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S U M M A R Y
In a recent work, we computed the relative frequencies with which strong shocks
(4.0 ≤ Mw < 5.0), widely felt by the population were followed in the same area by po-
tentially destructive main shocks (Mw ≥ 5.0) in Italy. Assuming the stationarity of the seismic
release properties, such frequencies can be tentatively used to estimate the probabilities of
potentially destructive shocks after the occurrence of future strong shocks. This allows us to
set up an alarm-based forecasting hypothesis related to strong foreshocks occurrence. Such
hypothesis is tested retrospectively on the data of a homogenized seismic catalogue of the
Italian area against a purely random hypothesis that simply forecasts the target main shocks
proportionally to the space–time fraction occupied by the alarms. We compute the latter frac-
tion in two ways (i) as the ratio between the average time covered by the alarms in each area and
the total duration of the forecasting experiment (60 yr) and (ii) as the same ratio but weighted
by the past frequency of occurrence of earthquakes in each area. In both cases the overall
retrospective performance of our forecasting algorithm is definitely better than the random
case. Considering an alarm duration of three months, the algorithm retrospectively forecasts
more than 70 per cent of all shocks with Mw ≥ 5.5 occurred in Italy from 1960 to 2019 with
a total space–time fraction covered by the alarms of the order of 2 per cent. Considering the
same space–time coverage, the algorithm is also able to retrospectively forecasts more than
40 per cent of the first main shocks with Mw ≥ 5.5 of the seismic sequences occurred in the
same time interval. Given the good reliability of our results, the forecasting algorithm is set
and ready to be tested also prospectively, in parallel to other ongoing procedures operating on
the Italian territory.

Key words: Earthquake hazards; Earthquake interaction, forecasting, and prediction; Statis-
tical seismology.

I N T RO D U C T I O N

Even if the deterministic prediction of earthquakes is presently not
feasible and perhaps it will never be (Geller et al. 1997), several
methods of probabilistic operational forecasting have been pro-
posed in the last decades (see Jordan & Jones 2010 and Jordan
et al. 2011 for an overview). Many of such methods take advantage
of the well-known property of earthquakes to cluster in space and
time (Mulargia & Geller 2003; Kagan 2014) and in particular of the
possibility that relatively small shocks, occurring in advance (fore-
shocks) of destructive main shocks, might be used as precursory
signal.

Jones & Molnar (1976, 1979) first observed that the property of
worldwide strong earthquakes of being preceded by a few days or
weeks of smaller shocks could have been used to predict somehow

their occurrence. Jones (1984, 1985) noted that in California the
occurrence of a weak shock increased of several order of magnitude
the probability of occurrence of a main shock in the following hours
or days and Agnew & Jones (1991) and Jones (1994) computed the
probability of a major earthquake along the San Andreas fault in
California, given the occurrence of a potential foreshock nearby
the fault. The occurrence of foreshocks was then adopted as one of
possible precursor of large earthquakes by the Southern San An-
dreas Working Group (1991) and Reasenberg (1999a,b) estimated
the prospective frequency of potential foreshock being followed by
stronger earthquakes in California and worldwide.

In Italy, Caputo et al. (1977, 1983) analysed earthquakes’ swarms
as forerunners of strong earthquakes, Grandori et al. (1988) pro-
posed an alarm system based on the occurrence of a pair of fore-
shocks, Console et al. (1993) and Console & Murru (1996) studied
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the foreshock statistics and their possible relationship to earthquake
prediction and Di Luccio et al. (1997) and Console et al. (1999)
set up a forecasting hypothesis for the occurrence of earthquakes
conditioned by prior events.

More recently, Gasperini et al. (2016), by the retrospective anal-
ysis of a homogeneous seismic catalogue of the Italian region, com-
puted the relative frequencies with which strong shocks (defined
as 4.0 ≤ Mw < 5.0) were followed in the same area by potentially
destructive main shocks (defined as Mw ≥ 5.0, 5.5, 6.0). In partic-
ular, they found that just after strong shocks, the relative frequency
of potentially destructive main shocks in the same area increases
with respect to quiet periods by a factor up to about 100 000. Then,
as time goes by without any main shock occurring, such factor de-
creases logarithmically down to less than 10 for time windows of
months to years. Within one day after the occurrence of a strong
shock, the frequencies of main shocks with Mw ≥ 5.0 and ≥ 5.5
range from 5 per cent to 2 per cent while within one month they
range from 14 per cent to 6 per cent. Frequencies remain quite stable
for about one hour after the strong shock and then start to decrease
logarithmically at a rate of about 1 per cent for a doubling of the
time elapsed from the strong shock. The frequencies of large main
shocks (Mw ≥ 6.0) are generally lower than 1 per cent except from
about one month after a strong shock with 4.5 ≤ Mw < 5.0 when
they become of the order of 4 per cent, but they decrease well below
1 per cent about two or three months after the strong shock if the
main shock did not actually occur in the meantime. About 30 per
cent of main shocks have been preceded by strong shocks in the day
before, about 50 per cent one in the month before and about 60 per
cent in the year before.

All such evidences suggest us to formulate an alarm-based fore-
casting hypothesis related to the simple occurrence of strong shocks
in a given area. In this work, we first set up such hypothesis and
then optimize it by the retrospective analysis of the HOmogenized
instRUmental Seismic catalogue (HORUS) of the Italian area from
1960 to 2019 (Lolli et al. 2020) which is an improved and updated
version of the seismic catalogue used by Gasperini et al. (2016).

In our knowledge, this is the first alarm-based forecasting exper-
iments applied to the Italian region after the one by Grandori et al.
(1988) cited above and after Console et al. (2010) and Murru et al.
(2009) who converted to an alarm-based approach previous proba-
bilistic forecasting studies by Console & Murru (2001) and Console
et al. (2003, 2006). In fact, the latter studies, as well as others fore-
casting efforts in Italy (see Schorlemmer et al. 2010 and Marzocchi
et al. 2014 for an overview), mostly based on the Epidemic-Type Af-
tershock Sequence (ETAS) model (Kagan & Knopoff 1987; Ogata
1988), were developed to reproduce at best the general behaviour
of future seismicity, not to issue a warning of a possibly impending
damaging earthquake.

The present forecasting hypothesis will be possibly submitted
for prospective testing and validation to the testing facilities of
the Collaboratory Study of Earthquake Predictability (Jordan 2006;
Zechar et al. 2010).

S E T T I N G U P T H E F O R E C A S T I N G
H Y P O T H E S I S

We issue an alarm of duration �t within a circular area (CA) of
radius R every time a strong shock with Mmin ≤ M < Mmax occurs
inside the CA. As target events to be forecasted we consider all the
shock, with magnitude above a threshold Mm ≥ Mmax.

We must note that after the actual occurrence of a target shock, the
forecast of further target shocks in the same area and in the following
weeks or months is somehow favoured by the strong aftershocks of
the previous target event. Hence, we also verify the ability of our
method to forecast only the first target shock of each sequence.
We then consider also a declustered set of target shocks obtained
by eliminating those target shocks occurred within a distance D =
50 km and a time window of a year after another target shock of
the sequence, even if they are larger than the first target shock of
the sequence. This kind of declustering is somehow different with
respect to that adopted for example in seismic hazard assessment
(e.g. Gardner & Knopoff 1974; Reasenberg 1985) in which each
sequence is usually represented by the largest shock, even if it
is not the first one in the sequence. We choose the declustering
space and time windows based on our experience on past Italian
seismic sequences but we also checked visually that none possible
secondary main shock remains not declustered. Also note that the
chosen declustering windows approximately correspond to those
determined by the algorithm of Gardner & Knopoff (1974) for
M = 5.5.

As source areas we consider a regular tessellation of the Italian
territory made of partially overlapping CAs with fixed radius R.
Starting from an initial CA, centred at latitude 47◦ and longitude
7◦, we compute the centres of the neighbour CAs by moving with
steps D = R

√
2 both in longitude (from 7◦ to 19◦) and in latitude

(from 47◦ to 36◦) covering then the whole Italian area with partial
overlapping (Fig. 1).

Based on the results of our previous analysis (Gasperini et al.
2016), we choose a radius R = 30 km, as a good compromise
between the opposing demands of having short spatial resolution
and a sufficiently high number of earthquakes within each CA, so
obtaining a total of 695 partially overlapping CAs. However, as the
completeness of the seismic catalogue is poor in offshore areas,
we consider in our analysis only the CAs within which at least one
earthquake with Mw ≥ 4.0 occurred inland from 1600 to 1959 (so as
to be independent of the seismicity from 1960 to 2019 that will be
used for the retrospective testing and optimization of the forecasting
method), according to the CPTI15 catalogue (Rovida et al. 2016,
2020).

According to Gasperini et al. (2016), we consider as target shocks
the earthquakes with Mw ≥ 5.0, ≥ 5.5 and ≥ 6.0, which, in Italy,
usually cause moderate, heavy and very heavy damage to buildings
and none, a few and many victims respectively. Larger thresholds
cannot be investigated because only three shocks with Mw ≥ 6.5
(1976 Friuli with Mw = 6.5, 1980 Irpinia with Mw = 6.8 and 2016
Norcia with Mw = 6.6) occurred during the time interval covered
by our seismic catalogue.

We count a success if a target shock occurs during one or more
alarm time windows �t and within one or more CA. On the contrary
we count a missed forecast if a target shock occurs outside any
alarm window of any CA. According to Molchan (1990, 1991), we
compute the miss rate as

ν = N − h

N
(1)

where h is the number of target events successfully forecasted and
N is the total number of target events.

We also compute the total time duration dc of alarms as the union
of all alarm windows within each CA. This can also be computed
by multiplying the window length �t by the number n of issued
alarms and then subtracting the sum of time intersections between
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1194 P. Gasperini et al.

Figure 1. Tessellation of the Italian territory used for the retrospective forecast experiment. CA with R = 30 km within which at least one earthquake with
Mw ≥ 4.0 occurred inland from 1600 to 1959 according to the CPTI15 catalogue (Rovida et al. 2020).

alarm windows ∩ts

dc = ∪�t = n�t −
∑

∩ts (2)

The fraction of time occupied by alarms within each CA is then
computed as

τc = dc

T
(3)

where T is the total duration of the forecasting experiment.

Finally, the overall fraction of space-time occupied by alarms is
computed as the average of τc over all CAs

τu = 1

M

∑
τc (4)

where M is the number of CAs. Note that such definition of fraction
of space–time occupied by alarms is consistent with strong shocks
occurring in the overlapping region of two adjoining CAs because
in such case we sum the alarm fraction of time τc for both CAs.
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Table 1. Magnitudes of completeness of the CPTI15 catalogue (Rovida
et al. 2016, 2020).

Magnitude
threshold Mc

Time interval of
completeness �T (yr)

Mw ≥ 4.5 1880–1959 80
Mw ≥ 5.0 1880–1959 80
Mw ≥ 5.5 1780–1959 180
Mw ≥ 6.0 1620–1959 340

Following Shebalin et al. (2011), we also compute the fraction
of space–time occupied by alarms by weighting each alarm with
the long-term rate of earthquakes within each CA. We compute
such rate based on the data of the CPTI15 catalogue (Rovida et al.
2016, 2020) using different completeness thresholds Mc for dif-
ferent time intervals from 1620 to 1959 (Table 1). We count the
numbers of earthquakes N (Mc) above each magnitude threshold
Mc occurred within each CA and within the corresponding time
interval of completeness �T (Mc). Then we compute for each mag-
nitude threshold the expected rate λ (event yr−1) of earthquakes
with Mw ≥ 4.0, assuming the b-value of the frequency–magnitude
distribution (Gutenberg & Richter 1944) equal to 1 (Rovida et al.
2020):

λ = N (Mc)

�T (Mc)
10Mc−4.0 (5)

In each CA, we then compute the average λave of rates λ >

0 from different magnitude thresholds. For those CAs for which
such average frequency cannot be computed because there are no
earthquakes within the completeness time window of any magnitude
threshold, we assign the minimum rate computed overall.

Finally, the weighted fraction of space–time occupied by alarms
is computed from all CAs as

τw =
∑

λaveτc∑
λave

(6)

See the details of such computations for each CA in Table S1 of
the Supporting Information.

DATA S E T U S E D F O R T E S T I N G A N D
O P T I M I Z AT I O N

To test and optimize our algorithm, we apply it retrospectively to
the HORUS catalogue of Italian instrumental seismicity from 1960
to 2019 (Lolli et al. 2020). For the time interval from 1960 to 1980,
HORUS coincides with the data set prepared by Lolli et al. (2018)
and that can be downloaded from the electronic supplement of such
paper. For the period from 1981 to 2019, it is obtained by merging
various data sources and homogenizing the magnitudes to Mw as
described by Gasperini et al. (2012, 2013). The catalogue used here
is updated up to the end of 2019 but we have implemented an auto-
matic procedure able to continuously update such catalogue in near
real-time (with daily to hourly updates) through the downloading
of new data from online sources and the application of magnitude
conversions (Lolli et al. 2020). We provide the final catalogue on
the web (https://doi.org/10.13127/HORUS) for public dissemina-
tion and the possible prospective testing of the present and other
forecasting methods.

The magnitude completeness threshold for the period 1960–1980
has been assessed by Lolli et al. (2018) to be about 4.0 whereas,
according to Gasperini et al. (2013), it is definitely lower for the
successive time periods. Such thresholds might be definitely larger

in offshore areas owing to the large distances from the closest seis-
mic stations, which are usually located on land (excepting for a few
instruments deployed on the sea bottom). This is the reason why we
only consider earthquakes with Mw ≥ 4.0 occurred within the 190
CAs containing one inland earthquake at least. As our interest is to
forecast earthquakes that potentially threaten lives and goods, we
also limit the analysis to shocks shallower than 50 km. We show in
Fig. S1 of Supporting Information the spatial distribution of inland
earthquakes from the HORUS catalogue (Lolli et al. 2020) with
Mw ≥ 4.0 and depth < 50 km used for testing and optimization and
in Fig. S2 in the Supporting Information the time distribution of
magnitudes of all inland earthquakes with depth < 50 km.

The catalogue provides uncertainties for all magnitude estimates,
ranging from less than 0.1 (for Mw estimated by moment tensor
inversion) to about 0.5 (for Mw proxies from body wave magnitude
mb observed by a few stations). In general, magnitude and location
errors have the effect to increase the randomness of the catalogue
and then to penalize skilled forecasting methods with respect to
unskilled ones.

Owing to the Gutenberg Richter (1944) law, errors tend on av-
erage to overestimate all magnitudes because there are more earth-
quakes below a given threshold which can be overestimated than
earthquakes above the same threshold which can be underestimated.
The larger the error the larger the overestimation.

On the other hand, magnitude errors are generally larger for
small earthquakes because the latter are observed by less stations
and because accurate method of magnitude determination, like mo-
ment tensor inversion, cannot be applied to them. This means that
in general small earthquakes are overestimated more than larger
ones and then that foreshocks are overestimated more than target
shocks.

One possible consequence in the present case is that errors in
magnitude might improperly increase the number of alarms and then
the space–time fraction occupied by alarms, particularly in earlier
times when the coverage of seismic networks was coarser, so that to
slightly underestimate the real skill of the method. Conversely the
number of target shocks should not be affected much by magnitude
errors because in HORUS catalogue the most (about 80 per cent) of
Mw ≥ 5.0 are accurately computed by moment tensor inversions.

T E S T I N G A N D O P T I M I Z I N G T H E
F O R E C A S T I N G H Y P O T H E S I S

We here follow the approach proposed by Zechar & Jordan (2008,
2010) based on the so-called ‘Molchan error diagram’ (Molchan
1990, 1991; Molchan & Kagan 1992). The latter consists of a plot
(e.g. Fig. 2) of the miss rate ν (eq. 1) as a function of the fractions
of space–time occupied by alarms τ (τu of eq. 4 or τw of eq. 6). For
a paradoxical forecasting method not issuing any alarm, the space–
time occupied by alarms is 0 and no target events can be forecasted
(all target event are missed) then it is represented by the point
(τ, ν) = (0, 100 per cent) at the upper left corner of the Molchan
diagram. On the other hand, for a forecasting method issuing an
alarm at any time and in any place, so occupying the entire space-
time volume, no target events are missed and then the forecasting
method is represented by the point (τ, ν) = (100 per cent, 0) at the
lower right corner of the diagram. The points on the diagonal line
connecting such two points (e.g. the black continuous line in Fig. 2),
with equation

ν = 1 − τ (7)
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Figure 2. Molchan diagram for all target shocks with Mw ≥ 5.5 (not-declustered). Red and dark blue lines indicate the forecasting performance of foreshocks
with 4.4 ≤ Mw < 4.8 for unweighted (τu ) and weighted (τw) fractions of space–time occupied by alarms respectively (see the text). The black continuous line
indicates a purely random forecasting method that separates skilled (below the line) from unskilled (above) forecasting methods. The light blue, violet and
green lines indicate the confidence limits for α = 50 per cent, 5 per cent and 1 per cent, respectively. The black dashed lines indicate probability gains G = 2,
5, 10, 20 and 40.

indicate the expected performance of a purely random forecasting
method that simply forecasts target events proportionally to the
space–time fraction occupied by the alarms.

On the diagonal line, the ratio between the success rate and the
space-time fraction

G = 1 − ν

τ
(8)

is 1 for any τ , while for a skilled forecasting method, located below
the line, G > 1 represents the ‘probability gain’ factor with respect
to the random case.

Following Zechar & Jordan (2008), τ (τu or τw) can be assumed
as the probability of forecasting a target events by chance and then
can be used to measure the performance of a forecasting method
under the reasonable assumption that the probability of having ex-
actly h successful forecasts over N targets is given by the binomial
probability function

B (h|Nτ ) =
(

N
h

)
(τ )h(1 − τ )N−h (9)

Then, the cumulative probability of having by chance h or more
successful forecasts is

α =
N∑

n=h

B (n|Nτ ) = 1 −
h−1∑
n=0

B (n|Nτ ) (10)

Such statistic allows to measure the skill of a forecasting methods,
given the miss rate ν and the fraction of space–time occupied by
alarms τ . In particular, the lower the statistic the higher the skill.
Moreover, by inverting eq. (10), we can compute the expected miss
rate ν at a given τ , for a hypothetical forecasting method with given
probability α, and then to plot confidence limits on the Molchan
diagram (e.g. the blue, violet and green lines in Fig. 2).

This statistic can be used to validate a forecasting method using a
prospective data set (collected after the final fixing of the forecast-
ing hypothesis) but even to optimize the forecasting hypothesis by
searching the values of the parameters of the forecasting algorithm
(if any) for which the statistic is minimum, by using a retrospective
data set.

A given forecasting method with fixed parameter values is repre-
sented by a single point (τ, ν) on the Molchan diagram. However,
one can even consider curves (Molchan trajectories) connecting dif-
ferent points referred to the same general forecasting approach but
obtained by varying one of the free parameters of the forecasting
algorithm. In our case, we can vary the alarm time window �t from
0 to the total duration T of the experiment. In this way, we span the
total space–time occupied by the alarms and correspondingly the
number of successful forecasts, which increase with increasing �t .

In the light of such definition, the diagonal line in the Molchan
diagram can be seen as the Molchan trajectory of a purely random
forecasting method. If a forecasting method performs better than
the random one, its trajectory mainly lies in the lower left half of
the Molchan diagram below the random line.

Zechar & Jordan (2008, 2010) proposed to use as a measure of the
performance of an alarm-based forecasting method the integral of
the success rate function 1 − ν f (τ ) normalized to the alarm space–
time coverage τ

a f (τ ) = 1

τ

τ∫
0

[
1 − ν f (t)

]
dt (11)

As the integral corresponds to the area above the Molchan random
trajectory, the statistic was named area skill (AS) score. The AS
score is normalized so that its value ranges between 0 and 1: the
larger the statistic the better the performance.

The expected value of the AS score for a purely random method
can be derived by substituting the eq. (7) of the random line ν f (t) =

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/225/2/1192/6039343 by guest on 11 M

arch 2021



Retrospective forecasting based on foreshocks 1197

1 − t in eq. (11). This gives

〈a f (τ )〉 = 1

τ

τ∫
0

[1 − (1 − t)] dt = 1

τ

τ 2

2
= τ

2
(12)

Such expectance function is represented in a plot as a function of
τ by a straight line connecting the axes origin (0,0) with the point
(100 per cent, 50 per cent) (e.g. the black line in Fig. 3). In such
plot, the skilled forecasting methods lie above such random line.

Zechar & Jordan (2008, 2010) explored the AS score distri-
bution and found that, for a continuous alarm function, the AS
score at τ = 1 is asymptotically Gaussian with a mean of 1/2 and
a variance of 1/(12 N). They also found that the kurtosis excess is
-6/(5 N) and hence, for N of the order of a dozen at least, the Gaus-
sian approximation provides a good estimate of confidence bounds.
Finally, they argued that even if the AS score can be computed for
any τ , the power of the test tends to increase with increasing τ and
therefore it is the best to use a f (τ = 1) for hypothesis testing.

R E S U LT S O F R E T RO S P E C T I V E
T E S T I N G

In Fig. 2, we show the Molchan trajectories for all target shocks
(35) with Mw ≥ 5.5 (not-declustered) preceded by strong shocks
with 4.4 ≤ Mw < 4.8, by varying �t from a width of a few seconds
to the total duration T = 60 yr of the catalogue. Red and dark blue
lines refer to the unweighted (τu) and weighted (τw) fractions of
space–time occupied by alarms, respectively (see in Table S2 in the
Supporting Information the numerical values of plotted curves).

The adopted foreshock Mw range (Mw = 4.6 ± 0.2) was chosen
after a comparative analysis of the relative performance of various
ranges with lower and upper magnitude bounds varying from the
completeness threshold of the catalogue (Mw = 4.0) to the minimum
magnitude of target shocks (Mw = 5.0). Such analysis was aimed at
maximizing the overall AS score and at the same time minimizing
the total number of alarms (Fig. 4).

Both the red and dark blue lines in Fig. 1 lie well below the
α = 1 per cent confidence curve (green) for all explored �t . All
the target shocks are successfully forecasted (ν = 0) for �t =
20 yr (corresponding to τu = 32 per cent and τw = 51 per cent)
or larger. For �t = 1 yr, about 83 per cent of target shocks (29)
are successfully forecasted, with space–time coverages τu = 3.3
per cent and τw = 6.3 per cent. 40 per cent of target shocks (14)
are forecasted with �t = 1 d for which τu = 0.01 per cent and
τw = 0.03 per cent. The AS diagram in Fig. 3 (see Table S2 in
the Supporting Information for numerical values) confirms such
good performance with the scores of the forecasting method (red
and dark blue lines) well above the random expectation (black) and
the 1 per cent confidence line (green) for any �t . The overall AS
scores a f (τu = 1) = 0.96 ± 0.05 and a f ( τw = 1) = 0.94 ± 0.05,
based on the Student’s t-test, are significantly larger than the
expectance of a random method (0.5) with significance level
(s.l.) �0.01.

As noted above the aftershocks produced by the first target shocks
of seismic sequences may significantly contribute to forecast sub-
sequent target shocks with Mw ≥ 5.5 within the same sequence. We
then proceed to analyse in the same way the declustered set of tar-
get shocks with Mw ≥ 5.5 obtained by discarding all target shocks
occurred within a spatial distance R = 50 km and a time window
of a year after the first and all subsequent Mw ≥ 5.5 shocks of the
sequence. This reduces the number of considered target shocks with
Mw ≥ 5.5 from 35 to 14.

In Figs 5 and 6, we report the same plots as in Figs 2 and 3
but for the (declustered) set of only the first target shocks with
Mw ≥ 5.5 of each sequence (see Table S3 in the Supporting Infor-
mation for numerical values). The performance is worse than for
the not-declustered set but remains well below the random line and
the α = 1 per cent confidence curve in the Molchan diagram of
Fig. 5 and also well above the α = 1 per cent confidence line of
AS diagram of Fig. 6. Even in this case all 14 target shocks are
successfully forecasted with �t = 20 yr or larger. For �t = 1 yr,
64 per cent of target shocks (9) are forecasted and 29 per cent (4)
for �t = 1 d. The overall AS score a f ( τu = 1) = 0.93 ± 0.08 and
a f ( τw = 1) = 0.87 ± 0.08 are lower than for the not-declustered
set but anyhow they are significantly larger than the expectance (0.5)
of a random method with s.l. �0.01.

In Figs S3–S6 of Supporting Information, we report the same
plots of Figs 2, 3, 5 and 6 for target shocks with Mw ≥ 5.0 (nu-
merical values in Tables S4 and S5, Supporting Information). The
performance is definitely worse than for Mw ≥ 5.5, but still better
than the 1 per cent confidence limit. In particular, even for �t = 60
yr, only 89 over 98 (91 per cent) target shocks for the not-declustered
set and only 36 over 44 (82 per cent) for the declustered set are suc-
cessfully forecasted. The reason is that even when �t is equal to
the total duration of the catalogue, in some CAs there remains a
fraction of time (before the first strong shock) without any strong
shock and then without any alarm. Actually, the maximum fraction
of space–time occupied by alarms (τu) is only about 44 per cent of
the total space–time and nine target shocks with Mw ≥ 5.0 occurred
in the remaining 56 per cent. Here, the last part of the Molchan
trajectories, consisting of a linear decrease from the last point de-
fined by the algorithm (τu = 44 per cent and τw = 62 per cent with
ν = 9 per cent for not-declustered and 18 per cent for declustered)
to the lower left corner (τ = 100 per cent, ν = 0), can be interpreted
as the application to the remaining earthquakes, not predicted by
any foreshock, of a purely random forecasting method with success
rate proportional to the fraction of the remaining space–time region
not covered by our forecasting algorithm.

The overall AS scores are a f ( τu = 1) = 0.89 ± 0.03 and
a f ( τw = 1) = 0.85 ± 0.03 for the not-declustered set and
a f (τu = 1) = 0.78 ± 0.04 and a f ( τw = 1) = 0.70 ± 0.04 for
the declustered set. In all cases they are significantly larger than the
expectance (0.5) of a random method with s.l. �0.01.

In Figs S7–S10 of the Supporting Information, we also report
the plots for targets with Mw ≥ 6.0 (see numerical values in Tables
S6 and S7, Supporting Information). The performance is similar
to that for Mw ≥ 5.5 but as the number of target events is smaller
(10 not-declustered and 7 declustered), the power of the tests and
the reliability of possible inferences are relatively poorer. This is
actually reflected by the fact that the confidence limits in this case
are relatively close to the Molchan and AS trajectories.

All not-declustered targets are successfully forecasted with �t =
20 yr, 80 per cent with �t =1 yr and 50 per cent with �t =1 d. For
declustered targets, the corresponding forecasting rates are 100 per
cent, 71 per cent and 43 per cent respectively. The overall AS scores
are a f ( τu = 1) = 0.95 ± 0.09 and a f ( τw = 1) = 0.91 ± 0.09 for
not-declustered and a f ( τu = 1) = 0.93 ± 0.11 and a f ( τw = 1) =
0.87 ± 0.11 for declustered. In all cases, they are significantly larger
than the expectance (0.5) of a random method with s.l.�0.01.

One question that may come to mind when looking at the results of
such space–time analysis is how much of the observed forecasting
performance is due to spatial clustering and how much to time
clustering. In order to try to answer such question, we made some
further computations in which the time clustering is eliminated by
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Figure 3. AS score diagram for all target shocks with Mw ≥ 5.5 (not-declustered). Red and dark blue lines indicate the forecasting performance of foreshocks
with 4.4 ≤ Mw < 4.8 for unweighted (τu ) and weighted (τw) fractions of space–time occupied by alarms, respectively (see the text). The black continuous line
indicates the performance of a purely random forecasting method that separates skilled (above the line) from unskilled (below) forecasting methods. The light
blue, violet and green lines indicate the confidence limits for α = 50 per cent, 5 per cent and 1 per cent, respectively.

Figure 4. AS score computed for declustered targets with Mw ≥ 5.5, using unweighted (red line) and weighted (blue) fractions of space–time occupied by
alarms, and total number of alarms (grey bars) as a function of the foreshock magnitude range. The arrows indicate the range Mw = 4.6 ± 0.2, chosen as best
compromise between high AS score and low number of alarms.

assuming in each CA a permanent alarm for the entire duration of
the forecasting experiment (T = 60 yr). We computed the time-
independent Molchan and AS score trajectories by adding step by
step one CA at a time, starting from the CA with highest weight
(highest long-term seismic activity) and then going on, up to add all
CAs. At each step, the unweighted and weighted fractions of space
occupied by alarms are computed by simply taking τc = 1 in eqs

(4) and (6), respectively, for the included CAs and τc = 0 for the
not included CAs.

The results of such time-independent analysis for declustered
(first) target shocks with Mw ≥ 5.5 is shown in Figs 7 and 8. Even
if they are not fully comparable with the time-dependent analysis
of Figs 5 and 6 because the trajectories depend on the adopted
ordering of the CAs, from the most to the least active, we can note
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Figure 5. Same as Fig. 2 for declustered (first) target shocks with Mw ≥ 5.5.

Figure 6. Same as Fig. 3 for declustered (first) target shocks with Mw ≥ 5.5.

that the skill of time-independent analysis appears definitely lower,
particularly at small τ and for the weighted trajectories (blue lines).
This can be easily explained by the higher time clustering at short
times (and then at small τ ) and by the fact that the weights based
on the long-term seismic activity penalize more the CAs where the
target shocks actually occurred in the last 60 yr.

The results for declustered (first) target shocks with Mw ≥ 5.0 and
≥ 6.0 are reported in Figs S11–S14 of Supporting Information. For
Mw ≥ 5.0, the comparison of Figs S11 and S12 in the Supporting
Information with the time-dependent analysis of Figs S5 and S6

in the Supporting Information is similar to the case for Mw ≥ 5.5
described before. For Mw ≥ 6.0, the comparison of Figs S13 and
S14 in the Supporting Information with the time-dependent analysis
of Figs S9 and S10 in the Supporting Information, apart for small τ ,
apparently indicates an overall higher skill for the time-independent
analysis with respect to the time-dependent one. This is due to the
fact that for Mw ≥ 6.0 all declustered target shocks occurred in
CAs with very high long-term seismic activity and that, as noted
above, time-independent and time-dependent statistics are not fully
comparable between them.
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Figure 7. Same as Fig. 2 for time-independent analysis of declustered (first) target shocks with Mw ≥ 5.5.

Figure 8. Same as Fig. 3 for time-independent analysis of declustered (first) target shocks with Mw ≥ 5.5.

O P T I M I Z AT I O N O F T H E F O R E C A S T I N G
A L G O R I T H M

For a practical application of the forecasting method, it might
be useful to determine the values of the algorithm parameter �t
for which the forecasting method is more efficient and useful for
risk mitigation. To accomplish this purpose, we analyse the be-
haviour of some statistics that depend on the alarm time window
�t .

In Fig. 9 we report, for declustered targets and weighted fraction
of space–time occupied by alarms (τw), the binomial probability
(eq. 9), that is the probability that the observed number of successful
forecasts is obtained by chance, as a function of �t . The lower

the probability the higher the strength of the forecast. In general,
probabilities are relatively low within a wide range going from one
day to some years. For Mw ≥ 5.0 (red line), very low probabilities
are observed around �t = 2 ÷ 10 d. For Mw ≥ 5.5 (blue line) and
Mw ≥ 6.0 (green line) the minimum probabilities are larger than the
ones for Mw ≥ 5.0, and they remain relatively low from a few hours
to a few months. Within such ranges, the forecasting ability of our
method reaches its higher efficiency.

The behaviour of the probability gain G (eq. 8) as a function �t
(Fig. 10) shows, for all the three magnitude thresholds, monotoni-
cally descending trends from more than 100 000 at very short �t
(less than a minute) to slightly more than 1 at very long �t (tens
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Figure 9. Binomial probability density for declustered (first) target shocks and weighted fraction of space–time occupied by alarms for different magnitude
thresholds (see inset) as a function of the alarm duration �t .

Figure 10. Probability gain for declustered (first) target shocks and weighted fraction of space–time occupied by alarms for different magnitude thresholds
(see inset) as a function of the alarm duration �t .

of years). Such curves also show relatively milder slopes in corre-
spondence of steep decreases of binomial probabilities in Fig. 9 (i.e.
around 0.001 d and a few days).

In Fig. 11, we show the miss rate ν as a function of �t . In general,
it decreases with increasing �t . The (negative) trends—with respect
to log10�t—are in between the −5 per cent and −10 per cent per

decade, for �t ranging from a few seconds to about 1 yr. Then
they start to decrease more rapidly (about −20 per cent per decade)
reaching 0 for Mw ≥ 5.5 and ≥ 6.0 and 19 per cent for Mw ≥ 5.0 at
very large �t .

The behaviour of the same statistic for the full set of target events
(not-declustered) is reported in Figs S15–S17 of the Supporting
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Figure 11. Miss rate for declustered (first) target shocks and different magnitude thresholds (see inset) as a function of the alarm duration �t .

Information. It is similar to those of the declustered set but the
binomial probabilities are lower, the probability gains are higher
and the miss rates decrease more rapidly with �t .

Another aspect to be considered for the practical application of
the forecasting method is the dependence on �t of the fractions
of space–time occupied by alarms τu and τw (Fig. 12). A long
alarm interval �t (with a corresponding long fraction of space–time
occupied by alarms τ ) allows to forecast more target earthquakes but
at the same time it has relatively lower probabilities of occurrence
than a shorter �t . Furthermore, a longer duration of alarms would
impact more with life activities of the population in the involved
area. Even if any decision on the possible practical application in real
situations would eventually require a careful evaluation by decision
makers even considering a cost-benefits analysis (e.g. van Stiphout
et al. 2010; Hermann et al. 2016), we examine here as an example
the choice of �t = 3 months (0.25 yr). This choice, in most cases,
results in a fairly trade-off between a good efficiency and a narrow
space–time fraction covered by alarms τ ≈ 2.

We can see in Table 2 that in this case the method is able to
retrospectively forecast more than 50 per cent of not-declustered
target shocks with Mw ≥ 5.0 and more than 70 per cent of those
with Mw ≥ 5.5 and ≥ 6.0. We also report in Table 2 the statistic of
the numbers of successful alarms with respect to the total number of
alarms indicating higher rates for target with Mw ≥ 5.0. About one-
fifth of alarms actually forecast an earthquake, while the fraction of
successful alarms definitely decreases for larger targets and further
decreases for declustered sets down to about 1 per cent. Note that
several alarm time windows are actually overlapped and then the
total duration of alarms is shorter than the simple sum of alarm
windows (eq. 2).

The performance of the method is definitely worse for the first
target shocks (declustered set) but it improves by increasing the
magnitude of target shocks. Actually, 4 over 7 first target shocks with
Mw ≥ 6.0 over the last 60 yr in Italy are retrospectively forecasted
in this way.

We tested the stability with time of the forecasting performance
by subdividing the seismic catalog in two equal parts of 30 yr:

before and after 1990 january 01. The same computations of Ta-
ble 2 for �t = 3 months for intervals 1960–1989 and 1990–2019
are reported in Tables 3 and 4 respectively. The rates of suc-
cessfully forecasted target shocks (declustered or not) are similar
in the two periods whereas the space–time fraction occupied by
alarms is definitely lower in the most recent period, consistently
with the higher ratios between successful and total alarms. We
could argue that smaller magnitude errors in most recent times,
owing to the continuous improvement of the Italian seismic net-
work, reduce the amount of false alarms and then increase the ob-
served skill of the forecasting method with respect to the previous
period.

In Tables 5 and 6, we report the lists of retrospective forecast
of the first (declustered) target shocks with Mw ≥ 5.5 and ≥ 6.0,
respectively, occurred in Italy from 1960 to 2019 (also see the results
for the declustered first shocks with Mw ≥ 5.0 in Table S8 in the
Supporting Information and the results for not-declustered targets
with Mw ≥ 5.0, 5.5 and 6.0 in Tables S9–S11, respectively, of the
Supporting Information).

We can note that for two target shocks (1976 Friuli and 1990 Po-
tentino) the forecast could have hardly been used by civil protection
services to adopt safety countermeasures because the forecasting
strong shocks occurred too shortly before the main shock (67 and
13 s, respectively). In other cases, the time delay between the fore-
casting shock and the main shock (going from a couple of hours to
a few weeks) would have been sufficient to take some countermea-
sures.

We could note that a foreshock did actually occur a couple of
days before the first main shock of 2012 May 20 (Mw = 6.1)
in the area of Pianura Emiliana but its magnitude (Mw = 4.2)
was only slightly below the lower threshold of Mw = 4.4 we
adopted. The retrospective ability to predict Mw ≥ 6.0 earth-
quakes might have been improved then by slightly reducing such
lower threshold but at a cost of a general reduction of the perfor-
mance of the algorithm, because of the increment of the num-
ber of alarms and of the fraction of space–time covered by
alarms.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/225/2/1192/6039343 by guest on 11 M

arch 2021



Retrospective forecasting based on foreshocks 1203

Figure 12. Unweighted (red) and weighted (dark blue) fraction of space–time occupied by alarms as a function of the alarm duration �t .

Table 2. Retrospective forecasting performance of the algorithm for �t = 3 months.

Target magnitude ≥5.0 ≥5.5 ≥6.0
τu (per
cent)

τw (per
cent)

Not-declustered
Forecasted/total shocks 55/98 56 per cent 26/35 74 per cent 7/10 70 per cent 0.9 1.9
Successful/total alarms 115/617 18.6 per

cent
72/617 11.7 per

cent
30/617 4.9 per

cent
0.9 1.9

Declustered
Forecasted/total shocks 8/44 18 per cent 6/14 43 per cent 4/7 57 per cent 0.9 1.9
Successful/total alarms 13/617 2.1 per

cent
9/617 1.5 per

cent
8/617 1.3 per

cent
0.9 1.9

Table 3. Same as Table 2 for the time interval 1960–1989.

Target magnitude ≥5.0 ≥5.5 ≥6.0
τu (per
cent)

τw (per
cent)

Not-declustered
Forecasted/total shocks 21/45 47 per cent 11/15 73 per cent 3/4 75 per cent 1.0 2.1
Successful/total alarms 45/336 12.9 per

cent
22/336 6.6 per

cent
9/336 2.7 per

cent
1.0 2.1

Declustered
Forecasted/total shocks 3/25 12 per cent 3/7 43 per cent 2/3 67 per cent 1.0 2.1
Successful/total alarms 5/336 1.5 per

cent
5/336 1.5 per

cent
3/336 0.89 per

cent
1.0 2.1

C O N C LU S I O N S

We analysed a simple algorithm to forecast shallow (depth < 50 km)
main shocks (Mw ≥ 5.0, 5.5 and 6.0) that threaten the life and the
goods of the population living on the Italian mainland territory,
based on the previous occurrence within CA of 30 km of radius
of widely felt strong shocks (4.4 ≤ Mw < 4.8) not particularly
harmful in themselves. Based on a retrospective analysis of the
HORUS seismic catalogue of Italy from 1960 to 2019 (Lolli et al.
2020) this method retrospectively forecast the majority of damaging

earthquakes occurred in Italy in the past 60 yr by issuing alarms
covering only a small fraction of the space–time coverage.

We estimated such fraction even considering the different levels
of seismic activity in different areas of Italy by weighting more
the alarm times in CA where the average seismicity rate, computed
from the CPTI15 seismic catalogue (Rovida et al. 2016, 2020) from
1600 to 1959, is higher.

The retrospective testing using the Molchan diagram (Molchan
1990, 1991; Molchan & Kagan 1992) and the AS score (Zechar &
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Table 4. Same as Table 2 for the time interval 1990–2019.

Target magnitude ≥5.0 ≥5.5 ≥6.0
τu (per
cent)

τw (per
cent)

Not-declustered
Forecasted/total shocks 34/53 64 per cent 15/20 75 per cent 4/6 67 per cent 0.4 0.7
Successful/total alarms 70/281 24.9 per

cent
50/281 17.8 per

cent
21/281 7.5 per

cent
0.4 0.7

Declustered
Forecasted/total shocks 5/19 26 per cent 3/7 43 per cent 2/4 50 per cent 0.4 0.7
Successful/total alarms 8/281 3.5 per

cent
4/281 1.4 per

cent
5/281 1.8 per

cent
0.4 0.7

Table 5. Results of retrospective forecast of first main shocks (declustered targets) with Mw ≥ 5.5 in Italy from 1960 to 2019, using
�t = 3 months (0.25 yr).

Year Month Day Lat Lon Mw ta (d) Epicentral area

1962 8 21 41.233 14.933 5.7 0.093 2.22 h Irpinia
1968 1 15 37.700 13.100 5.7 0.425 10.2 h Valle del Belice
1976 5 6 46.250 13.250 6.5 7.8 × 10−4 67 s Friuli
1979 9 19 42.717 12.950 5.8 Missed Valnerina
1980 11 23 40.800 15.367 6.8 Missed Irpinia-Basilicata
1984 4 29 43.204 12.585 5.6 Missed Umbria settentrionale
1984 5 7 41.666 13.820 5.9 Missed Monti della Meta
1990 5 5 40.650 15.882 5.8 1.5 × 10−4 13 s Potentino
1997 9 26 43.023 12.891 5.7 22.1 Appennino umbro-marchigiano
1998 9 9 40.060 15.949 5.5 Missed Appennino lucano
2002 10 31 41.717 14.893 5.7 Missed Molise
2009 4 6 42.342 13.380 6.3 6.5 Aquilano
2012 5 20 44.896 11.264 6.1 Missed Pianura Emiliana
2016 8 24 42.698 13.234 6.2 Missed Monti della Laga

Notes: ta is the maximum time advance of the foreshock with respect to the main shock. ‘Missed’ indicates that the target shock was
not forecasted (in such cases all entries are in italics). Epicentral area identifiers are taken from the CPTI15 catalogue (Rovida et al.
2016, 2020).

Table 6. Same as Table 2 for first main shocks with Mw ≥ 6.0.

Year Month Day Lat Lon Mw ta (d) Epicentral area

1962 8 21 41.233 14.933 6.2 0.100 2.40 h Irpinia
1976 5 6 46.250 13.250 6.5 7.8 × 10−4 67 s Friuli
1980 11 23 40.800 15.367 6.8 Missed Irpinia-Basilicata
1997 9 26 43.015 12.854 6.0 22.5 Appennino umbro-marchigiano
2009 4 6 42.342 13.380 6.3 6.5 Aquilano
2012 5 20 44.896 11.264 6.1 Missed Pianura Emiliana
2016 8 24 42.698 13.234 6.2 Missed Monti della Laga

Jordan 2008) methods indicates that such approach clearly overper-
forms a purely random method with high or very high confidence,
depending on the target shock magnitude threshold.

As the secondary main shocks during seismic sequences are defi-
nitely easier to be forecasted by this method because the aftershocks
of the first main shock usually generate alarms at weakly (if not
daily) rate, we also tested the ability of our approach to predict only
the first main shock of each sequence. We found that the forecasting
ability remains high even if being lower than that considering all
main shocks.

Even if the true verification of the efficiency of the method will
only be made on a prospective data set, we believe that such sim-
ple forecasting algorithm could be useful, like other operational
forecasting approaches presently considered by the Italian Civil
Protection Department, for planning preparation measures in the
field (e.g. Marzocchi et al. 2014).

The latter approaches are mainly based on the ETAS model (Ka-
gan & Knopoff 1987; Ogata 1988) and, as well as that of this work,
showed to retrospectively forecast the evolution of Italian seismic-
ity better than an inhomogeneous random process with spatial rates
corresponding to past seismicity. On the other hand, Marzocchi &
Zhuang (2011) showed that ETAS models is able to describe quite
well even the observed foreshock activity. However, a comparison
of the relative efficiency of our approach with ETAS models and
even with other forecasting approaches (like e.g. the EEPAS method
(Rhoades & Evison 2004) would require that the probabilistic for-
mulation of the latter methods is adapted to the alarm-based one
(e.g. by selecting a particular probability thresholds above which
to declare an alarm). However, such adaptation is not trivial and
hence, the question on which of the different approaches is better
in predicting future damaging earthquakes remains not answered
presently and has to be deferred to future papers comparing all
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methods in an alarm-based context by using, for example, the ap-
proach proposed by Shebalin et al. (2014).

One advantage of the present forecasting approach is that it is easy
to implement and communicate because it does not require any other
scientific analysis than the correct determination of the location and
of the magnitude of the precursory shock. In principle every person
could be informed very quickly by a notification sent by one of the
already available mobile Apps which provide near real-time access
to the INGV online earthquake list (http://terremoti.ingv.it/en#).
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S U P P O RT I N G I N F O R M AT I O N

Supplementary data are available at GJI online.

Figure S1. Spatial distribution of inland earthquakes from the
HORUS catalogue (Lolli et al. 2020) with Mw ≥ 4.0 and
depth < 50 km used for testing and optimization. Black dots in-
dicate 4.0 ≤ Mw < 5.0, green dots 5.0 ≤ Mw < 5.5, blue dots
5.5 ≤ Mw < 6.0 and red dots Mw ≥ 6.0.
Figure S2. Time distribution of magnitudes of inland earth-
quakes km from the HORUS catalogue (Lolli et al. 2020) with
depth < 50 km used for testing and optimization. Black dots indi-
cate Mw < 5.0, green dots 5.0 ≤ Mw < 5.5, blue dots 5.5 ≤ Mw < 6.0
and red dots Mw ≥ 6.0.
Figure S3. Molchan diagram for all target shocks with Mw ≥ 5.0
(not-declustered). Red and dark blue lines indicate the forecasting
performance of foreshocks with 4.4 ≤ Mw < 4.8 for unweighted
(τu) and weighted (τw) fractions of space–time occupied by alarms
respectively (see the main text). The black continuous line indi-
cates the performance of a purely random forecasting method that
separates skilled (below the line) from unskilled (above) forecast-
ing methods. The light blue, violet and green lines indicate the
confidence limits for α =50 per cent, 5 per cent and 1 per cent, re-
spectively. The black dashed lines indicate probability gains G = 2,
5, 10, 20 and 40.
Figure S4. AS score diagram for all target shocks with Mw ≥ 5.0
(not-declustered). Red and dark blue lines indicate the forecasting
performance of foreshocks with 4.4 ≤ Mw < 4.8 for unweighted
(τu) and weighted (τw) fractions of space–time occupied by alarms
respectively (see the main text). The black continuous line indi-
cates the performance of a purely random forecasting method that
separates skilled (above the line) from unskilled (below) forecast-
ing methods. The light blue, violet and green lines indicate the
confidence limits for α =50 per cent, 5 per cent and 1 per cent,
respectively.

Figure S5. Same as Fig. S2 for declustered (first) target shocks with
Mw ≥ 5.0 (see the text).
Figure S6. Same as Fig. S3 for declustered (first) target shocks with
Mw ≥ 5.0 (see the text).
Figure S7. Same as Fig. S2 for all target shocks with Mw ≥ 6.0
(not-declustered).
Figure S8. Same as Fig. S3 for all target shocks with Mw ≥ 6.0
(not-declustered).
Figure S9. Same as Fig. S2 for declustered (first) target shocks with
Mw ≥ 6.0.
Figure S10. Same as Fig. S3 for declustered (first) target shocks
with Mw ≥ 6.0.
Figure S11. Same as Fig. S2 for time-independent analysis of
declustered (first) target shocks with Mw ≥ 5.0.
Figure S12. Same as Fig. S3 for time-independent analysis of
declustered (first) target shocks with Mw ≥ 5.0.
Figure S13. Same as Fig. S2 for time-independent analysis of
declustered (first) target shocks with Mw ≥ 6.0.
Figure S14. Same as Fig. S3 for time-independent analysis of
declustered (first) target shocks with Mw ≥ 6.0.
Figure S15. Binomial probability density for all target shocks
(not-declustered) and weighted fraction of space–time occupied by
alarms for different magnitude thresholds (see inset) as a function
of the alarm duration �t .
Figure S16. Probability gain for all target shocks (not-declustered)
and weighted fraction of space–time occupied by alarms for dif-
ferent magnitude thresholds (see inset) as a function of the alarm
duration �t .
Figure S17. Miss rate for all target shocks (not-declustered) for
different magnitude thresholds (see inset) as a function of the alarm
duration �t .
Table S1. List of centre coordinates of CA with radius of 30 km.
Table S2. Values of variables in Molchan and AS score plots of
Figs 2 and 3 for Mw ≥ 5.5 not-declustered targets.
Table S3. Same as Table S2 for Mw ≥ 5.5 declustered targets (Figs 4
and 5).
Table S4. Same as Table S2 for Mw ≥ 5.0 not-declustered targets
(Figs S1 and S2).
Table S5. Same as Table S2 for Mw ≥ 5.0 declustered targets (Figs
S3 and S4).
Table S6. Same as Table S2 for Mw ≥ 6.0 not-declustered targets
(Figs S5 and S6).
Table S7. Same as Table S2 for Mw ≥ 6.0 declustered targets (Figs
S7 and S8).
Table S8. Results of retrospective forecast of first main shocks
(declustered targets) with Mw ≥ 5.0 in Italy from 1960 to 2019,
using �t= 3 months (0.25 yr).
Table S9. Results of retrospective forecast of not-declustered targets
with Mw ≥ 5.0 in Italy from 1960 to 2019, using �t= 3 months
(0.25 yr).
Table S10. Same as Table S9 for not-declustered targets with
Mw ≥ 5.5.
Table S11. Same as Table S9 for not-declustered targets with
Mw ≥ 6.0.
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