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Abstract

Active volcanoes usually generate highly non-stationary broadband tremor signals. Short-time shock events with
a frequency content of several decades are superimposed on a stationary narrow band continuous tremor. Tremor
signals of this type can be observed in the near field of many active volcanoes. In this paper we will demonstrate
the analysis of such signals using a specific tremor signal of Mt. Stromboli (Sicily). We used the Best-Basis
Algorithm (BBA) in order to compute a spectrogram which is adapted to signal properties on highly different
scales. It turns out that the BBA can reveal better fitting properties of the tremor in the time-frequency plane
compared to standard methods like Short-Time Fourier Transformation (STFT). Moreover, this very effective
algorithm can be used for real time monitoring in the time-frequency plane, for data compression or for de-
noising of the tremor signals.

Key words adaptive spectrogram analysis — e.g., in Coifman and Wickerhauser (1992), Mal-
broadband tremor lat and Zhang (1993), Wickerhauser (1991) or
Wickerhauser (1996), has to be used.

The adapted waveform analysis describes

1. Introducti - .
fitroduction how to decompose a signal with respect to a

A conventional approach to reveal the prop- dictionary of bas'is functi.ons. 'The properties.of
erties of non-stationary signals consists of split- these basis functions mainly influence the sig-
ting up the signal into adjacent unit length time nal features which can be extracted. Assuming a
intervals. When quasi-stationary behaviour of dictionary with an inherent binary tree structure
the signal within an interval can be assumed a (see fig. 1), efficient algorithms like the BBA
transformation for the interval can be applied to can be applied.
study the signal properties. The temporal varia- Spectrograms related to adapted waveform
tions are due to the subsequent time intervals. analysis result in a more suitable resolution of
A standard method like STFT is based on this time and frequency compared to STFT or Wave-
concept let Transformation (WT). Therefore, a frequen-

Problems arise, e.g., when due to informa- cy range of several decades can be resolved
tion on different time scales the signal cannot be properly. Due to the wide frequency range of
divided into quasi-stationary blocks. In this case seismic broadband records these spectrograms
a more flexible concept, which is provided by proved to be very useful for obtaining further
the adaptive waveform analysis as introduced, insight into the nature of tremor signals.

) 2. Wavelet packets
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Fig. 1. A nested sequence of subspaces (approximation spaces) V,, V., V., ... and their related orthogonal
complements (wavelet or detail spaces) W, W, ... span an MRA. The projection of a discrete signal f(n) onto
these spaces is computed by filtering and down-sampling (operators G and H). By additionally decomposing all
the projections onto wavelet spaces an over-complete collection of projections called a wavelet packet table is

generate (gray arrows).

orthogonal basis functions. Examples are im-
pulses, harmonic signals, modulated windows
at different time-scales, wavelets, or wavelet
packets. A generalization of the discrete WT
(Daubechies, 1992; Jawerth and Sweldens, 1993;
Louis et al.,, 1994; Strang and Nguyen, 1996)
leads to the Wavelet Packet Transformation
(WPT) (Wickerhauser, 1991, 1996; Coifman and
Wickerhauser, 1992; Mallat and Zhang, 1993;
which has been used in this approach since
the resulting algorithm is very efficient. In
the sequel, a short introductory description is
given. For further details see Wickerhauser
(1996).

To generate wavelets, the scheme of mul-
tiresolution analysis (MRA) can be used to pro-
vide a wide variety of different wavelets with
different properties. An MRA consists of a se-
quence of nested subspaces V, called approxi-
mation spaces,

V. c-cL?

O ccv, cV cV, (R) (2.1)

as depicted in fig. 1. These spaces possess the
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following properties:

N v, ={0) (2.2a)

U= v, =L* (R (2.2b)

3D () with V, = span {@(t —k)k € Z} (2.2¢)
fOeV, e faneV,,, jeZ (2.24d)
feV, & ft-keV, kjeZ (220

@(#) is called scaling function. These properties
induce a refinement equation

o) = Z a(k)y®(2t—k)

k

2.3)

which represents a ladder between spaces at
different levels. ®(¢) € V, can be decomposed by
the basis functions ®(2¢ — k) € V, as V,c V,. The
orthogonal complement of each approximation
space V; with respect to V, is called a detail
space W, It is spanned by translates of the func-
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tion ¥(7) termed wavelet. It can be stated
V, LW, W, LW, Vizj

Vv

j+1

=V, oW,

Therefore, it is obvious that Y(7) can be written
as

T®:2b®¢uh@. (2.4)
k
Normalizing ®(z) and using the notation
D, O=2""DQ2t-k),  (2.5a)
Y, =222 t-k, (2.5b)

the sets of ®,,(1), k €Z and ¥, (¥), k € Z consti-
tute orthonormal bases of Vj and Wj, respect-
ively.

In order to establish an MRA an appropriate
set of coefficients a(k) has to be found by means
of which a solution ®(¢) of (2.3) can be ob-
tained. The coefficients b(k) can then be calcu-
lated easily as b(k) = (— 1)‘a(l - k) (see Daube-
chies, 1992). Further additional restrictions like
e.g., orthogonality, biorthogonality, number of
vanishing moments, compact support or smooth-
ness of the basis functions ®(¢) result in differ-
ent types of wavelets.

The decomposition starts by projecting a sig-
nal f(f) e L(R) onto an initial approximation
space V

F0 =3¢, (0, , (0, ¢, (0 =[ fO)D, , W)at
k
(2.6)

Then the coefficients of the projection onto the
next coarser space V| are given by

e, (=] foe. , @d.

Using (2.3), (2.5a) and exploiting the orthogo-
nality of the @, () it can be shown that

c (k)= -\/% z a(n—2k) c,(n).

Obviously, the c_(k) are obtained by convolu-
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tion of a(- k) and c (k) followed by a decimation
of factor 2. The operator which produces ap-
proximations on different levels acts as a low-
pass filter (H), while the operator (G) can be
recognized as a high-pass filter. The coefficients
of an MRA can efficiently be calculated by
successively filtering the coefficients of all ap-
proximations followed by a down-sampling op-
eration. This procedure is called Mallat’s Algo-
rithm with asymptotically fewer computations
than the FFT (Louis et al., 1994).

An appropriate choice of successive approx-
imation and detail spaces results in the repre-
sentation of signals by wavelet packets. The
resulting expansion is called a wavelet packet
table, see fig. 1. An over-complete collection of
high-pass, low-pass and band-pass basis Sys-
tems is provided. Because of the inherent binary
tree structure of the basis systems efficient algo-
rithms exist. E.g., the Best Basis (Coifman and
Wickerhauser, 1992), Matching Pursuit (Mallat
and Zhang, 1993) or Atomic Pursuit (Chen
et al., 1996) algorithms select an «optimal» de-
composition of the signal out of this dictionary.
Because of less computational afford, we ap-
plied BBA.

3. Coifman wavelets (Coiflets)

Probably the most famous wavelets were
introduced by Daubechies (1992). They consti-
tute an orthonormal family and are obtained by
the requirements

ak) =0, k<0, k=2M, M eN,
and
@(7) should be as regular as possible.

Similar to the Daubechies’ wavelets the Coif-
man wavelets, often called «Coiflets», lead to
an MRA. They are obtained by the additional
requirement of vanishing moments for the scal-
ing function

[remar=0, 1=10)M -1 (.1

thus leading to a sequence a(k) of length 3M.
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Fig. 2. Coiflet scaling function and wavelet of filter
order 30 in time and Fourier domain (w: frequency).

magnitude

0 0.5 1 0

w*T/n o)*;rln

Fig. 3. Frequency responses of the magnitude and
phase of a Coiflet (solid) M = 3 and a Daubechies
(dotted) M = 5 filters.
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Fig. 4. Time and frequency domain of a Coiflet (30)
packet basis function out of a badly frequency
localized basis block at level 5. (Q: normalized
frequency).
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This implies that ®(¢) has finite support as well

supp {®} = [0, 3M - 1]. 3.2)

The corresponding wavelet is obtained as the
solution of (2.4) where b(k) = (- D)'a(3M -
—1-k). As a consequence we have

Jtl‘l-‘(t)dt =0, I=0)M -1, (3.3)

supp{¥} = [0, 3M — 1].

Their support length (time localization) com-
pared with other MRA wavelets increases. On
the other hand, an increasing number of vanish-
ing moments provides increasing symmetry
properties of the wavelet and the scaling func-
tion and results in a decreasing approximation
error in (2.6) when the signal samples are used
as the approximation coefficients of the initial
space (Louis et al., 1994). In comparison to the
Daubechies’ filters the Coiflet filters show ap-
proximately almost linear phase. For this reason
they are very useful since they induce fewer
phase distortions and therefore the center of
the coefficients when interpreted in the time-
frequency plane can be well estimated (Wicker-
hauser, 1996). Otherwise the stop band damp-
ing is slightly better in case of the Daubechies’
filter which results in decreasing aliasing effects
due to down-sampling, see fig. 3.

A Coiflet filter with length 30 was chosen in
order to obtain a good trade-off between the
support length of the wavelet and the localiza-
tion properties in the frequency domain, see
fig. 2. The scaling function and the wavelet
function are orthogonal for integer translates
k, k € Z. The frequency localization is quite
acceptable.

By generating a wavelet packet dictionary
out of Coiflets the maximum decomposition
level has to be controlled because of the spread-
ing of the packets in the frequency domain
(Wickerhauser, 1994). Figure 4 shows a Coiflet
packet basis function at level 5 which is badly
localized in the frequency domain. Apparently,
an interpretation as a single tile in the time-
frequency plane is not given.
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4. Best-basis algorithm

By decomposing a signal in a wavelet packet
table we obtain the representations v,,(k) of the
signal in the over-complete collection of sub-
spaces (sub-bands). d denotes the decomposi-
tion level and b counts the basis blocks from left
to right (fig. 1). The table v ,»(K) contains a lot of
redundancy. Therefore, an algorithm is needed
to select an orthonormal basis which describes
the whole L’ and which finds a basis which is
best adapted to the signal with respect to a cost
functional. Because of the first two require-
ments, the sum of adjacent sub-bands must not
have gaps or overlaps; see fig. 5a,b for two valid
selections. Many well-known criteria can be
used as information cost functional (Taswell,
1994). In the present approach Shannon’s entro-
py cost functional

1 (k)|
M) =Y p(k)log——, p(k)=-——
V=2 pWles o p )|
level
0 Entropy cost = 30

[ 1o

Fig. 5a,b. The cost functional of each basis block is
calculated (number). The BBA starts at the bottom of
the basis tree (a). From bottom to top the cost of the
parent basis is compared with the sum of costs of the
associated two children bases. b) The basis with the
lower cost is chosen.
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was used. For each basis block the entropy cost
is calculated. The algorithm starts at the bottom
(see fig. 5a,b) and compares the sum of entropy
of the two children basis systems with the en-
tropy cost of the parent basis. A minimal cost
factor indicates a more peaked and therefore
better fitting basis.

5. Time-frequency plane

To compute a time-frequency representation
the bandwidth and time duration of a rectangu-
lar tile related to a coefficient has to be known.
At a constant decomposition level each basis
block (sub-band) is spanned by basis functions
with constant bandwidth. Therefore, all coeffi-
cients in a basis block at level d and block num-
berb e {0, ..., 2~ 1} are related to tiles which
approximately cover the frequency interval

[

The initial space is spanned by orthonormal
integer shifted Dirac impulses. To get a non-
overlapping tiling along the time axis an inter-
val of 1/f, is chosen. Using (2.5a,b) we get the
time intervals [k — 2°*"'/f, k + 27“"'/f] for a tile
which corresponds to a coefficient at position &
in a basis block at level d. The position & has to
be corrected according to the phase distortion
which occurred to the v,, (k) after applying a
cascade of operators H and G (Wickerhauser,
1996).

Each tile is mapped with a color related to its
amplitude (black is highest) in the mentioned
intervals. The resulting representation is called
idealized time-frequency plane as we did not
calculate the dimensions of the rectangular tiles
belonging to the Coiflet used (Wickerhauser,
1996).

However, this interpretation of the coeffi-
cients does not take into account the misbehav-
iour of wavelet packets at higher levels in the
frequency domain. Therefore we have to limit
the maximum decomposition level to 5-6 for the
filters used.

b
1=

(b+1)

21—d

Sy fs] (f, sampling-frequency).
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Fig. 6. BBA spectrogram of a shock event from
Stromboli voleano. Most of the shock events consist
of a deep frequent bump occurring during the onset
of the signal.
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Fig. 7. STFT spectrograms computed with two
different window lengths in order to get a good time
resolution and to measure long period events.
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6. Best-basis analysis of tremor signals

Mt. Stromboli is one of the best investigated
volcanos. Its seismic signals possess a typical
continuous tremor with spectral energy in sev-
eral frequency bands within 1 < f< 10 Hz and
superimposed shock events with spectral con-
tent from << 0.5 Hz up to Nyquist frequency.

For our investigations we used velocity data
recorded by J. Neuberg during an array meas-
urement with Guralp broadband seismometers
on the Stromboli volcano in 1995.

Figure 6 shows a spectrogram computed with
the BBA and fig. 7 shows two spectrograms
computed with the STFT of a seismic signal of
a duration of 33 s (2048 samples) which con-
tains a shock event of Mt. Stromboli. The parti-
tioning of the frequency axis in the case of the
STFT is necessary since a short window is need-
ed in the upper frequency band in order to get a
good time resolution and a long window is need-
ed in order to catch the deepest 10 s periodicity.
The BBA inherently computes this kind of
adaptation to the signal. Therefore, a better fit
partitioning of the frequency axis in adjacent
frequency intervals is obtained. When the signal
changes its spectral properties in time signifi-
cantly different algorithms like Matching Pur-
suit (Mallat and Zhang, 1993) or Atomic Pursuit
(Chen et al.,, 1996) should be used instead of
BBA. They decompose the signal by recursive-
ly searching for the best fitting basis function
instead of choosing a whole sub-band basis sys-
tem. Consequently they do not fix the frequency
resolution along the whole time axis. On the
other hand, one can restrict the window length
so that only one shock event is under consider-
ation.

The BBA obviously results in a better decor-
related representation. The coarse time-frequen-
cy distribution is equal in both representations
but the BBA gives a clearer pattern. Above 5 Hz
the STFT reveals several spectral lines which
appear quite less apparent in case of the BBA.

For studying the dominant sub-bands, indi-
vidual frequency bands out of the BB spectro-
gram have been reconstructed in fig. 8. The
Low-Pass (LP) trace on the bottom shows a
bump shaped event with its maximum just on
the very beginning of the shock. The Band-Pass
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Reconstruction and variable bandwidth band-pass filtering
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Fig. 8. From top to bottom the first three traces
(identically scaled) show the original shock event, the
reconstructed signal based on 310 coefficients, and
the difference signal. The following four traces (scaled
to maximum) show the reconstructed signal (without
compression) based on coefficients which correspond

to the center frequency of one band.

(BP) signal with center frequency 0.35 Hz con-
sists of a precursor to the shock. The corre-
sponding tile can clearly be recognized at the
shock onset in fig. 6. In the higher frequency
bands some short duration wave groups occur
temporally during the shock (BP 1 Hz) while
others exist for the whole duration (BP 5 Hz).

The analysis of several shock events revealed
that most shocks consist of a deep-frequency
bump shaped event during the onset of the shock
and several dominant sub-bands above 1 Hz
which consist of randomly distributed wave
groups. The center frequencies of these sub-
bands are stable during the occurrence of the
shock but vary between different shock events.

As the BB basis is better adapted to the
signal properties compared with the STFT basis
it results in good compression ratios when only
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dominant coefficients are used for signal stor-
age. Clipping all coefficients below a threshold
such that 96% of the original signal energy is
preserved we achieved the following results:

original: 2048 coefficients (100%);
reduced: 310 coefficients (& 15.14%).

The top three traces in fig. 8 contain from top to
bottom the original signal, the de-noised signal
after thresholding the coefficients and inverse
transforming, and the difference signal.

7. Conclusions

The time-frequency analysis of broadband
tremor by the BBA resulted in a characteristic
and clearer representation compared with the
standard STFT method. The computation time
is similar to the STFT and therefore real-time
computation for volcano monitoring and simul-
taneous compression and de-noising for data
storage is possible. An efficient reconstruction
algorithm allows the use of this algorithm as an
adaptive bandwidth paraunitary filter bank.

One limitation is given by the maximum
achievable frequency resolution because of fre-
quency spreading of the wavelet packets. An-
other limitation is the finite time window for the
investigation of the signal whereupon strong
changes in the spectral content of the signal
cannot be well measured by the BBA. Last but
not least, the BB spectrograms are obtained by
time-variant operations because of the down-
sampling when computing the wavelet packet
table. Therefore the sequence of minima and
maxima within a sub-band might not correspond
to the real energy distribution of the signal.
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