Propagation of Source Grain-size Distribution Uncertainty by Using a Lagrangian Volcanic Particle Dispersal Model

Mattia de' MICHIELI VITTURI ${ }^{(a)}$ Federica PARDINI ${ }^{(a)}$ Augusto NERI ${ }^{(a)}$ Maria Vittoria SALVETTII ${ }^{(b)}$ Antonio SPANU ${ }^{(\mathrm{c})}$ Andrea BEVILACQUA ${ }^{(a)}$

1. Motivation and objective Volcanic ash clouds represent a major hazard for populations
living nearby volcanic centers producing a risk for humans and living nearby volcanic centers producing a risk for humans and
a potential threat to crops, ground infrastructures, and aviation traffic. Such a phenomenon is affected by numerous uncertainty sources since its dynamics is largely affected by initial and
boundary conditions that cannot be predicted in advance. In this work, we present the results of an uncertainty propagation analysis applied to volcanic ash dispersal from
weak plumes with specific focus on the uncertainties related to the grain-size distribution of the mixture.
2. Mt. Etna Case Study The analysis presented in this work has been performed for
dispersal conditions referred to the event of November 24 , dispersal conditions referred to the event of November 24,
2006 at Mt . Etra. Plume height was about 4.3 km above sea 2006 at Mt. Etna. Plume height was about 4.3 kmabove
level'. For this event the volcanic cloud showed horizontal stripes oriented perpendiculary to the prevaling wind direction
(as observed at other volcanoes, eg. Klyuchevskaya in Kamchatka and Eyjafjallajokull in Iceland). Through field and satellite data it was possible to closely observe the dispersal
process. It has been hypothesized that the stripes are process. It has been hypothesized that the stripes are
produced by Kelvin-Helmoltz instabilities associated to the produced by Kelvin-Helmoltz inst
presence of the volcanic ash itself.
 $\begin{array}{llr}\text { Figure } & 1 & \text { (left) } \\ \text { Cloud ash } & \text { of } 24 \\ \text { November } & 2006\end{array}$ eruption captured by MOS/S satellite,
source NASA. $\begin{array}{lll}\text { Figure } & 2 & \text { (down) } \\ \text { Plume of } & \text { Mt.Etna }\end{array}$ Prume of Ml.Etna
eruption of 24
 Forcasting Model).
Because the wind direction was nearly constant during the event after 12:00مM, we have ivesiligated the phenomenon using a high-resolution two-dimensional simulation. The wind
field generated for this simulation covers a domain of about 40 km horizontally and 6 km vertically and Kelvin-Helmoltz
instabilities are present in the output in the vertical range instabilities are present in th
between 3300 m and $4300 \mathrm{~m}{ }^{(2)}$

Figure 3. Background flow field computed by using the $2 D$
High-resolution mesoscale WRF. This model allowed to High-resolution mesoscale WRF. This model allowed to
hypothise the formation of Kelvin-Helmholtz instabilities as
and
3. The Lagrangian particle model LPAC

For this application we used a Lagrangian particle model, named LPAC ${ }^{3}$, to simulate the transport of ash under the action of the atmospheric field computed by the mesoscale model WRF. The equations of particle motion are derived expressing the Lagrangian acceleration
as the sum of the forces acting along its traiectory. In order to increase the stabilty of the as the sum of the forces acting along its trajectory. In order to increase the stabiilty of the
model, drag forces were calculated implicitly as a function of relative velocity, particle model, drag forces were calculated inpricitly as a and angregation effects were considered.
diameter and Reynolds number Due to the low concentration of ash in the atmosphere, a one-way coupling between the
background flow field and the particles was assumed. In addition, in these simulations, each background flow field and the particles was assumed. In addition, in these simulations, each "particle", or parcel, is assumed represe
material, and not of a single ash particle.
material, and not
The domain of the simulation has an horizontal extension of about 40 Km and a vertical one
of about 6 Km and it was divided into 4 vertical stripes. In each stripe a distinction between of about 6 Km and it was divided into 4 vertical stripes. In each stripe a distinction between the air and the ground was made. The particles are released 2 km downwind the left
boundary of the domain, with a size sampled from a prescribed distribution.
4. Grain Size Distribution

For volcanic ash particles, the size is generally
described logarithmic scale 5 , i.e.:
$\varphi=/ \log _{2}\left(d / d_{2}\right)$ with $d_{d}=1$
$\varphi=\log _{2}\left(d / d_{d}\right)$, with $d_{0}=1 \mathrm{~mm}$
or this work, the uncertainty in the
distribution has been described by assuming a distribution has been described by assuming a
range of values for the main parameters
describing the ash describing the ash particles: mean diameter
and standar deviation σ of the grain size and standar deviation σ of the grain size
distribution and the sphericity ψ of the \square

5. Lagrangian simulations results

Before carrying out the full uncertainty quantification analysis, it is interesting for look at the results of LPAC obtained for a particular set of the input parameters, and then varying only
one of the input parameters at a time. In Figure 5 the results of a simulation with $\mu=1, \sigma=1.5$ and the sphericity $\psi=0.7$ are presented, with the different colors representing parcels
particles with different sizes (red for the smallest particles). In addition, in the bottom panels, particles with
the histograms of the size of the particles in the four stripes in the
atmosphere (upper atmosphere (upper row) and on
the ground (lower row) are plotted.
In addition, in each panel the mean the ground (lower row) are plotted.
In addition, in each panel the mean
diameter and the standard diameter and the standard
deviation of the grain size
distribution are reported. We can distribution are reported. We can
see how only the distribution in the see how only the distribution in the
portion of the domain closer to the
release is representative of the release is
original one.

 grain size distributions after 3
hours of sim \qquad

(when a
reached)

6. Uncertainty quantification analysis

The DAKOTA toolkit from Sandia National Labs has been adopted to perform uncertainty quantification (UQ) and sensitivty analysis. In the present work we have chosen to adopt as UQ technique the so-called Generalized Polynomial Chaos Expansion, which is included within the class of Stochastic Expansion Method. The
term "Chaos" simply refers to the uncertainty in the input, while the term "Polynomial" is used because propagation of uncertainties in the outputs is described by term "Chaos" simply refers to the uncertainty in the input, while the term "Polynomial" is used because propagation of uncertainties in the outputs is described by
reconstructing the output of the model as polynomials. The first step is to model the input variables through appropriate probability distributions: here we assumed a reconstructing the output of the model as polynomials. The first step is to model the input variables through appropriate probability distributions: here we assumed a
uniform distribution of the uncertain input parameters (see Figure 4). The choice of these distributions affects the basis used for the polynomial reconstruction of the ouput of the model (response functions). In this case Legendre polynomials have been used as the basis for the expansion and an order 7 for the polynomials reconstrucuted has provided a good compromize between accuracy and computational cost. The coefficients of the elements of the basis have been computed
through appropriate quadrature formulas, through appropriate quadrature formulas, requiring 343 simulations and 1.5 hours on 46 CPUs. Once the expansion coefficients have been calculated, the polynomials have been used as emulators of the reponse functions and several statistics were evaluated numerically. In particular 1000 samples have been evaluated on the
expansion to compute the cumulative distribution functions of the probabilities of the parameters describing the grain size distributions in the four stripes, in the expansion to compute the cumulative distribution functions of the erobabifities of the parameters describing the grain size distributitons in the four stripes, in the
atmosphere and on the ground. 7 cumulative probability levels ($0.01,0.05,0.25,0.5,0.75,0.95,0.99$) have been fixed and mapped into the corresponding response levels and the results are plotted in Figure 9 . In addition, in Table 1 other statistical parameters related to the uncertainty in the grain size distributions in the atmosphere and on the gorund are reported.

Figure 9 (left-top). Cumulative distribution functions of the mean of the grain size
distributions computed in every stripe. The red curve of each plot represents the initial Figure 10 (left-bottom). Cumulative distribution functions of the standard deviation of the grain
size distibution. The red curve of each plot size distibution. The red curve of each plot
represents the initial distribution of the released particles. Table 1. Mean and the most probable values of μ and σ and number of parcels present in
the four stripes (in air and on the ground) three hours after the beginning of the release in the atmosphere.
7. Sensitivity Analysis

A variance-based sensitivity analysis was also performed to quantify the global sensitivity indices of the response samples have been evaluated using the polynomial samples have been evaluated using the polynomial
expansions to compute the Sobol indices, representing expansions to compute the Sobol indices, representing
how much of the variability of an output can be apportioned to the variability prescribed to the input parameters. The
sensitivity analysis shows that the variability of the sensitivity analysis shows that the variability of the
sphericity of particles, controlling the drag and sphericity of particles, controlling the drag and
consequently the setting velocity of the particles, exerts a major role in determining the range of grain-size distribution
parameters of the particles deposited on the ground in the four stripes, whereas the variability of the parameters of the grain-size distributions in the atmosphere are mainly
controlled by variability of the the mean Figure 11. Sobol Indices for the parameters chara
four stripes in the air (left) and on the ground (rigth).

8. Conclusions

uncertainty quantification and a sensitivity analysis were performed for the dispersion of ash particles in the atmosphere by using a Lagrangian particle model coupled with a mesoscale non-hydrostatic model and adopting a PCE technique. The analysis shows that, for the weak plume event considered, the grain-size
distribution, on the ground and in the atmosphere, strongly depend on the distance from the source. Furthermore, grain-size distributions in the atmosphere and deposited on the ground significantly differ even at the same distance from source. Uncertainty ranges of the mean and standard deviation of the grain-size distribution strongly reduce with distance from source and the values can be significantly different from those at the release. Based on sensitivity analysis, the sphericity of particles largely controls the mean and standard deviation of the deposited particles and significantly affects the grain-size distribution in the atmosphere, at given distance from source
Acknowledgments.
Acknorledgments. The work have been partially supported by the EU-funded project MEDS
research, technological development and demonstration under grant agreement No 308665

4G. H. Ganser. A rational approach to trag predicition of spherical and nonspherical particies. Powder Technology, 77(2): 143-152, 1993.

