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Summary 

 

The 2016-17 central Italy earthquake sequence began with the first mainshock near the town of 

Amatrice on August 24 (MW 6.0), and was followed by two subsequent large events near Visso on 

October 26 (MW 5.9) and Norcia on October 30 (MW 6.5), plus a cluster of 4 events with MW>5.0 

within few hours on January 18, 2017. The affected area had been monitored before the sequence 

started by the permanent Italian National Seismic Network (RSNC), and was enhanced during the 

sequence by temporary stations deployed by the National Institute of Geophysics and Volcanology and 

the British Geological Survey. By the middle of September, there was a dense network of 155 stations, 

with a mean separation in the epicentral area of 6-10 km, comparable to the most likely earthquake 
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depth range in the region. This network configuration was kept stable for an entire year, producing 2.5 

TB of continuous waveform recordings. 

Here we describe how this data was used to develop a large and comprehensive earthquake 

catalogue using the Complete Automatic Seismic Processor (CASP) procedure. This procedure 

detected more than 450,000 events in the year following the first mainshock, and determined their 

phase arrival times through an advanced picker engine (RSNI-Picker2), producing a set of about 7 

million P- and 10 million S-wave arrival times. These were then used to locate the events using a non-

linear location (NLL) algorithm, a 1D velocity model calibrated for the area, and station corrections 

and then to compute their local magnitudes (ML). The procedure was validated by comparison of the 

derived data for phase picks and earthquake parameters with a handpicked reference catalogue 

(hereinafter referred to as "RefCat"). The automated procedure takes less than 12 hours on an Intel 

Core-i7 workstation to analyse the primary waveform data and to detect and locate 3000 events on the 

most seismically active day of the sequence.  This proves the concept that the CASP algorithm can 

provide effectively real-time data for input into daily operational earthquake forecasts, 

The results show that there have been significant improvements compared to RefCat obtained in 

the same period using manual phase picks. The number of detected and located events is higher (from 

84,401 to 450,000), the magnitude of completeness is lower (from ML 1.4 to 0.6), and also the number 

of phase picks is greater with an average number of 72 picked arrival for a ML = 1.4 compared with 30 

phases for RefCat using manual phase picking.  These propagate into formal uncertainties of ±0.9km in 

epicentral location and ±1.5km in depth for the enhanced catalogue for the vast majority of the events. 

Together, these provide a significant improvement in the resolution of fine structures such as local 

planar structures and clusters, in particular the identification of shallow events occurring in parts of the 

crust previously thought to be inactive.  The lower completeness magnitude provides a rich data set for 
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development and testing of analysis techniques of seismic sequences evolution, including real-time, 

operational monitoring of b-value, time-dependent hazard evaluation and aftershock forecasting.  

 

1. Introduction 

On the 24th of August 2016, a MW 6.0 earthquake occurred in Central Italy near the town of Amatrice, 

starting a seismic sequence characterized by a cascade of moderate extensional earthquakes. Two 

months later, a MW 5.9 earthquake occurred, on 26th October 2016, near the village of Visso (Fig. 1).  

This activated the northern edge of the fault system, and was followed four days later by the largest 

earthquake in the sequence, MW 6.5 on 30th October, near the town of Norcia. After a further month, 

four moderate magnitude earthquakes of 5.0 ≤ MW ≤ 5.5 occurred on the 18th January 2017 near 

Campotosto, at the southern edge of the Amatrice fault system. 

The total length of the normal fault system activated by the 2016-2017 seismic sequence is 70 km. This 

is a very seismically active section of the regional Central-Northern Apennines fault system, where 

large historical and instrumental earthquakes with MW ≥ 6.0 have occurred in the past.  These include 

events dated from the 13th century c. e. (Rovida et al. 2016) up to the last 30 years, as well as  the 1997 

Colfiorito (Chiaraluce et al., 2003) and 2009 L’Aquila (Valoroso et al., 2013) sequences. The Norcia-

Amatrice sequence reactivated the area in between these two earlier sequences.   

The permanent RSNC network of seismic stations, operated by the Italian National Institute of 

Geophysics and Volcanology (INGV) for the surveillance of the Italian seismic activity, has a mean 

minimum detection magnitude of ML≈0 and a completeness magnitude of ML=1.4 in the considered 

period (ISIDe Working Group, 2007). Fig. 1 shows the permanent seismic network before the Amatrice 

earthquake, together with the seismic activity recorded in the 5 years prior to the Amatrice sequence 

(ISIDe Working Group, 2007). Fig. 1 also shows the location and focal mechanisms of the earlier 
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Colfiorito 1997 sequence to the north and the L’Aquila 2009 sequence to the south (in conventional 

black and white in Figure 1), and the two MW>6.0 events that occurred during the 2016-17 sequence 

(red/white in Figure 1). These four events are the only earthquakes with MW>6.0 in the last 30 years. 

All the focal solutions (TDMT - Time Domain Moment Tensor Catalogue; http://cnt.rm.ingv.it/tdmt) 

display clear extensional fault movement displayed along NW-trending normal faults, roughly parallel 

to the strikes and dips of the mapped fault breaks.  

Immediately after the Amatrice mainshock, the emergency team of National Institute of 

Geophysics and Volcanology began to install 22 seismic stations to complement the permanent ones.  

Then, scientists from the British Geological Survey, with the support of the NERC Geophysical 

Equipment Facility and SEIS-UK, deployed an additional 24 broad-band stations within the next few 

days, resulting in a dense network of 155 stations, with a mean separation in the epicentral area of 6-10 

km. This dense seismic network produced over 2.5 terabytes of data in one year, too much to handle by 

manual phase picking techniques used in preparing the RefCat from RSNC data by manual phase 

picking.  Accordingly, we used automatic processing of the continuous recordings to generate a more 

comprehensive earthquake catalogue with better locations and improved detection of events below the 

previous magnitude of completeness. Such automatic procedures have commonly been used to analyse 

seismological data from both background seismicity and periods of enhanced activity during seismic 

sequences (Di Stefano et al., 2006; Diehl et al., 2009; Satriano et al. 2011; Lomax et al. 2012; Valoroso 

et al., 2013; Spallarossa et al. 2014; Romero et al. 2016; Wollina et al., 2018). They complement 

alternative continuous waveform-based techniques such as template-matching (Gibbons and Ringdal, 

2006; Shelly et al., 2007; Peng and Zhao, 2009) and deep learning approaches for earthquake phase 

association (Ross et al., 2018). All of these must guarantee an appropriate level of reliability in derived 

data such as phase arrival times, locations, origin times and (local) magnitudes comparable to those 

obtained from manual analyses, and do this for a greater number of events per unit of computing time. 
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Obtaining this reliability can be challenging during seismic sequences, where events frequently overlap 

in time or occur simultaneously in different parts of a network. There are three major advantages of 

having a larger number of events and a smaller detection threshold in catalogues extracted from 

automated processing of waveform data. The first is the better constraint on earthquake frequency-

magnitude parameters used in probabilistic seismic hazard analysis or operational earthquake 

forecasting from the increased bandwidth of data.  This increased bandwidth, and the increased number 

of events, also has the potential to reduce the estimated errors in such parameters. The second is the 

benefit from from introducing small magnitude events to introduce secondary triggering effects 

illustrated  by forecast models developed for the AVN sequence (Mancini et al., 2019). Extending the 

inclusion of secondary triggering to smaller magnitudes is now possible using the high-resolution 

catalog. Third, uncovering the smaller events from high-resolution data may shed new light on 

important details of the fault architecture. These advantages demonstrate the importance of decreasing 

the threshold of detected and characterized events in improving forecasts. Gulia and Wiemer (2019) 

investigate whether observations of b value variation in time can lead to alarm-based forecasts but 

current testing of the method to other sequences reveals some caveats for the effectiveness of potential 

warnings (Dasher-Cousineau et al., 2020) 

In this work, we adopted the Complete Automatic Seismic Processor procedure (CASP; from Scafidi et 

al., 2019), to analyse an entire year of recordings of the 2016-2017 Central Italy seismic sequence in a 

consistent way. We chose CASP because it proved not only to be fast in processing a large amount of 

seismological data, but also to detect consistent P- and S-phase arrival times, allowing the accurate 

location of events. The other techniques mentioned above may be able to detect more events and 

provide accurate relative locations, but can miss events and/or not always provide the absolute 

locations calculated here.  The core of CASP is an advanced automatic wave arrival time detector and 

location software, based on a chain of modular procedures constituted by iterative algorithms (named 
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“RSNI-Picker2”, from: Scafidi et al., 2018; Spallarossa et al., 2014).  The pragmatic choice of CASP 

allows us to improve (a) detectability, in terms of number of correctly detected arrivals times or hit 

rate, (b) reliability, in terms of minimizing the rate of false or imprecise picks, (c) accuracy of results 

(Scafidi et al., 2016). It also allows us to generate catalogues of events quickly (~12 hours), to the point 

where operational earthquake forecasts could be made daily.  In this paper we prove this concept, and 

show that the new data from the temporary stations, analysed by the CASP algorithm, can reveal new 

features of the fault architecture and improved estimates of parameters used in probabilistic seismic 

hazard analysis and operational earthquake forecasting.   

In the Table 1 below, we list the properties of the RefCat and enhanced catalogues. The methods used 

in producing the enhanced catalogue are described in more detail in the following section. 

 

2. P- and S-phase picking, earthquake detection and characterization 

This section describes the elements of the work flow we used to retrieve the enhanced earthquake 

catalogue obtained by the CASP method on the dense seismic network.  The work flow itself is 

illustrated in the flowchart of Fig. 3.   

 

2.1  The seismic network 
 

The area affected by The Amatrice sequence had been regularly monitored before its onset by the 

stations of the Italian National Seismic Network (INGV Seismological Data Centre, 2006) and by 

additional local and regional seismic networks (respectively the TABOO - Chiaraluce et al., 2014 and 

RESIICO - Marzorati el al., 2016, networks) operated by INGV. This permanent network was 

enhanced by the deployment of complementary set of 22 3C-stations from the INGV emergency 

network of temporary, portable stations within the first 10 days of the sequence (Moretti et al., 2016). 
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An additional 24 broad-band stations that were installed by the 10th of September, by the British 

Geological Survey (BGS) and School of Geosciences at the University of Edinburgh, in active co-

operation with INGV to optimise the enhanced network.  The final configuration of the enhanced, 

dense seismic network contained 155 stations (Fig. 2), bringing the station inter-distance down to 6-

10km. 

This network configuration operated  stably from 24 Aug 2016 to 31 August 2017, producing a 

massive dataset of continuous waveforms (≈2.5 terabytes). The dataset is now freely available, in 

standard miniseed format, from the ORFEUS (Observatories & Research Facilities for European 

Seismology) and IRIS (Incorporated Research Institutions for Seismology) web portals 

(https://www.orfeus-eu.org/, https://www.iris.edu/hq/).  

 

2.2      P- and S-phase arrival times and earthquake detection 
 

The CASP software analyses the recorded waveforms directly in the standard miniseed format, 

organized in daily (24-hours) continuous time windows as retrieved by the standard seedlink archive 

format. 

The first step of the automatic procedure is the event detection based on a standard STA/LTA analysis, 

empirically calibrated for each station as a function of the site’s ambient noise and the characteristics of 

its installed instruments. The main parameters involved in this calibration are (see Table 2): the low- 

and high- corner frequencies of the band-pass filter (F_Low and F_High), the short- and long-term 

average constants (STA and LTA), the STA/LTA ratio threshold (Level), the window length for the 

STA/LTA ratio calculation (Dur), and the minimum time-interval permitted between two consecutive 

triggers (LenMin). These parameters have been set such that the algorithm is very sensitive to the 

occurrence of candidate events, producing a very large number of triggers. This minimises the chances 
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of failing to detect ‘true positives’, at the expense of also producing many ‘false positives’ associated 

with non-seismically generated noise. However, the false positives are then removed on the basis of the 

location resisuals and of the quality of locations, in the final step of the CASP procedure, which has 

been proven to discriminate effectively between true seismic phases and other signals.    

For each trigger detected through the STA/LTA analysis, the final trigger time is then determined as 

the minimum of the Akaike Information Criterion (AIC) function (after Akaike, 1974) computed within 

a signal window around the previous trigger identification. The use of the AIC-based algorithm allows 

us to overcome some typical errors associated with STA/LTA analysis (Scafidi et al. 2019). 

The station trigger data were then input in into the CASP event detection module (see Fig. 3). The 

detection module is based on a ‘coincident’ system, where a defined number of data channels must be 

triggered within a defined time window in order to declare the (potential) beginning of a candidate 

event. It has proven to have strong advantages in detection of events occurring close in time during a 

seismic sequence . Event detection was further optimized by splitting the analysis into sub-networks 

defined by 11 different geographical zones defined by the pattern of seismicity (Fig. 2), allowing the 

accurate detection of as many events as possible.  The zones overlap, but this is necessary to allow us 

to recognise identical events detected by the different networks, and hence to remove duplicates in the 

catalogue.  Accordingly, we report in Table 3, for each sub-network, the name, the number of stations 

included and the parameters controlling the event detection, i.e. the number of stations which must be 

triggered within the coincidence window length. 

The seismograms of the potential events are then extracted from the continuous recordings and 

converted in standard Seismic Analysis Code (SAC) format. Each time window has 10 seconds of pre-

trigger time and a total duration of 45 seconds. Considering the network density, for every triggered 

event we extracted waveforms from all the stations located within 90 km from the preliminary 

epicentre of the possible event. Then, the waveform for the candidate event is analysed through the 
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advanced automatic picker and location engine, named RSNI-Picker2 (RSNI-P2 in Fig. 3; from 

Spallarossa et al., 2014; Scafidi et al. 2016; Scafidi et al., 2018).   

The RSNI-P2 is based on an iterative procedure for the automatic identification of phase arrival times 

by calculating AIC functions. Iterations consist of different steps, separately performed for P- and S-

phases, where arrival time identification is checked and refined based on a preliminary earthquake 

location we computed with the NonLinLoc software (Lomax et al. 2000) and a 1D velocity model of 

the area (De Luca et al., 2009). 

Complex seismic sequences are often characterised by the occurrence of multiple mainshocks within a 

short time scale going from seconds to weeks. The likelihood of events occurring closely spaced in 

time (even if not necessarily in space) makes the automatic analysis of seismic data, in terms of phase 

association and event location, a very difficult task. The waveforms for two, or more, seismic events 

occurring almost at the same time could overlap, leading to one or more events being missed. However, 

this will only occur if the signals from the most distant station for the earlier event arrive around or 

later than those from the nearest station for the later event. RSNI-P2 includes a smart search component 

for such nearly contemporary earthquakes. After a first event is detected and located, the procedure 

dynamically cuts each waveform to exclude the portions of the signal belonging to the first event. This 

waveform cut is done by identifying the end of the seismic signals belonging to the earlier event, and 

by evaluating the event magnitude (i.e., higher magnitude implies longer signals to be cut, and vice 

versa) and the hypocentral distance from each station (i.e., the starting time of each time window is 

independently selected). As a consequence, the time windows available for a potential later event are 

determined. Then, the system starts a new search analysis on these waveforms, to check for and detect 

any missing earthquake. A similar process is done with the part of the seismograms before the first 

detected event, looking for other events that occurred just before its time window.  
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RSNI-P2 is also equipped with a tool for identifying out-of-network events such as teleseisms or 

regional earthquakes through an appropriate spectral analysis. This algorithm is able to discriminate 

reliably between phase arrival times caused by non-local events in order to discard them and to have a 

clean final dataset of local earthquakes (Scafidi et al., 2019). 

The final results of the CASP procedure is a dataset of P- and S- phase arrival times and an earthquake 

catalogue of origin time, location, depth and magnitude, all linked together. Every phase arrival time is 

attributed to the earthquake it belongs to, and every earthquake has the list of arrival times that led to its 

location. This provides an important benchmark for future studies based on these data. Moreover, every 

single result has its own error estimation, allowing the possibility to discriminate between different 

quality classes. For each set of arrival times, CASP provides quality factors (qf) that indicate the 

estimated uncertainty of the automatic detection in seconds, to clearly define the reliability of each 

datum. The earthquake location quality is an output of the location software, specifically a probabilistic 

estimation of the error produced within the NonLinLoc code (Lomax et al., 2000). 

3. Final earthquake catalogue generation 

 
3.1 Probabilistic Earthquake Location with Station Corrections 

 
The automatic analysis procedure we used in this study includes an iterative location phase, designed to 

identify and optimize the P- and/or S-arrival times. The final data set of P- and S-phase arrival times, 

respectively consisting of 7,016,435 P and 10,003,900 S phases. The total number of identified and 

associated phases with earthquakes is much greater than in RefCat.  In the magnitude range 1.4-1.5  the 

average number of picked arrival times is 72 and 30 for the enhanced catalogue and RefCat 

respectively (see Table 1). The significantly higher average number of phases of the enhanced 

catalogue with respect to the standard one is due to: the higher number of stations, concentrated in the 
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epicentral area, used for the enhanced catalogue, and the iterative search procedure of S phases (see “P- 

and S-phase arrival times and earthquake detection” paragraph). 

The final data set of arrival travel times was then used as input to a final optimised relocation run, 

producing the final list of seismic events with their hypocentral location, depth, origin time, and 

associated uncertainties.  To do this we used the same NonLinLoc procedure adopted for the picking 

phase, and the same 1-D propagation model, derived from De Luca et al. (2009). The main difference 

is the introduction of static station correction values, to reduce the discrepancies between the adopted 

propagation model and the real Earth. 

A proxy of the best station corrections can be obtained from the mean residuals obtained for a set of 

located events. In order to reduce the trade-off between residual reduction and changes in location, a 

sub-set of events with very stable locations and a redundant number of phases was selected for a 

benchmark test. Moreover, in order to reduce the possible impact of a non-uniform sampling of the 

investigated area, events were selected by imposing a regular grid (size 5 km) on the hypocentral 

volume of the sequence, and by choosing a maximum of 10 events for each grid element showing the 

highest number of phases. In this way, we avoid oversampling the ray paths in the volumes with the 

highest number of events and stations. Thus, a sub-set of about 3,600 events was selected from the data 

set of preliminary locations. 

The relevant phases were picked by in a recursive procedure, in which the mean station residuals of the 

previous location iteration were used as station correction for the following iteration. The cumulative 

root mean square of residuals tended to stabilize after three iterations, and the mean station residuals at 

this point were adopted as station corrections for the final location. Corrections were used only for 

stations showing a hit count larger than 50. A representation of the obtained station corrections is 

shown in Fig 4. In general, the corrections in the epicentral area defined by the cloud of seismicity in 

Fig 1 are rather small, confirming the validity of the adopted 1-D velocity model. Conversely, stations 
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in the Adriatic foreland (on the eastern side of the area studied), show systematically positive station 

corrections. This is consistent with relatively low velocities being present at the surface and in the 

upper crustal layers in this area, as proposed independently by Carannante et al. (2013) in their 

tomographic study. 

Obviously this complete procedure of station correction would not be possible in a near real-time 

application of the method; however a good estimate of station corrections would be available for the 

permanent part of the network from background seismicity. Corrections for the temporary stations 

would be obtained with an increasing accuracy during the evolution of the sequence, but, as already 

stated, their contribution is less critical with respect to stations in the Adriatic foreland, mainly 

permanent ones. 

We show in Fig. 5 a map view of the 440,697 relocated events making up the final enhanced 

earthquake catalogue. For comparison, we also report in Fig. 6 the number of events per day of the 

obtained catalogue (in red) versus those present in the RefCat (ISIDe Working Group, 2007). Our 

procedure significantly increases the number of retrieved events by a factor varying from four to more 

than five during the sequence, with an overall mean ratio of 5.22. This holds even during the phases of 

very high event rate associated with the major destructive events - at the beginning of the sequence, 

during the period 26-30 of October 2016 and soon after the 17th of January 2017. This confirms the 

efficiency of the detection and picking algorithms, even for seismic events that are closely spaced in 

space and time. In a recent work, Zhang et al. (2019) associate and locate about 3300 events for a 

subset of 5 days of the sequence (14-18 October 2016) using the Rapid Earthquake Association and 

Location algorithm (REAL). For the same period, our automatic database includes more than 4300 

well-located events. 

After the final relocation step, we performed a final ‘cleaning’ of the derived data set for P- and S-wave 

arrival times to remove redundant entries and to ensure consistency of outputs in the catalogue.  As a 
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result, only those phases contributing to the final location are included in the final catalogue containing 

the dataset of arrival times. In particular, P and S arrival times with residuals greater than 2 seconds or 

with a zero weight in the location were discarded. Nevertheless, all the events contained in the final 

earthquake catalogue have at least six P and S phases.  

Prior to the cleaning procedure, some 4% of the locations (18,945 events) had (unphysical) negative 

depths. Within those events, there were 899 events in the A-class for quality (5%), 2888 events in the 

B-class (15%), 4782 events in the C-class (25%) and 10376 events in the D-class (55%). For the 

definition of the adopted quality classes, see paragraph “Quality of earthquake locations”. We decided 

to keep only the events whose depth is positive in the final catalogue, i.e. its elevation is below the 

local topographic height. As a result, we excluded 11871 events, 88% of those in the C and D classes of 

poorly located events. The final dataset of arrival times contained entries for 6,871,990 P and 9,941,649 

S phases. 

The number of detected and validated P and S arrival times per day for the whole analysed year is 

shown in Figure 7(a). The number of S phases is always slightly higher than the P ones; this is  due in 

part to the fact that the search for S phases is always driven by a trial location that is already reliably 

known from the P-phases. In addition, mainly for small events, very often the signal to noise ratio of S 

waves (with respect to P coda) on horizontal components is higher than the SNR of P waves (with 

respect to pre-event noise) on the vertical component. A typical example is reported in Fig. 8, (two 

stations of event 170315000204, Ml 0.17). Station ED19 has a good P- and S-picking. For the 

temporary station T1256, automatic P-picking was not possible due to the low SNR, nevertheless the S 

arrival was correctly recognized. 

In the most seismically active single day, on the end of October 2016, more than 75,000 P arrival times 

and 110,000 S arrival times were detected and correctly assigned to more than 3500 events. The 

distribution of the automatic quality estimation of both P and S phases is also reported in Fig. 7 (b), (c). 
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The average value of the estimated errors in the arrival times is  ±0.05 s for the P phases and ±0.13 s 

for the S phases. More than 90% of arrival times had estimated errors below 0.1 s and 0.25 s 

respectively for the P and S waves. 

 

3.2 Validation of results 
 

In order to evaluate the effectiveness and accuracy of the automated phase picking algorithm, we 

analysed a subset of the data where we were confident in the phase data obtained by manual phase 

picking methods.  We chose a day with a number of events close to the long-term average and without 

any particular clustering, so that the space, time and magnitude distribution of this subset can be 

assumed to be representative of the whole data set. We selected the 7th of January from 00:00 UTC to 

06:00 UTC and hand-picked phases for all the events recognized by the detection procedure, resulting 

in 345 events with both a good quality location based on the manual picks, and a corresponding event 

in the automatic dataset. It was then straightforward to compare the phase and catalogue parameters for 

these two independently-generated data sets. 

We compare the automatic and manual picks and locations (epicentre and depth) in Fig 9.  Figure 9a 

shows the time differences for the P phase picks: on the left the whole dataset is analysed, while on the 

right only the best quality picks are plotted. It is quite evident that for P phases most picks are either 

nearly coincident with the human ones or, in few cases, completely wrong (errors larger than 1s are all 

reported in the last bin). Fortunately, these large errors are recognized as outliers by the location 

procedure without any further tuning, and hence are not used for the final comparison. 

After removing these events, the distributions of differences in arrival time, epicentral location, and 

depth are even more peaked (and the number of large errors reduced). The estimated systematic error in 

the automated phase picks estimated by the difference between the high-confidence manual and 
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automated picks is less than 0.04s: the level of confidence is 87.0% within this threshold, and 93.3% 

within 0.08s. For S picks, the distribution appears broader (fig. 9b/left), and is again skewed towards 

positive values, implying delayed picking in the automatic system. If we reduce the analysis to the best 

quality picks (estimated errors below 0.08s, fig. 9b/right) the distribution appears narrower and more 

symmetric. In this case, 72.6% of the differences are below the threshold, and 85.2% below twice this 

value.  For both P and S picks  the distribution of the systematic error is somewhat asymmetric, with a 

slight skew to positive values, implying the automatic pick is slightly biased to be later than the human 

one. These results confirm that the S picks are around twice as uncertain in time as the P picks, but the 

absolute uncertainty remains small.  In most cases, the CASP procedure is able to furnish a reliable and 

accurate estimate of the phase arrival time, and to discriminate reliable results from outliers. 

The locations obtained by the automatic picks in the test period were then compared with those of the 

representative sample of the manual ones. Figure 9c in the top row shows histograms of the depth 

difference (automatic minus manual depth), the modulus of difference in depth distance, and the 

modulus of difference in epicentral for events with estimated horizontal errors below 3 km and vertical 

errors below 5 km. Some 94.1% of the locations show horizontal distances below the threshold of 3 

km, and 95.5% below the 5 km threshold for the depth error. The depth difference appears nearly 

symmetrical, showing that the automatic procedure does not introduce any systematic bias in the depth 

estimate. 

If we reduce the analysis to the more reliable locations (horizontal and vertical error < 1 km), the 

distributions become still narrower (bottom row of figure 9c): 92.1% (for the epicentral distance) and 

83.9% (for the depth distance) of the events fall within the defined thresholds. Overall, within the limits 

stated in the analysis section, these results provides a firm validation of the accuracy of the phase 

picking method in comparison with manual analysis of the same data for a representative sample of 

data.  
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3.3      Quality of Earthquake Locations 
  

In order to classify the quality of the final earthquake locations, we applied the procedure proposed by 

Michele et al., (2019) to the resulting catalogue. These authors proposed a criterion to assess the 

location quality, consisting of the combination of the uncertainty estimates, properly normalized, 

provided by the NonLinLoc location code (Lomax et al., 2000). The procedure quantifies the location 

quality estimate in terms of a unique numeric normalized value the quality factor which varies between 

qf=0 (best quality location) and qf=1 (worst quality location). Then, the location obtained is assigned to 

a quality class depending on the qf parameter value according to the following scheme: A-class (0 < qf 

≤ 0.25), B-class (0.25 < qf ≤ 0.50), C-class (0.50 < qf ≤ 0.75), and D-class (0.75 < qf < 1.00). We 

report in Fig. 10 the distribution of the location parameters, divided into these different quality classes 

(class: A in red, B in green, C in blue and D in black). The parameter distributions all show increasing 

dispersion while moving from the best (A) to the worst (D) class, with the single exception of the plots 

for the number of phases picked, where the distribution narrows with decreasing quality, and the 

average number of phases identified also decreases.  These results are not inconsistent with each other 

– we would expect better locations and a more variable number of phase picks in good quality data.  

We end up with a catalogue of earthquake locations, distributed between the quality classes as A-

31.8%, B-32.0%, C-18.3%, and D-17.9%. The relationship between the main location parameters as 

function of the magnitude is shown in Fig. 11. The reported quality factors qf are mean values 

computed in bins of 0.02 of magnitude. The mean quality factor and the number of phases picked is 

fairly constant in the magnitude range 2.0 to 3.6 (see Fig. 11 a, b). Each class has a quality factor that is 

peaked around a magnitude that increases systematically with increasing quality. This is consistent also 

with the distribution of the number of events in Fig. 11 d), where the higher quality data peaks at a 
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higher magnitude, and the lower quality data peaks at low magnitudes where the signal to noise ratio 

would be the lowest. In turn, this is consistent with a lower-mean number of phases contributing to the 

earthquake locations for the low-quality data. The quality factor is quite constant for different 

earthquake magnitudes for all quality classes (Fig. 11 e). 4.0. Finally, for the higher values of 

magnitude, we observe a degree of volatility in the mean qf and in the number of phases (see Fig. 11 c). 

We know that the automatic picks for (the usually small number of) moderate-to-large earthquakes that 

occur during one seismic sequence strongly depend on factors not considered here, for example 

instrument clipping or the presence of a minor event within the nucleation phase. Thus it may be 

advisable even with an automated phase picking method to continue to analyse data for the relatively 

few largest events manually for the time being, at least until automated techniques have been adapted 

to account for such effects. 

3.4 Local magnitude (ML) computation 

The local magnitude (ML; Richter 1935, 1958) is also calculated automatically, using the complex 

multi-thread algorithm embedded inside RSNI-P2. Since ML could be strongly biased by the signal 

processing methods adopted to correct for instrument response, we also adopted an automatic method 

to select the best pre-deconvolution filter parameters on the basis of signal-to-noise analysis. 

Specifically, the high-pass corner frequency of the Butterworth pre-deconvolution filter is 

automatically determined, identifying the lowest frequency (in the 0.5 – 2.0 Hz range), which gives a 

signal-to-noise ratio greater than a threshold value (e.g., usually 4.0). This approach allows the proper 

consideration of the relatively low frequencies, around 0.5 Hz, relevant for earthquakes with higher 

magnitudes (e.g., ML > 3). This is important to avoid ML underestimation for these events. On the other 

hand, the lower frequencies are discarded in the case of low-magnitude earthquakes recorded by broad-

band instruments in order to minimize any bias from micro-seismic noise. The low-pass corner 
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frequency of the Butterworth pre-deconvolution filter is always selected on the basis of the sampling 

frequency such that it is always lower than the Nyquist frequency. 

After an earthquake is located and seismic signals are filtered with the above procedure, ML is 

automatically evaluated using the algorithm proposed by Spallarossa et al. (2002). This method 

consists in generating synthesized Wood-Anderson seismograms from horizontal component digital 

recordings and applying a calibrated attenuation function for the monitored area (Di Bona, 2016). ML is 

obtained separately for each seismic station and the event magnitude is estimated by averaging the data 

from all available stations. Only stations with reliable P- or S-phase picks (i.e., with NonLinLoc 

associated location weight greater than zero) are used. 

After this initial ML calculation, a further quality selection is performed. At first, to overcome any 

biased ML computation due to waveform saturation and/or distortion and possible near-field effects, 

seismograms recorded by stations close to the epicentre are discarded. The procedure checks the data 

for each hypocentre-to-station distance, and applies a threshold defined by an empirically-calibrated 

magnitude-distance relation. After extensive testing, this distance threshold has been assumed to span 

between 5 km for earthquakes with ML = 1.0 and 50 km for earthquakes with ML > 5.0. Secondly, 

potential bias due to recordings with low signal-to-noise ratio and/or those affected by unknown 

attenuation effects for large distances are avoided by discarding data from stations far from the 

epicentre. Finally, if the number of remaining data values after the previous selections is greater than a 

given threshold (e.g., 6), ML is re-computed also excluding the minimum and maximum single station 

magnitude values to reduce the influence of potential outliers. Otherwise, the initially computed ML 

value remains valid. All of these steps are automated, reproducible and consistently applied once the 

control parameters have been chosen. 
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4. Results 

 
Fig. 12 shows the spatial distribution of all the events contained in the enhanced earthquake catalogue 

obtained by the methods described in section 2. The plot is divided into four columns, one for each 

location class based on the quality factor (qf) defined above (from class A to class B, C and D). The 

cross sections are drawn across the largest events of the sequence. Section A crosses the south the 

cluster of four MW>5 events of January 18th, sections B and C cut through the MW6.0 Amatrice and 

MW6.5 Norcia mainshock, respectively, and the northernmost section D crosses the location of the 

MW5.9 Visso earthquake. 

The enhanced catalogue consists of 440,697 events, with −1.0 ≤ ML ≤ 5.9, and covers the first year of 

the Central Italy seismic sequence, starting from the 24th of August 2016 (the date of the first Amatrice 

mainshock) to the 31st of August 2017 (the date of the removal of the BGS temporary seismic stations). 

Despite the differences in quality, the general pattern of the seismicity in the different classes is 

remarkably consistent in both horizontal and vertical projections (Fig 12). The locations for the two 

best quality classes (A and B), are absolutely comparable to those based on manual phase picks by 

Michele et al. (2016), Chiaraluce et al. (2017) and Improta et al. (2019).  The general pattern is also 

clearly resolved by the lower quality data (C and D) at the kilometre scale of the diagram.  

In order to quantify the clustering characteristics of the RefCat and of the new catalog, we subdivided 

the whole volume interested by the sequence in 242,000 cubic cells with 1 km long edges, and counted 

the events falling in each cell. For the RefCat, 83,326 events fell in the selected volume and they 

occupied 12950 cells (5.3% of the total); 90% of the earthquakes used just 6201 cells (2.6% of the 

total).  If we select just the A-class events (qf < 0.25) of our new catalog, we obtain 140,122 events in 

the selected volume and they use 11369 cells (4.7%); 90% of the events is limited in 4,328 cells 

(1.8%). In conclusion, even taking into account just the best quality locations, we obtain a higher 
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number of events in a source volume more reduced with respect to those of the RefCat. If we also 

include the B-class events (quality factor < 0.50), we obtain 281,017 events, using 18671 cells (7.7%); 

90% of these are limited to 5717 cells (2.4%). This selection reports a number of events 3.37 times 

higher than the RefCat and still with a higher clustering factor. It must be remembered that the RefCat 

is based on manual phase pickings, while the high resolution catalog is fully automatic. If we analyze 

the whole new catalogue (434596 events in the volume), we fill 39223 cells (16.2%), but the majority 

(90%) are in 10839 of these (4.5%). As expected, and as evident in the maps and in the cross-sections, 

the lower quality events are more dispersed forming a diffuse cloud around the whole area. 

Nevertheless, even for the whole catalog the majority of the events are concentrated in a limited 

volume, indicating significant localization of seismicity – well located small events do not stray too far 

from the volumes affected by larger ones  

The quantitative contribution of this dispersed seismicity to our knowledge of the process is a matter 

for debate, mainly due  to the low quality of their locations. To investigate their effect, we extracted 

category D low-quality events (qf > 0.75) falling in cells with a minimum distance of 5km from each 

cell populated by events from the A+B catalog.  These events are the most likely to have poor locations 

and hence are the most likely to be associated with a potentially artificial seismic ‘cloud’.  We obtain 

327 events with this criterion, 0.07% of the whole catalog. This means that the wide cloud of seismicity 

recognizable in maps and cross-sections (Fig 12) of D-quality events is  generated by rather few 

poorly-located events. Moreover, if we compute the mean quality factor of this sub-set of events, we 

obtain a value of 0.97 (qf ranges from 0 for the best location to 1 for the more unstable ones). It is 

evident that this sub-set of events belongs to the tail of our error distribution, and do not add to our 

understanding of fault architecture or potential seismic zoning in the region. 
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To investigate what these locations represent in more detail, we visually inspected some of their 

waveforms. We found a few examples of real earthquakes located far from the sequence source area 

(the true sparse background seismicity), but mainly the cloud is comprised of mislocated events, often 

linked to nearly-contemporaneous events not correctly managed by the automatic picking procedure. 

The cloud is therefore an artefact of poorly located events.  This quality check confirms that the quality 

factor is a good discriminant for the reliability of the location. For applications related to the 

reconstruction of structure geometries we would thus recommend  using only the best-quality events 

(low qf) while for a purely statistical analysis (i.e.: b-value analysis), when a mislocation of some km 

could be not critical, the whole catalog may be used.  

The enhanced seismicity catalogue provided by the CASP procedure provides a much clearer picture of 

the activated structures than before.  For example, we observe 1) new geological structures, e.g. a fault 

located in the footwall of the system in section C not detected in the previous work and 2) shallow (< 5 

km of) depth earthquakes that partly fill portions of the shallower crustal volume previously 

characterized by low seismic activity (e.g. sections B along the Amatrice fault plane (cf.  Michele et al., 

2016, Chiaraluce et al., 2017, Improta et al., 2019 and Michele et al., 2020). 

All the main events with MW>5.0 are well located by the CASP algorithm, with the single exception of 

the first Amatrice mainshock (MW=6.0) which has an estimated depth of 0 km. This was most likely a 

consequence of (a) a lower number of stations (at this stage just the permanent ones were available) 

and (b) the low number of strong motion sensors with non-clipped data. In combination, these resulted 

in a non-optimal location, so we excluded it from the final catalogue. 

Our results clearly demonstrate the high performance and robustness of the automatic CASP procedure 

(Scafidi et al., 2019) in retrieving a large number of well-constrained events, along with better 

estimates of their location, and a more complete catalogue at low magnitude. To illustrate the 
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improvement in completeness, the frequency-magnitude distributions for the RefCat and for the 

enhanced catalogue are shown in Fig. 13. The estimated completeness magnitude for the enhanced 

catalogue is close to ML 0.6, indicated by the upper end of the red line, is almost one magnitude unit 

better than that of the RefCat catalogue (ML1.4 indicated by the upper end of the blue line).   The b and 

a value (see Fig. 13) of the G-R relationships and their respective uncertainties are computed using a 

maximum-likelihood assessment.  The b value for the enhanced catalog is 0.965 and for the RefCat is 

1.110. The significant difference in the b value and in the cumulative number of events in the 

magnitude range 1.4-2.4, apparently complete for both catalogs, in our opinion is related to an over-

estimation of ML induced by the procedure used in the routine INGV analysis for the RefCAT 

catalogue, particularly for low-magnitude events. Indeed the adoption, in the CASP method, of a high-

pass filter adapted to the signal-to-noise ratio allows to reduce the possible bias on magnitude estimates 

of the micro-seismic noise recorded by broad-band sensors and superimposed to the earthquake signal. 

 

5. Discussion 
 

 High-resolution earthquake catalogues will allow us to improve future operational earthquake 

forecasting by extending the retrospective experiments where the focus is to improve our understanding 

for earthquake triggering mechanisms. One of our main motivations was to prove the concept that 

CASP would allow us to provide high-resolution earthquake catalogues in near-real time. In practice, 

CASP is able to detect and locate more than 2.8 events per minute and took less than 12 hours of 

computation time on a standard workstation equipped with an Intel Core i7-7700 CPU using 4 parallel 

threads to analyse one day of data containing more than 3000 detected events. Most of this computation 

time is spent by the NonLinLoc location procedure because several iterations of picking and location 

for both P and S phases are required to achieve a stable and reliable result. The 12-hour computational 
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time is critical since it will allow effectively real time catalogues to be produced, even for operational 

aftershocks forecasts updated daily during a large seismic sequence. The improvement in magnitude of 

completeness threshold of the automatic procedure will benefit the current Operational Earthquake 

Forecast scheme in Italy (Marzocchi et al., 2014) since the predictive power of short-term clustering 

models is directly related with the inclusion of small magnitude events enhancing secondary 

earthquake-to-earthquake triggering. We expect that the benefits from such catalogues will extend to 

retrospective efforts investigating the temporal evolution of earthquake sequences through the 

estimation of statistical parameters, such as the b-value of the frequency-magnitude distribution that 

has been extensively used in a variety of seismotectonic environments to predict hazardous behaviour 

through b-value decreases (e.g. Torrmann et al., 2015 for tracking post-2011 seismicity in Japan). The 

lower magnitude of completeness is one of the major advantage of the enhanced catalogue, because it 

provides a broader bandwidth of observations with which to test the hypothesis of a scale-invariant 

(power-law) distribution of source rupture area, seismic moment or energy inferred from the 

magnitudes. The broader bandwidth of observations in principle also reduces the uncertainty in a and b 

(e.g. Main, 1996), both critical parameters in both probabilistic seismic hazard analysis (where they are 

assumed stationary) and operational earthquake forecasting (where they may change with time). 

However, the results presented here indicate there are some outstanding issues to address in terms of 

systematic effects magnitude determination and scaling before this potential can be realised.  

Despite these results, there is still some work to do in order to increase the resolution power during the 

busiest time windows (e.g. hours-days) of aftershock activity associated with the occurrence of the 

largest events. As shown in Fig. 14, the mean magnitude of the events within the CASP catalogue, 

increases from a background value around ML 0.5 up to ML 2.5 soon after the occurrence of all of the 

MW> 5 events (indicated by the black vertical lines). This is particularly evident around the end of 

October 2016 when two large events occur within a short interval time, i.e. the Visso 26th and Norcia 
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30th of October shocks. These early aftershock phases are the only times when the detection capability 

of the CASP method becomes almost comparable to that of the Italian seismic monitoring room. 

We have highlighted several important outcomes achieved by using the CASP procedure. Nevertheless, 

it is also worth remembering that one of the key controls on resolution is the availability of a large 

number of densely spaced 3-component seismic stations. To exemplify this, Fig. 15 shows the 

evolution of the mean quality factor qf for the hypocentre locations defined in section 3.3, as a function 

of the number of available stations. The number of available stations ramps up while the temporary 

network was under installation in the early days of the sequence, while it winds down when they are 

removed towards the end.  Overall, there is a clear inverse correlation between the number of stations 

used in the location and qf. For example, qf decreases from around 0.65 to 0.45 when the temporary 

network stations have been deployed at the start of the time period shown, and then increases again to 

0.6 when the stations are removed towards the end of the time window.  This improvement in quality 

with respect to the number of stations is not a surprise, but Fig 15 confirms how the impact is 

significant in this case.  

CASP is only one of the innovative techniques currently able to provide very large earthquake 

catalogues. Template-matching approaches (TM; Shelly et al., 2007 and Peng and Zhao, 2009 among 

others) for example, exploit the similarity of earthquake waveforms between closely-spaced events, 

allowing the detection of earthquakes previously hidden in the noise. This approach has successfully 

been applied in a number of examples, including induced seismicity environments (Skoumal et al., 

2015). A major disadvantage is that the method is insensitive to event templates that are absent from 

the starting catalogue, such as events occurring in volumes that were previously inactive.  Template 

matching of itself does not produce absolute P- and S-arrival times, and hence does not allow the 

absolute location of all the newly detected events. Instead, such catalogues often quote relative 

locations associated with phase shifts identified in the cross-correlation procedure.  As a consequence, 
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while it is usually possible to improve the number of detected events by more than a factor of 10, the 

number of well-located events typically increases only by a factor of 2-5 (Diehl et al., 2017 and Ross et 

al., 2019), compared to a factor 4-5 here with the CASP procedure (Fig 6). 

More recently, profiting of the dramatic progress made by neural networks in deep machine learning, 

new approaches have been proposed for both phase detection and picking (Zhu and Beroza, 2019; Ross 

et al., 2019). At the cost of a non-trivial training stage, needed to teach the system how to recognize 

body waves arrival times, the major benefit is to extract a very large number of probability distributions 

for the presence of a P wave, S wave and noise in continuous waveform data. By applying a series of 

filtering and decimation operations, these features are automatically extracted and classified. These 

new systems seem to be able to work properly on relatively new data, whose characteristics may differ 

from those in the training set. Once the seismic phases have been detected, there is still the need to 

generate phase association, a challenging task given the amount of data collected at a large number of 

closely spaced stations during a seismic sequence, and often requiring tuned with user-defined 

parameters.   

Our approach is able to detect P- and S-waves absolute arrival times, allowing the accurate location and 

magnitude computation for hundreds of thousands of both very small events (down to negative 

magnitudes) and events occurring in areas and fault portions previously silent. A first-order comparison 

of our catalogue with those generated by both template matching and deep learning approaches, 

demonstrates that our approach performs well, at least in terms of detection rate. Our catalogue covers 

a small area of about 7000 km2 for one year of seismic activity, and we compare its performance to that 

of the QTM catalogue (Ross et al., 2019), covering 10 years (2008-2017) of seismic activity for 

Southern California generated by the template matching approach. Ross et al. (2018) identified about 

495 earthquakes per day across the region with an average time of 174 s between events. Our mean 

detection rate is about 1230 per day, with an average time between events of 70 s. During periods of 
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intense seismicity, with peaks of more than 3000 events per day, the average inter-event time is about 

30 s (Figure 6). These values are comparable to those obtained by Ross et al. (2019) using their deep 

learning approach for the first 12 hours of the 2016 Bombay Beach sequence; resulting in about 1000 

events in 12 hours and an average time between events of about 40 s. In future work, we will conduct a 

benchmark test of the different methods on the same data, but this preliminary comparison 

demonstrates that our approach produces broadly comparable performance to that of other state-of-the-

art techniques, acknowledging the relative advantages and disadvantages of each.  

 

6. Conclusions 

The automated phase-picking method provided by the CASP algorithm, applied to data from a high-

resolution seismic network, generated significant improvements in the number of events located and 

the magnitude of completeness in the case of the Norcia-Amatrice earthquake sequence. The procedure 

is rapid, taking less than 12 hours to analyse the primary waveform data and to detect and locate 3000 

events during the most seismically active day of the sequence.  This means it can be used to inform 

decisions that need to be made in near real time on a time scale of around a day or so, and in principle 

to provide a basis for regularly updated operational forecasting of future events during a seismic 

sequence. The procedure was validated by comparison of the derived data for phase picks and 

earthquake parameters with a reference catalogue based on initial manual phase picking. The results 

confirm a high degree of accuracy in the automated procedure, with an average estimated formal error 

of 0.04s in P-phase picks, 0.08s in S-phase picks, 0.9km in epicentral location and 1.5km in depth, with 

most events having uncertainties well within these ranges. The quality of the data is strongly correlated 

with respect to the number of available stations and the magnitude of the events. With the exception of 

periods with many overlapping events early in the aftershock sequences of the largest events, the 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/advance-article/doi/10.1093/gji/ggaa604/6044232 by guest on 11 January 2021



O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

magnitude of completeness is reduced from 2.5 for the standard Italian catalogue to around 0.6. 

Together these provide a significant improvement in the resolution of fine structures such as local 

planar structures and clusters, the identification of shallow events in a previously inactive part of the 

crust, and potential improvements in estimates of statistical parameters used in probabilistic seismic 

hazard analysis and operational earthquake forecasting 
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Data and Resources 

INGV permanent and temporary stations data (network code: IT) are available at the European 

Integrated Data Archive (EIDA; https://www.orfeus‐eu.org/data/eida/) while INGV seismic bulletin 

produced by the INGV Data Center is available at: http://cnt.rm.ingv.it/. 

Data from temporary stations deployed by British Geological Survey (Network Code: YR; 

https://doi.org/10.7914/SN/YR_2016) are available on the Iris Data Management Center 

(https://www.iris.edu/hq/). 

The complete earthquake catalogue is available at: https://zenodo.org/ (here we will provide the exact 

link to the catalogue). 
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Catalogue name RefCat Enhanced 

Stations used 
INGV operated permanent and 

temporary networks 
INGV/BGS/UK-SEIS enhanced 

network 

Number of station at steady state 109 155 

Time window 24 Aug 2016 – 31 Aug 2017 24 Aug 2016 – 31 Aug 2017 

Phase picking Manual Automatic 

Location method Hypo, Hypo2000, NonLinLoc NonLinLoc 

Average number of phases (ML 
1.4 – 1.5 events) 

30 72 

 

Table 1 - Main properties of the RefCat and enhanced catalogues 
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F_Low (Hz) F_High (Hz) STA LTA Level Dur (s) PostEv (s) LenMin (s) 

10.0 30.0 0.8 25.0 2.0 1.5 15.0 60 

 

Table 2 - Parameters involved in the STA/LTA triggering procedure. 
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Sub-network Number of stations Coincidence 

window (s) 

Number of coincidence 

triggers to declare an event 

seq1 45 5.0 4 

seq2 27 5.0 4 

seq3 23 5.0 4 

avts 13 5.0 4 

mrcc 19 10.0 4 

nrcn 15 10.0 4 

nord 12 10.0 4 

avtn 20 5.0 4 

nadr 9 5.0 4 

SARD 10 5.0 4 

COLF 16 5.0 4 

 

Table 3– Sub-networks name, configuration and related parameters involved in the STA/LTA 

triggering procedure.  
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Figure 1: Map of the study area. Black circles represent earthquake epicentre locations in the 5 years 

before the Amatrice Mainshock (23rd of August, 2011 to the 23rd of August 2016; from the Italian 

bulletin).  The circle diameter scales with earthquake magnitude in M0.5 steps. The red stars associated 

with the black/white focal mechanisms shown are the locations of the two events with MW>6.0 that 

occurred in the area in the last 30 years (MW6.0 Colfiorito 1997 to the north and MW6.1 L’Aquila 2009 

to the south). The red stars with red/white focal mechanisms are the locations of the two events with 

MW>6.0 that occurred during the (Central Italy) sequence studied here. Yellow triangles are the 

permanent seismic stations of the Italian seismic network managed by INGV.  
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Figure 2: Final seismic network configuration (left), colour-coded by type, and the epicentral area 

(coloured in yellow) and overlapping, colour-coded, sub networks defined in the main text (right).   
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Figure 3: Flow-chart of the CASP automatic procedure followed in this work. 
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Figure 4: Representation of the static stations corrections for P- (left) and S-waves (right) as colour 

coded circles (gray and white for negative/positive corrections respectively), containing the station 

name and the correction value (in seconds); the circle size is scaled with the correction value. 
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Figure 5: Map view of the seismicity distribution comprising all the 440,697 events retrieved by this 

study by analysing one year of recorded data, with focal mechanisms as indicated.  Colour coding is the 

same as for Fig. 1.  
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Figure 6: Number of events per day in the enhanced catalogue (black) versus RefCat catalogue (red).  
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Figure 7: a – Number of P (blue) and S (green) arrival times per day; b & c – incremental distribution 
of P- and S-arrival times estimated errors, respectively, with cumulative probabilities in yellow.  
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Figure 8:  Example of automatic P and S phase picking for two stations. For the temporary station 

T1256, automatic P-picking was not possible due to the low SNR, nevertheless the S arrival was 

correctly recognized.  
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Figure 9: Comparison between automatic and manual picks and locations for the selected 

representative sample of events. a) Comparison of P picks times (automatic - manual). Left: whole 

dataset; right: estimated picking error < 0.04s. b) Comparison of S picking times (automatic - manual). 

Left: whole dataset, right: estimated picking error < 0.08s.  c) Comparison of automatic and manual 

locations. Top row: estimated horizontal location error (erh) < 3 km and vertical error (erz) < 5 km; 

bottom row: erh < 1km and erz < 1 km. Left panel: depth difference (automatic – manual, km); central 

panel: depth distance (km); right panel: epicentral distance (automatic – manual, km), showing 

incremental and (in red) cumulative probabilities.   
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Figure 10: Statistical distribution of the location parameters used as input to evaluate the location 

quality factor. 
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Figure 11:  a) Mean number of phases (brown) and mean quality factor (purple) as a function of 

magnitude.  b) Mean number of events versus magnitude, divided by quality classes. c) Mean quality 

factor (qf) versus magnitude, divided by quality classes. 
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Figure 12: Maps and cross-sections of the events divided by the classes defined in section 3.3. 
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Figure 13:  Frequency magnitude distributions for the enhanced catalogue (red) and RefCat (green). 

The b and a values and their respective uncertainties are computed using a maximum-likelihood 

assessment 
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Figure 14: Mean local magnitude (ML) in the enhanced catalogue (black) versus mean local magnitude 

in the RefCat catalogue (red). Dark and light gray points represent respectively the daily maximum and 

minimum of the local magnitude in the enhanced catalogue; orange and yellow represent the daily 

maximum and minimum of the  local magnitude in the  RefCat catalogue.  
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Figure 15: Mean Quality Factor (black) and Number of stations (red) versus time for the enhanced 

catalogue. 
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