW, and
vertical components). Figure S3: Standard spectral ratio (SSR) at the seismic stations considered in
the study. Figure S4: Recorded and simulated intensity measures on the vertical component of the
24 August 2016, earthquake. Figure S5: comparison between the SSR of MZ10-12-28 averaged on
12 seismic events and the SSR on Mw 5.9 and Mw 6.5 earthquakes individually.
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