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The objective

The PDC hazard mapping in Campi Flegrei
caldera is particularly challenging due to

1) the large uncertainty on future vent
location

2) the unpredictable scale of future
activity, and

Golfo di Napoli

Golfo di
Pozzuoli

3) the complex dynamics of PDC

A quantitative probabilistic background
(long-term or base-rate) mapping of PDC
invasion, including the intrinsic uncer-
tainties of the system, is a requisite for a
robust short-term hazard assessment.

We focused our work on the quantification
of the different sources of uncertainty
based on expert judgement techniques, for
producing median and percentile spatial
probability maps conditional to an event.
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Figure 1. Campi Flegrei caldera; Bevilacqua et al. [2015].




Probability models of physical variability

We represented the physical variability of the next explosive eruption with:

- a probability map of new vent opening (i.e. susceptibility map) based on
revised/new data (Fig.2).

- a probability density function describing the distribution of past eruptive scales
(i.e. PDC invasion areas), i.e. without selecting a reference scenario (Fig.3).

The two models are linked inside a Monte Carlo (MC) simulation, including the
implementation of a simplified PDC invasion model for repeating a large number of
PDC invasion samples of different scales and from various vent locations.
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Figure 2. Probability maps of new vent opening; from Bevilacqua et al.

[2015].




Included sources of epistemic uncertainty

Epistemic uncertainty is modelled by using a doubly stochastic approach, i.e. each
sample in the MC simulation is accomplished in two steps:

A) the random choice of the epistemic assumptions,

B) the random determination of the observables of interest conditional on them.

We included several sources of epistemic PROBABILITY DENSITY FUNCTION
uncertainty as:
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- the uncertainty on the spatial location of
eruptive vents/fissures

- the uncertainty due to the incompleteness of
the datasets of the variables considered
(e.g. lost vents, zones of unknown fracturation, :
lost PDC units, underestimation of past PDC) | ' e
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Figure 3. P.d.f. for PDC invaded areas; from Neri et al. [2015].



Integral model for sedimenting density currents

Figure 4. The instantaneous release configuration.
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The model allows computation of flow kinematics and the flow )
run-out reached over a sub-horizontal surface by a current \\

generated by instantaneous release of a constant finite volume
of gas and solid particles, homogeneously mixed.
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“The dynamics of the PDC are described as

the collapse of a finite volume of dense fluid
in a lighter atmosphere and on a flat surface.
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Figure 5. Comparison of energy curves
as a function of distance from the vent.



The propagation model for PDC

For quantifying first-order effects of topography on the propagation of a PDC, the flow
kinetic energy is compared to the potential energy required to overcome the topographical
reliefs that the flow encounters.
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This PDC invasion model is applied in an inverse mode repeated for each sample of the
Monte Carlo simulation. From the estimate of the invaded areal size we compute the initial
conditions required for generating such propagation, given a specific vent location.
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PDC invasion probability maps - reference case
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PDC invasion probability maps computed by assuming the density distribution of invasion
areas of the last 5 ka. We assume that PDCs originate from a single vent per eruption, and
that the vent is located in the on-land part of the caldera. Contours and colours indicate the

percentage probability of PDC invasion conditional on the occurrence of an explosive
eruption. (from Neri et al., 2015).



PDC invasion hazard probability maps — double vent
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PDC invasion probability maps computed by assuming the possibility that two PDCs
originate from different vents during a single eruption, both located in the onland part of

the caldera; from Neri et al. [2015].
Probability of two vents: [5% - 10% - 25%)]

Distance between simultaneous vents: [1 — 4.7 — 10] km



PDC invasion hazard probability maps — VO maps/physical parameters

a) Reference map | | b) Vent opening based on kernel

c) Phisical parameter C=1 m /s | |d) Vent opening based only on Epoch llI
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Mean PDC invasion probability maps computed under different assumptions.
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Mean PDC invasion probability maps computed under different assumptions.

PDC invasion probability maps — ranged vs fixed scales
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PDC invasion probability maps — specific vent zones [prob%|

AStroni [10%113%I17%] conto‘lljt:.% interval Agnano [8%110%I12%] Ccmm‘ilj(:‘% interval
e 2% interval 2% interval

A A
0 1 2km 0% : 0-:1 2km 0%
H Contour Contour
Astroni+Agnano+Solfatara et Averno-MN [4%,5%,6%)] e
— 2% interval

[28%,32%,40%] PR i i . — 2% interval

\ ‘”‘
~ gewr
85% ; 9a%l
N :
A "
I ’ $ |
.

0% —"" 0%

0 1 2km
[

Mean PDC invasion probability maps computed under different assumptions.



Summary and conclusions

Doubly stochastic spatial probability maps of PDC hazard have been produced,
conditional to the next explosive eruption at Campi Flegrei.

A key objective was to quantify the epistemic uncertainty on the hazard maps;
this was done by using structured expert judgment techniques and Monte Carlo
simulations.

Outcomes show that the central-eastern areas of the caldera are the most
exposed to flow invasion but significant probability values exist all over the
caldera and also in some areas outside it.

The model have been applied under different volcanological assumptions for
assessing the sensitivity of the outcomes on them and obtaining hazard maps
conditional on particular scenarios.

The analysis will be extended by including a doubly stochastic temporal model
for the remaining time before the next explosive eruption at Campi Flegrei.
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