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ABSTRACT

A previously analysed database is revisited to generate different classifications of an area of
study into vulnerability ranks. The distribution of 305 water wells around the city of Milan
in northern Italy, covering an area of about 2000 km2, measured nitrate concentration in
groundwater. The wells are separated into 133 with NO3

ˉvalue clearly above a threshold of
25 mg/l (impacted wells) and 172 below that (non-impacted wells). Square neighbourhoods
of dimensions 20x20 m, 60x60 m, 180x180 m and 1020x1020 m around the 305 wells are
used to delimit four training areas of different sizes. Over the neighbourhoods as well as
over the 2000 km2 area, nine natural and anthropogenic map data are assumed, as indirect
supporting patterns of the modelling, to reflect both the potential source of nitrates and the
relative ease in which nitrates may migrate in ground water. In the training areas
comprising impacted and non-impacted well neighbourhoods those of the impacted wells
are used as direct supporting patterns for mapping the predicted vulnerability ranks. It is
done by a mathematical model that computes spatial relationships between the direct and
indirect supporting patterns based on empirical likelihood ratios. The relationships are
integrated into prediction patterns and, by iterative cross-validations, into target and
uncertainty patterns. These will be then extended over the remaining much larger study
areas for analysis and visualization. The analytical procedure proposed is considered
applicable to situations in which a spatial database contains just a sampling of measured
sites (e.g., drill-hole data), as direct supporting pattern, instead of the natural distribution of
hazardous sites such as trigger areas of landslides or of sink holes, as is common in spatial
prediction modelling of natural hazard.

Keywords: aquifer vulnerability, nitrate pollution, empirical likelihood ratios, spatial support,
prediction patterns, uncertainty patterns, prediction-rate curves

1 INTRODUCTION
A spatial database constructed for the prediction of ground water vulnerability is reanalysed
to explore the effects of different spatial support of point data of nitrate concentration. The
study area of about 2000 km2 is located around the city of Milan, in northern Italy and the
corresponding database was studied by Masetti et al. (2007) [1] as a refinement of earlier
works [2, 3], who thoroughly discussed the study area, its groundwater contamination
problems and the database they constructed. Furthermore, those authors considered new
analyses with different threshold values of nitrate concentration [4, 5]; the reliability of
different vulnerability classification schemes; [6]; and compared positive and negative
weights for multiclass generalizations [7]. In those works the weight-of-evidence model,
WoE, was applied for vulnerability assessment.



Methodological discussions on some of those works [1-4] led to the generous
provision of the database by the original authors for complementary modelling applications
in a joint contribution [8]. In it a different modelling framework and analytical strategy
were preferred: the empirical likelihood ratio function, ELR, and cross-validation for
uncertainty assessment of prediction patterns. Use was made of the immediate vicinity of
305 available water wells measuring the concentration of NO3

ˉ in mg/l in a training area
within the area of study. Of the wells, 133 were considered as “impacted” by nitrate
pollution.

As a follow up to their analyses, this contribution focuses narrowly on the effect of
spatial support of the sampling points used to express the presence or absence of NO3

ˉ

pollution in the water table. In practice, the Milano area database becomes an opportunity
to point at a very general prediction modelling problem in which the basic direct evidence
of a process is obtained by sampling a study area with point like measurement values, as
the ones from drill holes or water wells. Main questions are: “What is the acceptable spatial
support for the modelling?” and “What happens if we assume broader spatial support?”

The next section offers a brief summary of the database and its initial purpose. The
favourability modelling framework is then discussed along with the proposed strategies for
characterizing, visualizing and cross-validating. Experiments follow on the four training
areas to obtain prediction-rate curves, prediction, target, uncertainty and combination
patterns of the respective study areas. Concluding remarks follow with considerations on
the importance of assuming realistic spatial support for the water well distribution and
values.

Figure 1: Distribution of 305 water wells in the Milano area of study. Red stars indicate the
wells recording ≥ 25 mg/l of NO3ˉ; blue circles those recording < 25 mg/l. Sparse red stars 
among cluster of blue circles can be seen as well as vice versa, indicating a noisy clustered
distribution.



2 THE MILANO AREA OF STUDY DATABASE
Agricultural practices and industrial activities characterize the area of study around Milan
in northern Italy, located as shown in Figure 1. It covers nearly 2000 km2 and its
groundwater system has a complex hydrogeological setting with interaction of three
aquifers [2]. The subsoil sediments represent important water resources. The studies by
Masetti et al. (2007) [1] focused on the vulnerability of an unconfined aquifer that
represents the most affected by contaminants from the surface activities. It is termed
Traditional Aquifer and consists of Pliocene-Pleistocene sediments. Transmissivity ranges
from 5x10-2 to 1x10-3 m2/s, with permeability between 5x10-3 and 1x10-8 m2/s. Thickness
ranges from 60 to 120 m. Components are gravel and sands and clay-silt layers that
increase southward. Groundwater depth averages 30 m to the north of the area reducing to 5
m to the south.

Table 1: Wells, natural and anthropogenic factors in the Milano study area database
(modified after [8]). Note the one-digit short names that will be used to identify the
ISPs used for analysis.

Water well data, Area of study and Direct supporting patterns, DSPs

Factor map name Short names Data range Description

Impacted wells
Non impacted wells
Area of study

133
172
AS

1-133
1-172
1-0

Index ≥ 25 mg/l NO3
ˉ

Index ≤ 24 mg/l NO3
ˉ

Area & out-of-area
indicator

Categorical natural and anthropogenic factors

Factor map name Short name Data range Description

Ground water recharge

Land use

Soil protection capacity

gwr, R

ldu, L

spc, S

classes 6-15

classes 1-3

classes 1-3

Combination of raf & mai
x a function of spc as
infiltration coefficient
Urban, agricultural &
woods
Low, moderate & high

Continuous natural and anthropogenic factors

Factor map name Short name Data range Description

Ground water depth
Ground water velocity
Main annual irrigation
Nitrogen fertilizer loads
Population density
Rainfall

gwd, d
gwv, v
mai, i
nfl, n
pod, p
raf, r

1-51
112-181
0.1-1531.0
0-428
43-7933
808-1253

m
originally 10-20-ln (m/s)
mm
kg/h/y
inhabitants/km2

mm/y

Information on nitrate concentration was collected from over 300 water wells, unevenly
distributed throughout the whole area, as shown in Figure 1, to monitor four times a year
the nitrate concentration that appears not sensitive to seasonality. Concentration varies
between 10 mg/l to the south and 70 mg/l to the north, with median value around 20 mg/l.
European Community Standard [9] set a guide value in soil of 25 mg/l.

Alberti et al. (2001) [2] and Masetti et al. (2007) [1] provided a detailed account of the
absence of temporal trends and the differences between the northern and the southern parts
of the area of study. They employed statistical analyses in their study of regional



groundwater vulnerability to spatially relate measured contaminant locations with the
distribution of natural and man-induced factor maps. For this they have constructed a
database consisting of impacted and non-impacted water wells selecting the study area and
the following natural and anthropogenic factor maps listed in Table 1: groundwater
recharge, land use, soil protection capacity, groundwater depth, groundwater velocity, main
annual irrigation, nitrogen fertilizer loading, population density and rainfall. Table 1 also
lists their short name abbreviations and value ranges.

In essence, the database for the Milano area of study used here consists of a set of 10
digital images contained within a raster of 3300 pixels by 2665 lines. Each pixel
corresponds to a square of 20x20 m on the ground. Of the 8,794,500 pixels in the
rectangular raster, only 4,908,305 cover the area of study, and 3,886,195 are falling out of
it. The distribution of the 305 water wells, shown in Figure 1, is represented as an image
with 305 pixels with the values of NO3ˉ, ranging from a maximum of 71.0 mg/l to a 
minimum of 10.9 mg/l. Of those, the 133 with value ≥ 25 mg/l were termed “impacted 
wells” while the 172 with value < 25 mg/l were termed “non-impacted wells.” Together the
sets of impacted and non-impacted wells represent all we know about nitrate concentration
in the groundwater in the area of study so that their location distribution can be used to
define training areas for the modelling. Within the training areas, the distribution of
sequentially numbered impacted wells is converted into a direct supporting pattern, DSP,
and used to establish spatial relationships with the images of natural and anthropogenic
factors, converted into indirect supporting patterns, ISP. The relationships are then
extended to the remaining study areas.

3 FAVOURABILITY FUNCTION MODELLING
The term “favourability function” was proposed [10] to refer to spatial modelling within a
unified mathematical framework. Examples of interpretations that were considered are:
Bayesian Probability, Certainty Factor, Dempster-Shafer Belief function and Fuzzy Logic.
Their implicit assumptions were discussed along with their computations under different
database conditions. In particular, integration rules for the models were discussed by Chung
and Moon (1991) [11]. The ELR model has been thoroughly discussed by Chung (2006)
[12] and it will be used here.

The modelling with the ELR function generates an image with integrated values
ranging from 0 to infinity for each pixel, a prediction image. The array of relative
integrated values, however, is difficult to interpret as such, so that a transformation is
conveniently made of it into a prediction pattern. In this transformed version all values are
ordered from highest to lowest and equal-area ranks are replacing the ratios for each pixel.
“Pattern” is to refer to an artificial construct, i.e., a particular way, of interpreting and
displaying the results of modelling. “Prediction” is implying that it indicates areas in which
future occurrences are likely to be found. DSP and ISP have already been defined.

To apply a model we must use all the known occurrences first, in our case all the 133
impacted sequentially numbered well locations, for instance. This should generate the most
informed pattern. However, for interpreting it we need to study the pattern’s ability to
“predict” future occurrences, i.e. their location or distribution. We then pretend not to know
the location of some of the occurrences (“younger”), apply again the model using the
remaining occurrences (“older”) as DSP, generate a new prediction pattern and then verify
where in it the excluded occurrences are located: hopefully in the higher ranks of the
pattern. Of course there are many ways to perform such a cross-validation, as we have
termed it. Convenient iterative strategies are of excluding sequentially a few occurrences



repeating modelling and cross-validation a number of times. Alternatively sequential
selection or random selection can be preferred. Clearly, the strategy can be tailored to the
peculiarities of the available data.

Another critical aspect of spatial prediction modelling is the selection of a training
area in which to establish the spatial relationships between DSP and ISP. This is because in
it the relationships are considered either more accurate or more easily measurable. From the
training area the relationships computed can then be extended to the remaining part of the
area of study, termed study area.

The visual expression of a prediction pattern can be generated by conveniently
grouping the 200 equal area ranks into fixed and recognizable classes: for instance broader
classes for lower ranks of lesser concern, and narrower classes for higher ranks.
Furthermore, for facilitating comparisons between predictions, the classes must remain the
same for all subsequent results of the iterative cross-validations process. Iterations allow
computing target patterns, uncertainty patterns and their combination patterns. For
instance, using robust statistics such as median and range, we can obtain a target pattern
with pixel values of the median rank of the prediction patterns generated by iterations. The
values of the uncertainty patterns correspond to the rank of the ranges around the median
of the target pattern.

The spatial relationships and their integration by a model do imply assumptions as to
the data type available and to the specific mathematical model being used. Examples of
data and model assumptions have been discussed in a previous work by Fabbri et al. (2010)
[8] who used the very same Milano database. They do not need repeating here. We can just
point at the following: (i) the assumption that the future occurrences of pollution will take
place under conditions similar to the ones represented in the database, and (ii) that the
indirect spatial support consists of conditionally independent factor maps. Assumption (i)
represents our hope given that we consider as satisfactory, for the past and the future, the
information collected in the database. Assumptions (2) are related with the representation
and integration rules specific to many mathematical models that were initially formulated
for non-spatial factors like medical symptoms for the prescription of medications or
identification of diseases. In the geosciences, however, most frequently different thematic
maps over the same area are hardly conditionally independent. It becomes of importance
then to verify the dependence effects on the modelling.

4 EXPERIMENTS ON TRAINING AND STUDY AREAS
We can now formulate assumptions on the spatial support of the water wells: for instance, a
pixel area of 20x20 m (1x1 pixels), of 60x60 m (3x3 pixels), of 180x180 m (9x9 pixels) or
of 1020 x1020 m (51x51 pixels). Having analysed the distribution of the 305 wells and
their values, we have found that it is “dispersed”, i.e., the average distance of the wells is
greater than a hypothetical random distribution. Distances range from 242 m to 3942 m.
The 133 wells are “clustered” and show a hot-spot to the NNE and a cold-spot to the SSW
of the area of study, as visible in Figure 1. There are numerous low-high outliers and a few
high-low ones.

However, when gridded into 20x20 m pixels and used to identify target areas of 305
pixel neighbourhoods containing 133 impacted pixel neighbourhoods, we have to discover
what the spatial relationships within the database do contribute to the spatial modelling
results as prediction patterns. To do that, four sets of training areas and study areas were
computed from the database. They were termed Ta1, Ta3, Ta9 and Ta51, and the
respective remaining parts, the areas of study, as Sa1, Sa3, Sa9 and Sa51. The training



areas cover, respectively, the following number of pixels of 20 m resolution: 305, 2,745,
24,706 and 761,161. The corresponding study areas cover complementary numbers.

The database consists of three types of factor maps: (i) well locations, (ii) categorical
natural and anthropogenic factors, and (iii) continuous ones. They are described and short
named in Table 1.

For each training area, the modelling applied consists of the steps described in the
following sub-sections: (1) calculation of empirical likelihood ratios; (2) generation of
prediction patterns later extended to the study areas; (3) computations of iterative cross-
validations; and (4) generation of target, uncertainty and combination patterns later
extended to the study areas

Table 2: Empirical likelihood ratios for ISPs are listed for the different training areas.
Mostly ratios > 1.5 are listed and when ≥ 2 they are in bold. Upper case letters with
subscripts indicate the individual categorical map units. Numbers in italics indicate ranges
of continuous field values with bracketed maximum value and ratio reached. Note that for
spc all ratios are well below 1.5.

ISP Ta ELRs (≥2 and > 1.5)

gwr Ta1
ldu
spc
gwd
gwv *10

mai *10

nfl *10

pod

raf

R81.78, R9 3.20;
L2 1.29;
< 1.50, S1, S2, S3;
≥ 2 21.65-24.55 (23.15 max 2.43 ); 30.05-48.50 ( 39.95 max 4.03);
≥ 2 120.59-127.40 (125.88 max 2.10); 163.02-164.00 (164.00 max
5.60);
≥ 1 0.00-1424.74 ( 1.00 max 1.69); ≥ 2 6430.80-11528.62 (11298.99
max 2.28);
≥ 1 684.80-1264.62 (894.91 max 1.58); ≥ 2 2166.82-2235.80 ( 2199.93
max 2.12); 2519.98-2602.65 ( 2553.09 max 2.16);
≥ 2 2178.94-2546.76 ( 2320.91 max 2.17); 2946.83-5734.54 (4934.35
max 322.85); 6244.34-6496.01 (6496.01 max 3.05);
≥ 2 1057.81- 1128.09 (1100.14 max 4.93).

gwr Ta3
ldu
spc
gwd
gwv *10

mai *10

nfl *10

pod

raf

R8 1.84, R9 3.04;
L21.51;
< 1.50, S1, S2, S3;
≥ 2 21.75-24.45 (23.10 max 2.35 ); 30.40-48.40 ( 40.15 max 4.10);
≥ 1 105.21-133.26 (117.45 max 1.60);
≥ 1 0.00-1424.74 ( 1.00 max 1.69); ≥ 2 6430.80-11528.62 (11222.45
max 2.29);
≥ 1 2127.17-2931.82 (2461.01 max 1.63);
≥ 2 3054.22-5688.01 ( 4942.29 max 35.10); 6251.26-7933.08 (7933.08
max 7030.60);
≥ 2 1086.14- 1129.78 (1107.34 max 2.16).



4.1 Empirical Likelihood Ratios

Table 2 lists the empirical likelihood ratio values, ELR, for the nine ISPs corresponding to
the different training areas. Values are shown when > 1.5 for at least one ISP in one or
more areas for comparison. In bold fonts are all values ≥ 2, a tentative value to threshold 
the ratios. A value of 1 indicates a frequency in the presence of impacted well identical to
that in their absence within the training area. A value of 2 indicates a frequency twice that
in the absence of an impacted well. The table filters the essential characteristics of
likelihood ratio histograms for the three categorical ISPs and ratio functions for the six
continuous field ISPs. We can consider the set of ratios as “signatures” of the training
areas. The ELR model integrates them for each pixel of a training area the empirical
likelihood values of the nine ISPs. This generates a prediction image to be transformed
into, and interpreted as, a prediction pattern.

Comparing the ratios for the four training areas we can observe the following
similarity and differences: (1) R9 is high, > 3 in all areas; (2) L2 is > 2 only for Ta9; (3) spc
is low, < 1.5 in all areas; (4) gwd, mai, pod and raf are > 2 in all areas, however, raf is
higher, 4.93 in Ta1; and (5) gwv is > 2 only in Ta1.

Table 2: Continued.

ISP Ta ELRs (≥2 and > 1.5)

gwr Ta9
ldu
spc
gwd
gwv *10

mai *10

nfl *10

pod

raf

R8 1.75, R9 3.17;
L2 2.09;
< 1.50, S1, S2, S3;
≥ 2 21.80-24.25 (24.05 max 2.29 ); 30.05-48.10 ( 39.95 max 4.13);
≥ 1 105.06-133.27 ( 117.44 max 1.59);
≥ 1 0.00-1423.83 ( 15.31 max 1.67); ≥ 2 6430.22-11528.36 (7838.75
max 2.30);
≥ 1 2127.17-2931.82 ( 2461.01 max 1.63);
≥ 2 3078.02-5688.01 ( 4942.29 max 34.89); 6251.26-7933.08 (7933.08
max 7032.39);
≥ 2 1085.75-1129.44 (1106.97 max 2.15).

gwr Ta51
ldu
spc
gwd
gwv *10

mai *10

nfl *10

pod

raf

R8 1.62, R9 3.38;
L2 1.34;
< 1.50, S1, S2, S3;
≥ 2 21.35-23.90 (22.55 max 2.16 ); 29.85-45.55 ( 38.25 max 3.69 );
≥ 1 1.00-57.88 (max 1.70); 102.34-133.30 ( 116.92 max1.57);
≥ 1 0.00-1224.00 ( 229.65 max 1.62); 6169.95-6445.53; ≥ 2 6460.84-
11513.05 (7348.82 max 2.20);
≥ 1  2110.05-2863.34 ( 2362.57 max 1.82);
≥ 2 3268.41-5703.87 ( 4942.29 max 41.06); 6338.52-7903.08 (7903.08
max 4881.51);
≥ 1 0.00-411.58 (248.95 max 1.70); ≥ 2 1085.86-1129.64 (1107.13 max
2.16).



These differences in ELR values appear as minor and we may expect similar
modelling results. The likelihood values are characteristic properties of the spatial database,
measuring the spatial relationships between DSP and ISPs in the training areas. We can
consider the ratios in Table 2 as database signatures. The mathematical modelling, in our
case by the ELR function model, will integrate the ratios for each point or pixel in the
database, under a number of assumptions and following specific combination rules. Recall
that the ratios range in values between zero and infinity and that the values are difficult to
interpret. Having the signatures of the training areas we can now try to see their effects on
the modelling of the respective prediction patterns.

Figure 2: Prediction patterns for study areas. XLR prediction pattern for Sa1 are in (A); for
Sa3 in (B), for Sa9 in (C); and for Sa51 (D). Explanation is in text.

4.2 Prediction Patterns

ELR prediction patterns were obtained for the four training areas:
ELR_Ta1_133_RLS_dvinpr to ELR_Ta51_133_RLS_dvinpr. They are named using the
abbreviation of the mathematical model, ELR, followed by the identification of the training



area, the DSP of the impacted wells, and the list of categorical and continuous ISPs, as
upper case and lower case abbreviations, respectively.

Because the images of the training areas consist of groups of single pixels or of small
pixel neighbourhoods, their colour display is not informative, except for Ta51 where the
neighbourhoods are larger, as done in Figure 4A and 4D. However, when using the
modelling statistics from the training areas to extend it to the corresponding study areas,
different prediction patterns are generated as follows (X indicates extension, and Sa the
study areas): XLR_Sa1_133_RLS_dvinpr to XLR_Sa51_133_RLS_dvinpr. They are
displayed in Figure 2. There we can see the similarity of selected ranks in the patterns and
also some minor differences of particular relevance for the 10% highest classes of ranks.
Note that the legend’s ranked classes are wider for lower ranks and narrower for higher
ranks. The pseudo-colouring scheme goes from cold to warm colours but the class
boundaries remain fixed in order to facilitate recognition and allow comparison.

We can observe the following characteristics in Figure 2: (1) greater compactness of
colours in the prediction pattern in Figure 2A; (2) strong similarities of higher classes for
the top 1% (purple) and top 5% (red to purple); (3) patches of high value colours to the
west and the east in Figures 2B, C and D (yellow to red); (4) altogether rather similar
prediction patterns for the four study areas with a large hot area to the NNE of the city of
Milan, the industrial zone.

At this point it becomes instructive to ask: How good are the prediction patterns as
predictor of areas of future impacted wells? How stable and how certain? Clearly it has to
depend on how good predictors are the patterns generated from the respective training
areas, Ta1 to Ta51. So far we can only consider fitting rates of the impacted wells within
the ranks generated using them as DSP. They do not provide any information on predictive
capability. To obtain some measure of effectiveness in predicting we can use strategies of
blind testing via iterative cross-validation of prediction patterns.

4.3 Iterative cross-validations

A number of strategies can be formulated all based on pretending to ignore some of the
sample points available. In our case they are the 133 impacted wells (pixels or pixel
neighbourhoods) and are critical for establishing the spatial relationships between DSP and
ISPs. First we use all the 133 wells to generate the best or most informed prediction
patterns, as shown in Figure 2. Then we repeat the analyses by pretending not to know
some relevant numbers of impacted wells.

For instance, in case of only a few tens of wells available, we can sequentially exclude
one and use the remaining n-1 for modelling new prediction patterns. Then we validate
them with the prediction rates corresponding to the excluded well locations. We can iterate
the process n times to obtain n prediction rates, one per excluded impacted well. The
distribution of the rates as ranks throughout those of the prediction pattern is obtained as a
table and a corresponding prediction-rate histogram or cumulative curve. In Figure 3, for
instance, we have used the strategy of excluding 8 wells from the 133, using the remaining
125 for modelling in the iterative cross-validation process. This generates 16 prediction
patterns each validated by 8 prediction rates. Another strategy used was of selecting at
random 93 wells out of the 133 (about the 70%) and repeating the modelling 16 times for
the four training areas. That did generate results very similar to the ones in Figure 3.

In the illustration the prediction-rate curves were calculated for the four training areas,
Ta1 to Ta51. The diagram in Figure 3A shows the relative proportion of training areas



ranked as vulnerable in decreasing order on the horizontal axis and the corresponding
cumulative proportion of impacted wells in the class on the vertical axis. Immediately it can
be seen that the Ta1 prediction-rate curve is very steep. For Ta3 to Ta51 the curves are
increasingly shallower. In addition, the histograms in Figure 3B, that consider just the top
20% ranks in classes of 4% of training areas, show a monotonically increasing histogram
for Ta1, red columns, representing an acceptable classification of vulnerable areas. The
blue columns, instead, show for Ta3 a non-increasing histogram, as well as for the
corresponding histograms for Ta9 and Ta51, not shown here.

Figure 3: ELR prediction-rate curves and histograms. In (A) for the four training areas Ta1
to Ta51, obtained using the iterative cross-validation strategy of sequential exclusion of 8
impacted wells out of 133. The process generates 16 prediction patterns each cross-
validated by eight excluded wells. The curves for Ta9 and Ta51 reflect nearly random
distribution of ranks. In (B) are the histograms for Ta1, monotonically increasing, and Ta3,
non-increasing.

We can observe that the 100% of impacted wells (vertical axis) are ranked within the
top 2% for Ta1, the top 19% for Ta3, the top 82% for Ta9 and the top 85% for Ta51



(horizontal axis). The histogram for Ta1, in Figure 3B, indicates a good classification, with
the higher equal area classes in 4% intervals and monotonically increasing columns towards
higher ranks.

Which curve is the one representing a better prediction pattern? Is that because it
contains more impacted wells at higher ranks? Or is it because the prediction pattern has
less uncertainty associated?

Figure 4: Target and uncertainty patterns for training and study areas. ELR target pattern
for Ta51 is in (A); uncertainty pattern for Ta51 in (B), XLR target pattern for Sa51 in (C);
and uncertainty pattern for Sa51 in (D). Explanation is in text.

4.4 Target and uncertainty patterns

To answer this type of question we can proceed to generate the 16 prediction patterns out
of the 133 minus 8 x16 strategies for the four training areas to generate target and
uncertainty patterns as done in Figures 4A and 4B for Ta51. In Figure 4C and 4D for Sa51
we have extended the statistics obtained from Ta51 to Sa51. The target patterns in the
illustration have been obtained from the set of 16 prediction patterns for Ta51. The median
of the 16 ranks (of the 16 patterns) is selected for each pixel and becomes the rank of the
target pattern, as shown in Figures 4A and 4C.



Visually, the target pattern is very similar to the prediction pattern (compare Figure
4C and Figure 2D). However, the range of the 16 ranks represents an estimation of the
uncertainty in the ranking. The wider is the range the more uncertain can the target patterns
be considered and consequently also the initial prediction pattern. The same legend is being
used for the illustrations of target and uncertainty patterns in Figure 4. Obviously, the
significance of the uncertainty ranks, in Figure 4B and 4D, is the reverse the one of the
target ranks, in Figure 4A and 4C For instance, we have selected the 50% the lowest values
from the uncertainty pattern to identify all the ranks in the target pattern (or the prediction
pattern) corresponding to lower uncertainty. This produced the combination patterns
shown in Figure 5. Observe in Figure 5D the 50% combination pattern for Sa51, obtained
combining the patterns in Figure 4D, uncertainty, with the one in 4C, target pattern. We
have applied median and range statistics here, due to its robustness, differently from the
previous work [8] where the more sensitive mean and variance were tentatively used.

Figure 5: XLR 50% combination patterns of uncertainty and target patterns for four study
areas. In (A) is for Sa1, in (B) for Sa3, in (C) for Sa9 and in (D) for Sa51. Explanation is
in text.

Evaluating and comparing uncertainty patterns is a complex issue, worthy of
extensive research. The four 50% combination patterns in Figure 5 show strong differences
in the distribution of the ranks. All our modelling is based on relative measures and on



ranking statistics. What we could do in a rough empirical manner is to compare ranks for a
given top set or class. For instance, by arbitrarily selecting the top 10% ranks, we can
evaluate the loss of the top target rank area in the 50% combination patterns. They mask
the part of the target patterns with higher uncertain ranks (belonging to the higher 50% of
the uncertainty pattern). For the patterns in Figures 5A to 5D, we have a relative decrease
for the top 10% target ranks as follows: of 29.64%, for Sa1, of 46.54% for Sa3, of 39.88%
for Sa9, and finally of 61.33% for Sa51. This reveals a relatively greater uncertainty
affecting Ta3 to Ta51 than that affecting Ta1. In other words, it indicates a better ranking
for Ta1 with less relative uncertainty.

5 CONCLUDING REMARKS
This contribution reanalyses a database constructed for assessing aquifer vulnerability to
nitrate pollution around the city of Milan. Favourability function modelling with the
empirical likelihood ratio is applied to four training areas extracted from the database. The
areas simulate increasingly wider spatial support of water well values of nitrate
concentration. The statistics resulting from the prediction patterns and their cross-
validations is extended from the training areas to the surrounding study areas. In this way
the uncertainty patterns are computed and compared. This is done in parallel with the
predictive capability of the prediction patterns represented by prediction-rate curves and
histograms.

Increasing the extension of spatial support from one training areas to another leads to
prediction patterns that appear similar but imply worsening of prediction quality, the loss
of monotonically increasing character of ranking, and an increase of the uncertainty
associated with the target and prediction patterns. The 20 m spatial support and
corresponding training area appear preferable to the wider ones. Such aspects must be
considered when applying prediction models to areas for which the vulnerable occurrences,
i.e., the impacted wells, consist of point values sampling a process. The training areas being
modelled have to be limited to the neighbourhoods of the points, water wells, because their
spacing and spatial support are visibly affecting the resulting prediction patterns. The many
implications of the results of studying the Milano study area make it worth further
attention. More generally, research issues worthy of consideration, beside the assessment of
spatial support, are: comparisons of prediction patterns and prediction-rate curves and
comparisons of relative uncertainty of target patterns.
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