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Abstract An estimate of the expected earthquake rate at all possible magnitudes is needed for seismic
hazard forecasts. Regional earthquake magnitude frequency distributions obey a negative exponential law
(Gutenberg-Richter), but it is unclear if individual faults do. We add three newmethods to calculate long-term
California earthquake rupture rates to the existing Uniform California Earthquake Rupture Forecast version 3
efforts to assess method and parameter dependence on magnitude frequency results for individual faults.
All solutions show strongly characteristic magnitude-frequency distributions on the San Andreas and other
faults, with higher rates of large earthquakes than would be expected from a Gutenberg-Richter distribution.
This is a necessary outcome that results from fitting high fault slip rates under the overall statewide
earthquake rate budget. We find that input data choices can affect the nucleation magnitude-frequency
distribution shape for the San Andreas Fault; solutions are closer to a Gutenberg-Richter distribution if the
maximum magnitude allowed for earthquakes that occur away from mapped faults (background events) is
raised above the consensus threshold of M = 7.6, if the moment rate for background events is reduced, or if
the overall maximum magnitude is reduced from M = 8.5. We also find that participation magnitude-
frequency distribution shapes can be strongly affected by slip rate discontinuities along faults that may be
artifacts related to segment boundaries.

Plain Language Summary While we know that in large regions, earthquakes obey an exponential
distribution (Gutenberg-Richter), it has been unclear whether individual faults do as well, or whether they
follow a characteristic distribution. We find using three new methods to solve for the earthquake rate on
California faults that all solutions are consistent with characteristic distributions, with greater numbers of
large earthquakes relative to small than expected from a Gutenberg-Richter trend.

1. Introduction

Themagnitude frequency distribution on individual faults matters because the specific rate of earthquakes of
a given size at each source point has important influence on probabilistic seismic hazard assessment (Cornell,
1968), and thus on building codes and public safety. For example, the amplitude and period of strong shaking
is distance and magnitude dependent; a balance tilted toward frequent moderate magnitude versus infre-
quent very large earthquakes emanating from a particular source point has different implications over a fixed
design period on a hazard map.

It is demonstrated that the earthquake magnitude frequency distribution follows a negative exponential
trend in large regions that contain multiple faults (Gutenberg & Richter, 1954; Ishimoto & Iida, 1939), which
is usually referred to as the Gutenberg-Richter distribution. Studies of individual faults through paleoseismol-
ogy and earthquake catalog data sometimes support alternative distribution shapes that are called character-
istic, where there is more than one mode within the size distribution on a given fault (e.g., Hecker et al., 2013;
Ishibe & Shimazaki, 2012; Papadopoulos et al., 2003; Schwartz & Coppersmith, 1984; Sykes & Ekström, 2012;
Wesnousky, 1994). Alternatively, arguments are made for Gutenberg-Richter distributions applying to indivi-
dual faults and/or that the data are insufficient to resolve the question (e.g., Page et al., 2011; Page & Felzer,
2015; Parsons et al., 2012; Parsons & Geist, 2009; Stein & Newman, 2004). Still others opine that the issue is
dead (Kagan et al., 2012) and that there can be no debate (Geller et al., 2015; Mulargia et al., 2017), although
there was literally a debate as recently as the 2010 Seismological Society of America Annual Meeting (Page,
2010; Schwartz, 2010). Whether there is a debate or not, there are examples of characteristic earthquake rate
distributions, Gutenberg-Richter distributions, or a combination of both being applied for hazard calculations
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(e.g., Cornell, 1968; Field et al., 2009, 2014; Mazzotti et al., 2011; Mezcua et al., 2011; Petersen et al., 2014;
Stirling & Gerstenberger, 2018).

We note that there are different interpretations of what a characteristic earthquake distribution means that
can be combined with arguments for or against periodic earthquake interevent times and/or seismic gaps
(e.g., Geller et al., 2015; Mulargia et al., 2017; Rong et al., 2003). Here we are concerned with the shape of
the long-term earthquake size distribution on individual faults, and we define a characteristic distribution
as having more than one mode such that there is significant deviation from an exponential trend. We do
not comment on issues around periodicity or seismic gaps, which are not relevant to time independent
hazard assessments.

There are difficulties associated with directly observing the magnitude frequency distribution on active faults
because location uncertainty associated with lower magnitude and/or nonsurface rupturing shocks means
that we can never be sure if such earthquakes occur directly on amajor fault surface or on a nearby subsidiary
fault, a problem that gets increasingly worse in older catalogs. Additionally, the largest earthquakes occur
infrequently relative to observation periods, meaning there is uncertainty whether we have a complete
record for individual faults, or have witnessed their maximum magnitudes (e.g., Geist & Parsons, 2014).
There are two ways one can view the magnitude rate on faults. Nucleation magnitude-frequency means that
each earthquake in the distribution has its hypocenter located on the fault surface area in question, and thus
began there. Participation magnitude-frequency means that earthquake ruptures that began on any other
fault area and then spread onto the fault surface in question are counted in the distribution. The shape of
the nucleation magnitude-frequency is most interesting in understanding earthquake mechanics, whereas
the participation magnitude-frequency distribution is most applicable in calculating hazard at a given point
because all nearby sources of shaking must be accounted for.

Page et al. (2014) developed a simulated annealing solution to invert for the rates of all possible ruptures
(after Andrews & Schwerer, 2000; Field & Page, 2011; Field et al., 2014) above a threshold magnitude on a fault
array by using the constraints of observed regional earthquake rates, b values, and fault slip rates, along with
other observations. Application of this method for the Uniform California Earthquake Rupture Forecast 3
(UCERF3) used a characteristic nucleation magnitude frequency constraint on major fault lines like the San
Andreas (Field et al., 2014; Page et al., 2014), in part to match results from the prior forecast (UCERF2; Field
et al., 2009), and because efforts to enforce Gutenberg-Richter distributions to faults were not successful
(Field et al., 2014). Magnitude frequency results for individual fault sections make very specific characteristic
predictions; for example, on the North Mojave section of the San Andreas Fault, the expected nucleation rate
of M~8.0 earthquakes is 25 times higher than for M~6.6 earthquakes, and the participation rate distribution
has a similar shape (Field et al., 2014; Figure 1). Therefore, it is not only important to establish whether faults
depart from Gutenberg-Richter distributions, but also by how much at every magnitude level.

We revisit the earthquake rupture rate distribution question on California faults by bringing three additional
methods to bear on the problem. We hope tominimize possible methodological influences by applyingmore
methods, and to learn more about what features in the data most affect magnitude-frequency distributions.
We work in California because the UCERF3 effort amassed, unified, and vetted published data, uncertainties,
and models through a community consensus process to acquire the legally mandated “best available
science” (Field et al., 2014). We thus eliminate potential bias related to decisions about which data to
include/exclude that might influence the results. These data include a collection of defined California faults
(Figure 2) that were confirmed as active through published geologic maps and fault-by-fault open forum
expert opinion (Dawson, 2013). Fault slip rates were assembled from published geologic offset observations
and a series of geodetic models (Parsons et al., 2013). Consensus fault linkages and rupture filtering (Biasi
et al., 2013; Milner et al., 2013), as well as earthquake catalogs/projected annual rates, and b values (Felzer,
2013a, 2013b) were developed. Additionally, a compilation of paleoseismic recurrence data was assembled
by Weldon, Schmidt, et al. (2013), as well as observed fault creep rates (Weldon, Dawson, et al., 2013).

We focus primarily on the San Andreas Fault because it is the longest in California, and can thus host a mag-
nitude range from the smallest events considered up to a theoretical complete rupture of its full length,
which would be a M~8.5 shock depending on the magnitude-area relation used to calculate it. The San
Andreas Fault also has the highest slip rates in California, causing it to produce the largest number of earth-
quakes; this provides larger samples for establishing the magnitude frequency relations in solutions
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calculated over fixed time scales. Over hundreds of kilometers of the fault length, a rich variety of
multisegment ruptures and earthquake branching behaviors onto subsidiary faults can be included
without concern about arbitrary fault end points affecting the solutions. Calculations presented here solve
for earthquake rate distributions on every California fault, so we do explore additional fault zones.

2. Methods

The 2014 UCERF3 time-independent earthquake rate model (Field et al., 2014) serves as the benchmark study
for California faults. Because this model was a consensus process with acknowledged subjective components,
we compare its results to those from three independent methods that use the same data inputs. Each of

Figure 1. Magnitude frequency distribution for (a) earthquake nucleation and (b) earthquake participation on the north Mojave section of the San Andreas Fault after
Field et al. (2014). Cumulative distributions are shown in blue and incremental in green. Both the participation and nucleation distributions appear characteristic, with
more M~8 events than M~7.

Figure 2. The UCERF3 fault model is shown shaded by long-term participation rates for M ≥ 6.7 earthquakes (Field et al., 2014). The model represents expert con-
sensus on known active faults in California, and was vetted through open meetings. Earthquakes occur away from known faults, and are referred to as “back-
ground seismicity.” Thus, color shading away from mapped faults represents the long-term M ≥ 6.7 rate from background events.
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these methods has been published, and full details about them can be found in the given citations, but we
supply basic descriptions of them here.

All of these methods solve for the earthquake rate on mapped faults, constrained primarily by
observed/modeled slip rates. It is clear however that earthquakes occur in California at locations not asso-
ciated with any mapped faults. Thus, some proportion of seismicity is referred to as “background earth-
quakes.” The total annual moment rate from the observed earthquake catalog is 2.29 � 1019 Nm/year, and
the mean of UCERF3 solutions resulted in 1.86 � 1019 Nm/year of that occurring on mapped faults, with
another 0.29 � 1019 Nm/year as background earthquakes (Field et al., 2014); this balance is a direct conse-
quence of the moment implied by the consensus fault slip rate model. Our new methods target this balance
of on-fault and background moment, and all three rely on input earthquake lists constrained by statewide a
and b values (Felzer, 2013b) for fixed times (4–100 kyr depending on the method) constrained to be
Gutenberg-Richter over the entire study region. No spatial variation in a values is used; thus, the results have
no dependence on observed off-fault seismicity rates. We are able to calculate smaller on-fault earthquake
rates than the UCERF3 methods because of smaller discretization of the fault model (2 km by 2 km in some
cases). Off-fault moment is not solved for, but instead, background events are removed by magnitude-
frequency according to the Gutenberg-Richter distribution from the input catalogs up to the maximum
off-fault magnitude, which ranges between M = 7.3 and M = 7.9, with heaviest weight (0.8) at M = 7.6
(Field et al., 2014). The consensus models we run use theM = 7.6 value, but we explore the effects of alternate
maximum background earthquake magnitudes.

2.1. UCERF3 Grand Inversion

The UCERF3 model framework defined the long-term rate of all possible earthquake ruptures above a
magnitude threshold (M ≥ 5) on defined faults and accounted for earthquakes that might happen in areas
where no faults are known. Defined faults were divided into subsections sized by a width that extended
from the top to the bottom of the seismogenic area, and a length that was half the seismogenic width.
Ruptures were represented by a minimum of two subsections (M~6) and could grow into large collections
of adjacent or nearby subsections. Earthquakes with magnitudes smaller than M~6 are termed “subseis-
mogenic on-fault ruptures,” and their rates were quantified from gridded smoothed background seismicity
rates that were mapped within polygons (~5–10 km wide) drawn around fault zones. Each earthquake
rupture is assigned a hypocenter location at random, with a uniform probability of nucleating anywhere
along its length.

Key features of the UCERF3 rate model included allowing ruptures to jump from fault to fault, and not restrict-
ing ruptures to occur within predefined fault sections. Both of these changes from the UCERF2 approach
(Field et al., 2009) greatly increased the set of possible earthquake ruptures, which in turn increased the com-
putational demands in finding rate solutions. Rupture filtering was introduced to eliminate nonsensical rup-
tures, and to make the problem more tractable (Milner et al., 2013) as

1. All fault sections connect within 5 km or less, as assessed by Biasi et al. (2013).
2. Ruptures cannot include a subsection more than once.
3. Ruptures must contain at least two subsections of any main fault section, unless the only way two fault

sections can connect is through a single-subsection connector, as described by Milner et al. (2013).
4. Ruptures can only jump between fault sections at their closest points (in 3D).
5. The maximum azimuth change between the first and last subsection within a rupture is 60°, except for

left-lateral to right-lateral connections such as Garlock to the San Andreas. This is done to eliminate U-
turn and circular ruptures.

6. The maximum cumulative rake change (summing over each neighboring subsection pair) is 180°, based
on observed rakes to ensure rupture-set consistency.

7. The maximum cumulative azimuth change, computed by summing absolute values over each neighbor-
ing subsection pair, is less than 560° (a filter that reduces “squirreliness,” that is, many changes of azimuth).

8. Branch points (potential connections between main fault sections) must pass a Coulomb criterion that earth-
quake triggering between the two fault sections is physically reasonable, as described by Milner et al. (2013).

The inversion method estimated the long-term rates of viable ruptures by solving a system of equations that
represent data constraints on possible earthquake rates including observed slip rates, paleoseismic
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earthquake rates, the observed regional seismicity rates from historic earthquake catalogs, smoothness con-
straints, and other optional solution features (Field et al., 2014). The equations were weighted by data uncer-
tainties and expert opinion. In addition to setting equation set weights, there were also subjective weights
added to alternative logic tree branches guided by how well models fitted the data. A parallelized code
was developed to efficiently solve very large equation sets by simulated annealing (Page et al., 2013), and
high-performance compute resources were required to obtain thousands of solutions in a reasonable
amount of time. Simulated annealing provided a range of models that sampled the under determined solu-
tion space of the inverse problem to represent the epistemic uncertainty associated with
model nonuniqueness.

One key difference between the UCERF3 Grand Inversion and the three alternative methods presented here
is the use of target magnitude-frequency distributions, which can be either Gutenberg-Richter or character-
istic. Viable Gutenberg-Richter solutions were not found in the UCERF3 application (Field et al., 2014), so char-
acteristic target magnitude-frequency distributions on faults were defined to have one third of the slip rate
dedicated to a Gutenberg-Richter distribution that is a combination of nearby gridded seismicity (subseismo-
genic) and on-fault earthquakes, and the other two thirds is expressed as maximum magnitude events. The
new methods that we apply here do not have target magnitude-frequency distributions because we want to
independently assess the magnitude-frequency shape. We also do not use observed gridded seismicity rates
because the faults can be discretized into smaller areas, so that lower magnitude events can be solved
for directly.

2.2. Optimization With Integer Programming

Distributing earthquakes among a system of faults with finite slip can be described as a combinatorial opti-
mization problem (Korte & Vygen, 2014) where possible solutions are found through complete enumeration
from all possible combinations (Chen et al., 2010). Two common approaches to solve combinatorial optimi-
zation problems include integer programming and greedy algorithms, the latter used by the greedy sequen-
tial method described in section 2.4. Integer programming is the first independent method we apply and is
similar to linear programming, which are both composed of a linear objective function that is minimized or
maximized subject to a series of constraints (Chen et al., 2010; Williams, 2013; Wolsey, 1998). Integer program-
ming, as applied to the earthquake rate problem, involves binary variables (decision vector) representing all
possible locations of earthquakes in the fault system, optimized to minimize the slip rate misfit among all
faults. Earthquakes used in the optimization are sampled from a state wide Gutenberg-Richter distribution
(Figure 3a) over a 4-kyr period using the consensus a and b values from the UCERF3 model and taking into
account background seismicity. Ruptures are assumed to be rectangular with area determined from magni-
tude using the Wells and Coppersmith (1994) scaling relation. Mean event slip is found using the moment-
magnitude relation (Hanks & Kanamori, 1979) assuming a shear modulus of μ = 30 GPa. Ruptures are allowed
to overlap, and each earthquake in the 4-kyr sample must be used once and only once. This method does not
identify earthquake nucleation sites because whole rupture slip areas are fit onto the faults simultaneously.
Nucleation sites could be assigned at random in similar fashion as the UCERF3 inversion.

The approach described by Geist and Parsons (2018) uses general mixed integer programming solvers. These
solvers apply a variety of methods to limit the solution space, andmake very large problems such as this (~2.5
million variables) possible. First, the integer constraint is relaxed and an initial solution is obtained as if it was
a linear programming problem using the simplex algorithm. This forms the root of a search tree that concep-
tually contains all integer solutions. The next level of the search tree is defined by the closest integer solutions
to the relaxed solution. Of these, the solutions that satisfy all the constraints are termed feasible solutions,
and branching proceeds with the solution that has lowest objective function, since this is a minimization pro-
blem. At each step, there are a number of algorithms that can provide bounds to possible solutions that
makes the search process much more efficient (Chen et al., 2010). In addition, branching techniques have
been developed to identify infeasible paths or paths that result in inferior solutions, thus limiting the search
space (Klotz & Newman, 2013; Morrison et al., 2016). Outputs can include either optimal or feasible solutions;
the latter satisfy the constraints but no objective function is given. Similarly to the UCERF3 solutions, themini-
mum magnitude solved for is M~6 to make integer-programming solutions tractable on high-performance
compute platforms.

10.1029/2018JB016539Journal of Geophysical Research: Solid Earth

PARSONS ET AL. 10,765



2.3. Stress-Based Earthquake Simulator

The second independent method we apply is a physics-based earthquake simulator (Console et al., 2015,
2017) where the seismogenic system is modeled by rectangular fault sections. Each section is composed
of many square cells of size set to the minimum earthquake rupture of interest (M = 5.0 in this case). Each cell
has an initial stress state that is randomly assigned. Then each cell is loaded at a steady state proportional to
UCERF3 slip rates (weighted average of four slip rate models for California faults based on geologic offsets
and geodetic data (Parsons et al., 2013)) to simulate tectonic stressing. A cell can nucleate an earthquake if
its stress value crosses an assigned strength threshold. The method thus provides a physical basis for earth-
quake nucleation points. After nucleation occurs, the stress state of all other cells in the model is changed
through static stress transfer. Dynamic rupture propagation is simulated by a reduction of the effective
strength in neighboring cells within a specified search area. The strength reduction is limited if the search
area exceeds a given aspect ratio of the rupturing section, which discourages rupture propagation. A rupture
stops when there are no cells with effective strength above the threshold value within the search area. A cell
can rupture more than once in the same event. The method is similar to other earthquake simulators (e.g.,
Tullis, 2012); in that, it is stress-driven. However the method relies primarily on static Coulomb stress evolu-
tion, and is thus simpler with relatively few parameters because it does not apply rate/state friction, viscoe-
lasticity, or fully dynamic ruptures.

The final estimate of the seismic moment of an earthquake is obtained from the sum of the moment released
by each ruptured cell. The mean event slip is then computed from the total seismic moment and the total
ruptured area. Magnitude is found using the moment-magnitude relation (Hanks & Kanamori, 1979) assum-
ing a shear modulus of μ = 30 GPa.

A rupture can propagate between two defined sections if the distance between them is less than a given
value (5 km in this application). The simulation algorithm preferentially fills rupture gaps by nucleating events
in cells where the stress budget is higher. Ruptures also expand toward parts of the faults where the stress
budget is highest. Because of the stress transfer included in the model, ruptures tend to initiate close to
the termination points of preceding large earthquakes. Calculations were run to simulate 100-kyr durations
to minimize time-dependent effects on earthquake rates.

Figure 3. Example ruptures from the northMojave section of the San Andreas Fault. Earthquakes have uniform slip scaled tomagnitude, but can take any contiguous
shape. Individual ruptures are shown in the top 3 panels, and are combined in the bottom one. (a) Ruptures are drawn sequentially from the “on-fault” input
magnitude-frequency curve in the greedy sequential, as well as the integer programming and the stress simulator methods, and (b) evolve in the greedy sequential
method to fill slip gaps until the 100-kyr slip budget is satisfied on all California faults. Cells are 2 km by 2 km.
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Key inputs that govern dynamic rupture propagation and that affect solutions are a strength reduction coef-
ficient (SR) and an aspect ratio coefficient (AR). After a simulated earthquake nucleates, the effective strength
of the cells in the area surrounding is reduced by a value proportional to the square root of the search area,
which allows the rupture to expand. This affects the maximum magnitude of ruptures. This strength reduc-
tion is limited if the search area exceeds a given number of times the width of the rupturing section, through
the AR coefficient. This acts to discourage rupture expansion.

2.4. Greedy Sequential Algorithm

The third independent method we apply is termed the greedy sequential algorithm. Greedy algorithms solve
combinatorial problems by selecting the highest value objects first under the assumption that an answer that
approximates the optimal solution will result (e.g., Cormen et al., 2009; Korte & Vygen, 2014). Their advantage
is that they do not operate on the entire solution space simultaneously, but instead work sequentially, mak-
ing it possible to address the California earthquake rate solution without memory demands of high-
performance computer resources. The key assumption is that an approximately optimal solution results from
the most difficult-to-fit highest-magnitude earthquakes being solved for first. Lower magnitude events are
more easily fit into small gaps in the slip budget left after the larger events are placed. In our application
(Parsons et al., 2012; Parsons & Geist, 2009), the algorithm attempts to fit earthquakes into the connected
fault system, working from the highest magnitudes to the lowest in sequence as selected from a
Gutenberg-Richter distribution using the consensus a and b values from the UCERF3 model (Felzer, 2013b).
Following UCERF3, the preferred data parameter set has 16% of the total seismic moment release being
assigned to background earthquakes that occur away from known mapped faults, with the maximum mag-
nitude of those events being M = 7.6 (Field et al., 2014; sensitivity of results is tested by varying
these parameters).

We begin to populate the simulation with earthquake ruptures by randomly assigning earthquake nucleation
sites distributed in proportion to slip rates, such that the highest slip rate parts of the fault are most likely to
nucleate the largest events. Trial hypocenter locations are attempted until each earthquake is fit within a set
of 2 × 2-km cells; small cell sizes mean that irregularly shaped ruptures can occur that may be more realistic,
and that do not require a surface rupture (Figure 3). Nucleation points therefore have an initially random
component, but are subsequently positioned where less slip has occurred during the model run, which is a
proxy for increased stress. Rupture areas are determined from the “Ellsworth B” empirical magnitude-area
relation Mw = log(A) + 4.2 [WGCEP (Working Group on California Earthquake Probabilities), 2003]. Fitting is
constrained by the long-term slip rates of faults, and a 100-kyr slip budget is assigned to each cell based
on the weighted average of four slip rate models for California faults from geologic offsets and geodetic data
(Parsons et al., 2013). The same set of rules for fault jumping and rupture filtering are followed as listed in
section 2.1. We calculate mean event slip from the moment-magnitude relation (Hanks & Kanamori, 1979)
assuming a shear modulus of μ = 30 GPa.

Calculations for all of California usually take approximately four days to complete on a standard laptop com-
puter, depending on the number of earthquakes in the input catalog; one calculation that used themaximum
California a value took ~40 days to run. The algorithm can be inefficient because random hypocenter loca-
tions are repeatedly attempted until each earthquake can be fit into the fault system within the 100-kyr slip
budget. More guided simulations like the stress-based simulator described previously are more efficient.

2.5. Measuring Differences Between Magnitude-Frequency Distributions

The primary question we address is, how great is the relative deviation of an individual fault magnitude fre-
quency distribution from Gutenberg-Richter? We use test statistics and p values from three nonparametric
statistical methods to assess the degree that calculated magnitude-frequency distributions vary from
Gutenberg-Richter. These test include the Kolmogorov–Smirnov test (Kolmogorov, 1933; Smirnov, 1933),
which is a standard approach to testing exponential distributions (e.g., Clauset et al., 2009), the Wilcoxon
rank-sum test (also known as the Mann–Whitney test; Mann & Whitney, 1947; Wilcoxon, 1945), and the
Epps-Singleton test (Epps & Singleton, 1986). We compare calculated earthquake catalogs to a catalog gen-
erated by drawing 5,000 earthquakes at random from a theoretical Gutenberg-Richter distribution (b = 1;
Felzer, 2013b) across the possible magnitude distribution to assess whether they can have the same origin.
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The two-sample Kolmogorov–Smirnov test compares an empirical distribution function F(x) against a second
sample from a theoretical cumulative distribution G(x) for equality. It tests hypotheses that the empirical
group has smaller or larger values than the theoretical as

Dþ ¼ max F xð Þ � G xð Þf g
D� ¼ min G xð Þ � F xð Þf g

and then finds the maximum difference, which yields the test statistic D by

D ¼ max jDþj; jD�jf g

We use the Stata© program to find the first five terms (Pa) of the asymptotic limiting distribution

lim
m;n→∞

Pr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mn= mþ nð Þ

p
Dm;n≤z

n o
¼ 1� 2∑∞i¼1 �1ð Þi�1 exp �2i2z2

� �
;

which are used to calculate corrected p values with a numerical technique (Z) where Φ is the cumulative nor-
mal distribution as

Z ¼ Φ�1 Pað Þ þ 1:04=min m; nð Þ þ 2:09=max m; nð Þ � 1:35=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mn= mþ nð Þ

p

and p value thresholds can be found from the cumulative normal distribution of the numerical values as p
value = Φ(Z).

The second methods we use is the Wilcoxon rank-sum test, which compares two independent random vari-
ables F and G with sample sizes n and m with the null hypothesis that F = G. The samples are combined and
ranked (Ri), and the Wilcoxon test statistic T is found from the sum of the ranks of a sample as

TF ¼ ∑ni¼1RFi

The Mann–Whitney U statistic is the number of pairs (Fi,Gj) such that Fi > Gj, or Gi < Fj, and is given by

U ¼ min UF ;UGð Þ

where

UF ¼ nmþ n nþ 1ð Þ
2

� TF

UG ¼ nmþm mþ 1ð Þ
2

� TG

The variance and standard deviation (σ) of the combined ranks are found by

Var Tð Þ ¼ nmσ2

nþm
; σ2 ¼ 1

nþm� 1
∑nþm
i¼1 Ri � R

� �2

For large samples, the distribution of ranks can be treated as normal (although the test is valid for all distribu-
tion forms), and a z statistic (number of standard deviations from the mean) can be used to calculate p values
as

z ¼ T � n nþmþ1ð Þ
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var Tð Þp

where if Z is a normal distribution from 0 to 1, then

p ¼ Pr Z≥zð Þ:
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The third method we use is the Epps-Singleton test as implemented for Stata© by Goerg and Kaiser (2009).
This method is important because it does not require the test samples to be from continuous distributions.
All of the methods we used to calculate the magnitude distribution in California faults use discretized fault
representations. This means the resulting magnitudes, which can be carried out to many decimal places,
are still not completely continuous because they are a direct function of areas, of which there are a finite
number. The Epps-Singleton test is similar to the Kolmogorov–Smirnov test except that it uses empirical
characteristic distribution functions, which are the Fourier transforms of the empirical distribution
functions. This difference allows discrete data to be compared.

The null hypothesis is that the empirical characteristic distribution functions of distributions F and G are equal
as

ϕ tð Þ ¼ γ tð Þ;with–∞ < t < ∞:

The empirical characteristic distribution function of Fnk(x) is defined as

ϕnk ¼ ∫�∞
∞ eitxdFnk xð Þ � n�1

k ∑nkm¼1e
itXkm :

The test statistic W2 measures the statistical distance between the empirical characteristic distribution func-
tions of both samples standardized by the covariance matrix (bΩ) as

W2 ¼ nþmð Þ�Δ’�bΩþ�Δ;

where Δ is the difference between the real and imaginary parts of the characteristic function of the
samples and bΩþ is the generalized inverse of bΩ . The test statistic is distributed asymptotically as
chi-square with r degrees of freedom, where r is the rank of bΩþ, which is how the p value of the test
is found.

For each statistical test, we compare earthquake nucleation and participation catalogs (M ≥ 6.0) from the
three calculationmethods we use as well as from UCERF3 against the same 5,000-point sample catalog drawn
from a Gutenberg-Richter distribution with a b value equal to 1. The null hypothesis is therefore that the cal-
culated catalogs cannot be distinguished from Gutenberg-Richter. The standard for rejection of a null
hypothesis is a p value less than 0.05, although caution is urged about absolute thresholds (e.g.,
Wasserstein & Lazar, 2016). We therefore conclude that the Gutenberg-Richter null hypothesis cannot be
rejected if all three statistical tests return p values >0.05.

We note consistency among the three statistical methods applied because the independent test statistics can
be correlated. An example is shown in Figure 4 of test statistics made comparing multiple nucleation
magnitude-frequency distributions from four methods calculated using an array of different input para-
meters. We find strong correlations (coefficients range from 0.83 to 0.95) between the test statistics, and

Figure 4. Correlations between three test statistics made from comparisons of San Andreas Fault earthquake nucleation
magnitudes to a Gutenberg-richer distribution. Correlations are strong, ranging from 0.83 to 0.95, and the linear models
explain between 83 and 90% (r2 values) of the scatter. We interpret these correlations as independent statistical methods
identifying the same differences between calculated magnitude-frequency distributions and the null model, a Gutenberg-
Richter distribution.
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simple linear models explain between 83 and 90% of the scatter in the
correlations. We interpret these correlations as an indication that the
three tests we apply are identifying the same variations between cal-
culated magnitude-frequency distributions and the null model of a
Gutenberg-Richter distribution. We further can apply the test statistics
as a means to rank the different calculation results in terms of their
relative difference/similarity to a Gutenberg-Richter distribution to
understand the effects of data and calculation parameters. Any of
the test statistics would be reasonable to use for ranking given how
closely correlated they are; we choose the Epps-SingletonW2 statistic
for ranking because that test is not vulnerable to discrete data. We
express the degree that a solution differs from Gutenberg-Richter by
calculating the ratio of the W2 statistic to the constant critical value
(9.488) that yields a p value of 0.05. When this parameter that we label
as the ES factor is ≤1.0, then a Gutenberg-Richter distribution cannot
be ruled out at 95% confidence. The degree to which values grow
much larger than 1.0 indicates the strength of deviation from a
Gutenberg-Richter distribution.

3. Results

We compare results from four techniques for solving the earthquake rate and magnitude distributions on
California faults. Solutions are produced for all known California faults except where noted. We focus our pri-
mary comparisons on the San Andreas Fault, which has the highest moment rate in California and the widest
magnitude spectrum. We do not explicitly review the UCERF3 results, which are already fully documented
(Field et al., 2014; Page et al., 2014), but we do compare three alternative model applications to the
UCERF3 solutions.

3.1. Results From Integer Programming

The integer programming method is the only of the four techniques that we compare that produces true
optimized results. This comes at computational cost, and requires expensive high-performance compute
resources. Thus, trade-offs are necessary; the statewide integer programming solutions are conducted for
4-kyr periods, much shorter than 100 kyr used for the stress-based and greedy-sequential methods, and faults
with less than 3-mm/year slip rates are omitted. Statewide a values were corrected for the moment implied
by sub-3-mm/year faults. Rates for M ≥ 6.0 earthquakes are calculated. An example slip rate fit to the San
Andreas Fault is shown in Figure 5.

Given that there is one true optimal solution for a set of parameters, there might be only one integer pro-
gramming result to discuss. However, since 4-kyr periods are calculated, there is variability in the input rup-
ture sets, which are sampled at random from a Gutenberg-Richter distribution extrapolated from the
preferredM = 5.0 statewide earthquake rate calculated by Felzer (2013b). This variability is especially evident
at the highest and lowest magnitudes. The impact of this sampling on results is explored by calculating a set
of 10 optimal solutions. All of the results are participation magnitude-frequency distributions because the
method does not assign hypocenters. Future iterations of the method could adopt a random hypocenter
assignment like that used for UCERF3 solutions.

An alternative to optimal solutions from integer programming is computing feasible solutions. A feasible
solution is found by setting the objective function to zero, but retaining all of the constraints. In other words,
the solution is not held to the weighted mean slip rates, but is instead constrained to fit between the mini-
mum and maximum rates (Figure 5). This reduces the effects of strong slip rate transitions, which are difficult
to match over short durations. These discontinuities are an artifact of sectioning the San Andreas Fault, and
extending geologic point observations across whole sections; strong weighting of these geologic measures
in UCERF3 versus GPS-based slip rates that allow for more transitional slip rate variation (Parsons et al., 2013)
led to the abrupt transitions shown in Figure 5. Optimal solutions from integer programming tend to fill these
sections with larger earthquakes, whereas feasible solutions allow more of the statewide budget of M < 7

Figure 5. Slip rate fits from integer programming are shown along strike of the
San Andreas Fault. The red lines bracket the minimum and maximum UCERF3
slip rates, the gray line is the weighted mean UCERF3 slip rate, the blue line is the
model calculated slip rate from the average of ten optimal solutions, and the
yellow line is the average of ten feasible solutions.
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earthquakes to locate along the San Andreas Fault because the fits to sharp slip rate transitions are
relaxed (Figure 5).

We show 10 optimal and 10 feasible solutions for the San Andreas Fault produced by integer programming in
Figure 6 to illustrate how the magnitude frequency distribution shapes are sensitive to the random sampling
used to build the input catalogs. We find that the optimal solutions are the most characteristic of any of the

Figure 6. Incremental magnitude frequency distributions for the San Andreas Fault from 10 optimized and 10 feasible solutions using integer programming. The
differences between the panels come from random sampling of 4-kyr catalogs from a continuous distribution defined by the overall statewide Gutenberg-Richter
magnitude frequency distribution constrained by the observed long-term earthquake rate. Green curves are outputs from the optimal solutions, the light blue
curve is the average of all 10 optimal solutions, and the orange curves are feasible solutions given the constraints. The dashed black line is an incremental b = 1
Gutenberg-Richter line calibrated to the observed rate of M ≥ 5.5 earthquakes within ±5 km of the San Andreas Fault (catalog from Felzer, 2013a). Insets show
empirical cumulative magnitude frequency distributions plotted with Gutenberg-Richter b = 1 curves that they are compared with in statistical tests (linear axes). All
of the distributions are strongly characteristic with p values ~0. The ES factor values (ratio of W2 statistic to critical value) are given for each model. The feasible
solutions are all much closer to a Gutenberg-Richter form than are the optimal solutions.
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Table 1
Results of Comparing Calculated Magnitude-Frequency Distributions on the San Andreas Fault to a Gutenberg-Richter Distribution Using Three Statistical Methods,
Kolmogorov–Smirnov Tests, Wilcoxon Rank-Sum Tests, and Epps-Singleton Tests

Model N
Kolmogorov–Smirnov

D
KS
p

Wilcoxon Rank-Sum |
Z| W r-s p

Epps-Singleton
W2 ES p

ES
factor M

Nucleation magnitude-frequency
Stress AR = 0.5, SR = 200 25,280 0.026 0.00 0.3 0.79 25.6 0.00 2.7 7.5
Greedy Hayward 1,313 0.048 0.00 2.8 0.00 41.0 0.00 4.3 8.0
Greedy San Gregorio 1,059 0.060 0.00 3.1 0.00 42.6 0.00 4.5 7.7
Greedy Garlock 973 0.133 0.00 7.8 0.00 111.5 0.00 11.8 7.6
Stress AR = 0.3, SR = 200 35,053 0.063 0.00 8.7 0.00 112.2 0.00 11.8 6.4
Stress AR = 0.8, SR = 300 14,303 0.042 0.00 1.8 0.07 122.2 0.00 12.9 7.2
Stress AR = 0.8, SR = 1,000 14,066 0.042 0.00 2.6 0.01 122.7 0.00 12.9 7.4
Stress AR = 1.0, SR = 300 10,296 0.066 0.00 2.3 0.02 262.4 0.00 27.7 7.5
Stress AR = 1.0, SR = 1,000 9,862 0.068 0.00 2.7 0.01 267.0 0.00 28.1 7.5
Stress AR = 1.0, SR = 200 9,932 0.071 0.00 2.8 0.00 295.2 0.00 31.1 7.5
Greedy bg Mmax = 8.5, min SAF slip 7,575 0.076 0.00 4.9 0.00 296.9 0.00 31.3 7.7
Greedy bg Mmax = 8.5 7,768 0.084 0.00 5.0 0.00 341.2 0.00 36.0 7.0
Greedy all EQ’s on faults, no bg 9,154 0.097 0.00 9.6 0.00 442.9 0.00 46.7 7.7
Greedy Mmax = 8.2 5,962 0.126 0.00 14.9 0.00 480.7 0.00 50.7 7.7
Greedy Mmax = 8.0 6,472 0.117 0.00 11.2 0.00 507.0 0.00 53.4 7.7
Greedy min SAF slip rate 4,922 0.138 0.00 11.0 0.00 540.2 0.00 56.9 7.7
Greedy Mmax = 8.5 alt 4 4,969 0.155 0.00 12.7 0.00 643.4 0.00 67.8 7.7
Greedy Mmax = 8.5 alt 1 5,086 0.152 0.00 15.2 0.00 645.0 0.00 68.0 7.7
UCERF3 5,088 0.152 0.00 15.2 0.00 646.1 0.00 68.1 7.7
Greedy Mmax = 8.5 alt 7 5,059 0.149 0.00 12.4 0.00 652.4 0.00 68.8 7.7
Greedy high a value 19,935 0.084 0.00 4.5 0.00 658.0 0.00 69.3 7.6
Greedy Mmax = 8.5 alt 5 4,911 0.157 0.00 13.7 0.00 658.6 0.00 69.4 7.7
Greedy Mmax = 8.5 alt 3 5,021 0.155 0.00 11.8 0.00 662.3 0.00 69.8 7.7
Greedy Mmax = 8.5 alt 2 5,041 0.156 0.00 14.3 0.00 664.0 0.00 70.0 7.8
Greedy Mmax = 8.5 alt 8 4,946 0.161 0.00 14.3 0.00 691.8 0.00 72.9 7.8
Greedy Mmax = 8.5 alt 9 5,112 0.156 0.00 12.3 0.00 692.6 0.00 73.0 7.7
Greedy no rupture jumping 5,013 0.157 0.00 8.8 0.00 704.0 0.00 74.2 7.7
Greedy Mmax = 8.5 alt 6 4,796 0.170 0.00 16.0 0.00 709.8 0.00 74.8 7.7
No greedy, random selection 8,565 0.123 0.00 10.6 0.00 717.7 0.00 75.6 7.6
Greedy Mmax = 8.5 alt 10 5,006 0.163 0.00 14.2 0.00 721.6 0.00 76.1 7.7
Greedy high slip rate SAF 5,282 0.170 0.00 13.9 0.00 807.6 0.00 85.1 7.7
Stress AR = 0.2, SR = 200 44,884 0.210 0.00 32.0 0.00 1,054.5 0.00 111.1 6.4
Participation magnitude-frequency
Integer Prog. Feasible soln. 8 633 0.043 0.25 0.3 0.79 13.1 0.01 1.4 6.4
Integer Prog. Feasible soln. 4 517 0.084 0.00 1.8 0.08 18.5 0.00 1.9 7.0
Integer Prog. Feasible soln. 7 706 0.093 0.00 3.4 0.00 26.0 0.00 2.7 6.4
Integer Prog. Feasible soln. 5 646 0.080 0.00 1.9 0.05 27.0 0.00 2.8 6.4
Integer Prog. Feasible soln. 9 722 0.053 0.06 0.3 0.80 27.2 0.00 2.9 6.5
Integer Prog. Feasible soln. 6 663 0.067 0.01 1.7 0.09 28.7 0.00 3.0 6.7
Integer Prog. Feasible soln. 10 723 0.063 0.01 0.7 0.51 28.9 0.00 3.0 6.5
Integer Prog. Feasible soln. 1 656 0.072 0.01 0.3 0.79 37.9 0.00 4.0 6.4
Integer Prog. Feasible soln. 3 743 0.168 0.00 6.8 0.00 80.9 0.00 8.5 6.4
Integer Prog. Feasible soln. 2 736 0.133 0.00 4.4 0.00 140.6 0.00 14.8 6.7
Integer Prog. All Feasible soln.
Combined

7,368 0.068 0.00 3.7 0.00 156.6 0.00 16.5 6.4

Greedy bg Mmax = 8.5 16,631 0.094 0.00 6.4 0.00 273.5 0.00 28.8 7.1
Greedy Mmax = 8.0 12,492 0.133 0.00 13.8 0.00 397.3 0.00 41.9 7.6
Greedy bg Mmax = 8.5, min SAF slip 13,157 0.123 0.00 12.2 0.00 402.4 0.00 42.4 6.8
Greedy all EQ’s on faults, no bg 33,125 0.145 0.00 19.6 0.00 577.9 0.00 60.9 6.0
Greedy Mmax = 8.2 13,638 0.123 0.00 10.2 0.00 633.3 0.00 66.7 7.7
No greedy, random selection 14,149 0.096 0.00 11.0 0.00 635.6 0.00 67.0 8.0
UCERF3 10,981 0.122 0.00 4.7 0.00 672.3 0.00 70.9 6.7
Integer Prog. Oprtimal soln. 8 71 0.759 0.00 12.5 0.00 758.1 0.00 79.9 6.9
Greedy Mmax = 8.5 alt 2 7,866 0.172 0.00 19.8 0.00 763.2 0.00 80.4 7.6
Greedy high slip rate SAF 9,797 0.221 0.00 25.7 0.00 1,197.6 0.00 126.2 6.6
Greedy Mmax = 8.5 alt 1 9,285 0.179 0.00 28.0 0.00 1,207.7 0.00 127.3 7.7
Greedy no rupture jumping 8,772 0.205 0.00 22.0 0.00 1,299.1 0.00 136.9 7.7
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participation magnitude-frequency distributions we calculate from any method (ranked in Table 1). In
contrast, the feasible solutions are the closest to Gutenberg-Richter of any of our participation solutions.
As the difference is a result of how closely matched the solution is to the weighted mean slip rate, then it
illustrates the importance of slip rate transitions inherited from a sectioned fault model.

3.2. Results From a Stress-Based Earthquake Simulator

Our stress-based earthquake simulator produces long-termM ≥ 5.0 earthquake rates over a 100-kyr duration
for all mapped California faults. The overall earthquake budget is fixed to the preferred rate calculated by
Felzer (2013b), and ruptures are allowed to jump across gaps up to 5 km as in the UCERF3 calculations

(Biasi et al., 2013). Rupture propagation, branching, and jumping are
all controlled by back slip and interaction stresses along with two bal-
ancing parameters, a strength reduction factor that encourages rup-
ture growth, and an aspect ratio parameter that prevents runaway
ruptures. Stress parameters result from input slip rates (Parsons
et al., 2013) and fault geometry (Dawson, 2013), which means that
the fit to UCERF3 slip rates is very close (Figure 7). We systematically
vary strength reduction and aspect ratio to gauge sensitivity
of results.

Calculated nucleation magnitude frequency distributions on the San
Andreas Fault from eight different parameter combinations are
shown in Figure 8 that cover the full solution range. Differences result
from parameter choices, but the overall shapes of the magnitude fre-
quency distributions are similar. The curves approximately parallel a
b = 1 Gutenberg-Richter line up to M~7–7.5 and then they depart
from that trend with higher rates up to M~8 (Figure 8). All of the

Table 1
(continued)

Model N
Kolmogorov–Smirnov

D
KS
p

Wilcoxon Rank-Sum |
Z| W r-s p

Epps-Singleton
W2 ES p

ES
factor M

Greedy Mmax = 8.5 alt 3 9,412 0.195 0.00 21.7 0.00 1,316.3 0.00 138.7 7.7
Greedy min SAF slip rate 31,280 0.153 0.00 19.9 0.00 1,319.2 0.00 139.0 7.6
Greedy Mmax = 8.5 alt 10 9,310 0.231 0.00 27.1 0.00 1,375.9 0.00 145.0 7.7
Greedy Mmax = 8.5 alt 7 9,146 0.214 0.00 23.6 0.00 1,388.7 0.00 146.4 7.6
Greedy Mmax = 8.5 alt 9 9,496 0.199 0.00 23.5 0.00 1,397.9 0.00 147.3 7.7
Greedy Mmax = 8.5 alt 4 9,414 0.237 0.00 27.2 0.00 1,421.9 0.00 149.9 6.6
Greedy Mmax = 8.5 alt 5 8,784 0.235 0.00 25.8 0.00 1,456.0 0.00 153.5 7.7
Greedy Mmax = 8.5 alt 8 8,631 0.219 0.00 26.2 0.00 1,465.7 0.00 154.5 7.6
Greedy Mmax = 8.5 alt 6 8,341 0.224 0.00 26.9 0.00 1,491.4 0.00 157.2 7.7
Integer Prog. Oprtimal soln. 7 93 0.637 0.00 12.2 0.00 2,130.4 0.00 224.5 6.8
Integer Prog. Oprtimal soln. 3 89 0.601 0.00 11.5 0.00 2,194.2 0.00 231.3 6.6
Integer Prog. Oprtimal soln. 6 34 0.920 0.00 9.5 0.00 2,703.5 0.00 284.9 6.9
Integer Prog. Oprtimal soln. 4 80 0.664 0.00 12.5 0.00 3,157.1 0.00 332.7 6.8
Integer Prog. All Optimal soln.
combined

578 0.692 0.00 34.0 0.00 5,800.0 0.00 611.3 7.6

Integer Prog. Oprtimal soln. 10 49 0.916 0.00 11.4 0.00 13,046.1 0.00 1,375.0 7.5
Integer Prog. Oprtimal soln. 9 55 0.933 0.00 12.2 0.00 15,628.6 0.00 1,647.2 7.6
Integer Prog. Oprtimal soln. 5 39 0.938 0.00 10.4 0.00 17,020.2 0.00 1,793.9 7.3
Integer Prog. Oprtimal soln. 1 43 0.948 0.00 11.0 0.00 22,226.0 0.00 2,342.5 7.6
Integer Prog. Oprtimal soln. 2 34 0.980 0.00 9.8 0.00 42,115.1 0.00 4,438.8 7.7

Note. We report the sample size for each catalog, test statistics, and resulting p values from each method (all<0.05). The upper part of the table shows nucleation
magnitude-frequency results and the lower part participation. The test statistics from the three methods are correlated as demonstrated in Figure 4. The different
model calculations are ranked by the Epps-SingletonW2 statistic from smallest (least characteristic) to largest (most characteristic). We give theW2 values as a ratio
to the critical value (ES factor) that would correspond to a p value of 0.05 here and in Figures 6, 8, and 10. The last column (M) gives the magnitude where the
greatest differences between calculated magnitude-frequency distributions and a Gutenberg-Richter distribution occur.

Figure 7. Slip rate fits from a stress-based simulator model are shown along strike
of the San Andreas Fault. The red lines bracket the minimum and maximum
UCERF3 slip rates, the gray line is the weighted mean UCERF3 slip rate, and the
blue line is the model calculated slip rate.
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solutions can be rejected as being consistent with a Gutenberg-Richter form with p values ~0.0 from all three
statistical tests we apply (Table 1), with two exceptions that have p values>0.05 from the Wilcoxon rank-sum
test only (Table 1).

The aspect ratio parameter has the most influence on the maximum earthquake size in the simulations, ran-
ging betweenM~8.0 and the maximum possible earthquake in the fault model at M~8.5, which represents a
complete rupture of the San Andreas and connected Mendocino Faults. Most of the stress simulator solutions
have more small to moderate earthquakes than observed for the San Andreas Fault (Figure 8), which may
result from interaction stress increases that represent aftershocks that may not be fully accounted for in
the ~150-year historic catalog. The maximum difference between the calculated magnitude distributions
and Gutenberg-Richter distributions occurs between M = 7.2 and M = 7.6 for most solutions (Table 1).

3.3. Results From a Greedy Sequential Model

We use this simple method primarily to test sensitivity to data choices/parameters. It is not computationally
expensive in the sense that it does not require large amounts of memory in high-performance computer
resources. These features enable comprehensive sensitivity testing of results to many of the UCERF3 consen-
sus decisions regarding rupture processes and the earthquake distribution. For example, we vary the

Figure 8. Incremental magnitude frequency distributions for the San Andreas Fault from 10 input parameter combinations for a stress-based simulator model. The
differences between the panels result from varying two key input parameters, strength reduction (SR), which allows ruptures to grow, and the aspect ratio parameter
(AR), which prevents ruptures from running away in only one direction. Green curves are model outputs, and the blue curve is the average of all solutions. The
dashed black line is an incremental b = 1 Gutenberg-Richter line calibrated to the observed rate of M ≥ 5.5 earthquakes within ±5 km of the San Andreas Fault
(catalog from Felzer 2013a). Insets show normalized cumulative magnitude frequency distributions plotted with Gutenberg-Richter b = 1 curves that are compared
with in statistical tests (linear axes), and corresponding ES factor values (ratio of Epps-Singleton W2 statistic to critical value for p value = 0.05).
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maximum magnitude threshold on faults, and the maximum magnitude threshold in the background. We
run simulations with background moment rates equal to UCERF3 (~16%) as well as those with no
background events, we test the preferred and maximum statewide a values (Felzer, 2013b), we allow
ruptures to jump across 5-km gaps, and we run models that disallow all rupture jumping. We additionally
test the effect of the greedy sequential algorithm versus purely random (nonsequential)
earthquake sequences.
3.3.1. Slip Rate Fit
An example slip rate fit to all California faults and a detail of the San Andreas Fault is shown in Figure 9. In
general, the method has difficulty matching all slip rate observations because the fault model implies an
annual moment rate of ~2.8E + 19 Nm/year, whereas the sum of the available earthquakes assigned to faults
yields an average annual rate of 1.8E + 19 Nm/year if 16% of the moment is in the background (Field et al.,
2014) and the maximum magnitude of background events is M = 7.6. The essentially unknown influences
of variable fault coupling and aseismic deformation from brittle creep are significant sources of uncertainty
inmoment-balanced solutions. We adopt the UCERF3 90% coupling coefficients on faults, as well as the aseis-
micity factor values on creeping faults (Field et al., 2014).

Figure 9. Slip rate fitting. (a) The difference in mm/year between the greedy sequential model and minimum UCERF3 slip rates on all California faults is shown. Red
shading means slip rates above the minimum, and faults with blue shading are places that the method could not be fit to at least the minimum rate. The inset
histogram shows the number of fault sections (UCERF3 designations) that have solutions above or below the minimum rate. (b) The same calculations are shown
except for the UCERF3 maximum rate. Numbered circles show the locations of San Andreas Fault paleoseismic sites. No calculated rates exceeded the maximum
UCERF3 rates. (c) The slip rate fits are shown along strike of the San Andreas Fault. The red lines bracket theminimum andmaximumUCERF3 slip rates, the gray line is
the weighted mean UCERF3 slip rate, and the blue line is the model calculated slip rate.
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3.3.2. Magnitude Frequency Distribution on the San Andreas Fault
Results from parameter sensitivity tests are summarized in Figure 10, where the calculated San Andreas
Fault nucleation magnitude frequency distributions generated from a variety of inputs are shown. The
curves tend to parallel the Gutenberg-Richter slope up to M~7.5, above which there appear to be more
high-magnitude events than would be predicted from a strict exponential trend (Figure 10). These solu-
tions are all consistent with a characteristic magnitude-frequency distribution model, with three statistical
methods ruling out a Gutenberg-Richter model (Table 1 and Figure 10). There is an additional component
of variation associated with the method because each run assigns initial hypocenters at random. Thus, no
two results with the same data parameters are identical. We show the results for San Andreas Fault mag-
nitude frequency distributions for ten runs that use the same data parameters (highest weighted values
from UCERF3) to demonstrate the effects of this randomization (Figure 11).

Varying data inputs and the resulting degree of how characteristic the resulting magnitude-frequency distri-
butions lend some insight into which data constraints may be driving the results. We find that the parameter
change that most influences the solutions to be less characteristic involves the maximum magnitude of

Figure 10. Incremental nucleation magnitude frequency distributions for the San Andreas Fault from nine data parameter combinations for a greedy sequential
model. The differences between the panels result from varying data parameters. These include not allowing earthquake ruptures to jump across gaps, setting
different maximummagnitudes allowed (M = 8.0–8.5), using a randommagnitude assignment instead of the greedy algorithm, using the highest possible California
earthquake rate instead of the UCERF3 preferred rate (Felzer, 2013b), altering the maximum background earthquake magnitude from zero to M = 8.5, and fitting
the highest and lowest allowable San Andreas slip rates. Blue curves are model outputs, and the green curve is the average of all solutions. The dashed black line is an
incremental b = 1 Gutenberg-Richter line calibrated to the observed rate of M ≥ 5.5 earthquakes within ±5 km of the San Andreas Fault (catalog from
Felzer 2013a). Insets show empirical distribution functions plotted with Gutenberg-Richter b = 1 curves they are compared with in statistical tests (linear axes), and
corresponding ES factor values (ratio of Epps-Singleton W2 statistic to critical value for p value = 0.05).
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earthquakes that are allowed to occur off of known faults (background
events). The greedy solution that is the least characteristic based on rank-
ing by the Epps-SingletonW2 statistic is one that allows earthquakes up to
the maximum magnitude (M = 8.5) to occur off of known faults, and that
fits San Andreas Fault slip rates from geodetic values, which are slower
than the consensus mean that includes geologic offset data (Table 1).
The next least characteristic solution after that has high background mag-
nitudes and a fit to the consensus mean. By puttingmore highmagnitudes
into the background, the San Andreas Fault has a smaller characteristic
“bump” aboveM~7.5. The UCERF3 consensus view was thatM> 7.6 earth-
quakes could not have happened in California off-mapped faults without
leaving clear signs on the landscape. The most characteristic solutions
from the greedy algorithm are found when the faults are not allowed to
connect by rupture jumping when end points are within 5 km of each
other. Solutions using the UCERF3 consensus parameters, with the overall
maximum magnitude of M = 8.5, and a background maximum magnitude
of M = 7.6 tend to also be among the most characteristic results (Table 1).
3.3.3. Fit to Paleoseismic Data
The UCERF3 earthquake rate inversions were directly constrained by
paleoseismic observations (Field et al., 2014). In our simulations we reserve
the paleoseismic observations for testing. Example calculated magnitude
frequency distributions are plotted in Figure 12 with the mean and ±1σ
rates (dashed lines) from San Andreas paleoseismic sites (Parsons, 2012;
Weldon, Schmidt, et al., 2013). Fitting these observations depends on the
magnitudes of the events identified in the paleoseismic observations.
We use the calculated participation magnitude-frequency distributions
from the greedy sequential algorithm at each section where paleoseismic

data are observed to find the predicted magnitudes at paleoseismic sites (Figure 12); the mean paleoseismic
rates and 1σ uncertainties identify the ranges that paleomagnitudes would have to be to fit the calculated
rates (heavy red lines on Figure 12). We compare theses predicted magnitude ranges to those calculated
from mean paleodisplacements by Weldon, Schmidt, et al. (2013; dark gray dots on Figure 12) by applying
the same moment magnitude relation of Hanks and Kanamori (1979) that we used to translate magnitudes
to average slip in the greedy sequential algorithm as

s ¼ 10 1:5Mwþ9:05ð ÞÞ
μA:

If we apply the same magnitude-area relation (Ellsworth B; Mw = log(A) + 4.2) [WGCEP (Working Group on
California Earthquake Probabilities), 2003] as used in rate calculations and assume that observed paleoslip
is equal to the average slip, then the paleomagnitude is Mw ¼ 2 log sμð Þ � 26:5, where μ = 30 GPa.

The average paleomagnitudes fall outside of the ±1σ range from predicted values on three San Andreas Fault
sections (San Bernardino, Carrizo, and Santa Cruz Mountains; Figure 12), which implies a mismatch to those
data. The range of paleo offsets is not given in the Weldon, Schmidt, et al. (2013) report, so we do not know
what the breadth of, or minimum thresholds of observation are at those sites. In all the misfit cases the paleo-
magnitudes are higher than the corresponding rate calculations, which imply that we may underestimate
high magnitude rates on some San Andreas sections.
3.3.4. Magnitude Frequency Distributions on Other Faults
Long faults with the highest slip rates have the most earthquakes across the widest magnitude spectrum,
and they thus offer the largest rate samples for solutions calculated over fixed periods. We therefore
examine three long, connected fault systems to broaden our analysis from the San Andreas Fault: the
Garlock Fault, the San Gregorio/Hosgri fault system, and the Hayward/Rodgers Creek/Calaveras system
(Figure 13). Ten calculations are made for nucleation magnitude frequency using the greedy sequential
model with the same parameters for each fault system (preferred UCERF3 a value (Felzer, 2013b),

Figure 11. Nucleation magnitude frequency solution variability with input
parameters fixed (preferred UCERF3 a value (Felzer, 2013b), preferred
Mmax = 7.6 of background earthquakes, and rupture jumping distance of
5 km (Field et al., 2014)). The green curves show incremental variation on the
San Andreas Fault from ten different runs due to the random location
assignments inherent to the algorithm, and the blue lines show the cumu-
lative curves.
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preferred Mmax = 7.6 of background earthquakes, and rupture jumping distance of 5 km (Field
et al., 2014)).

The magnitude frequency distributions on these three faults show more variability between runs as com-
pared with the San Andreas Fault results because the slip rates are lower, and thus, there are fewer earth-
quakes per 100 kyr. However, their average distributions are similar in shape to the San Andreas solutions
from multiple methods; they tend to parallel a Gutenberg-Richter trend, and then have elevated rates at
higher magnitudes (Figure 13). A Gutenberg-Richter distribution can be ruled out for all of our solutions using
three statistical methods (Table 1). The Epps-Singleton factor is shown for each fault in Figure 13, which range
between 4.3 and 11.8 with a value needed less than 1 to have a 5% chance of being Gutenberg-Richter. Thus,
our results show consistent characteristic nucleation magnitude-frequency distributions on major California
fault lines.

4. Discussion and Conclusions

Our goal for this exercise is to determine if a quality set of consensus data informing four different earthquake
rate calculation methods can produce a definitive answer about magnitude frequency distributions on

Figure 12. Observed earthquake rates from paleoseismic studies (light gray dots; Weldon, Schmidt, et al., 2013) shownwith calculatedmagnitude frequency rates on
the San Andreas Fault. Paleorates are not associated with magnitudes; we fit them within ±1σ uncertainties to the calculated magnitude frequency distributions at
each site (red curves), which yields the implied minimum and maximum paleomagnitudes (heavy red lines). Locations of paleosites are shown in Figure 9. The
model is compatible with paleoseismic rates depending on the minimum magnitude of detection, which would have to range between M = 6.4 and M = 7.6,
depending on the site. Dark gray dots showmagnitudes calculated frommean observed paleo offsets where available (Weldon, Schmidt, et al., 2013), which in some
cases fall outside the ±1σ error bar ranges calculated by Parsons (2012), implying a misfit to the paleodata at those sites.
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Figure 13. Nucleation magnitude frequency distributions calculated with the greedy sequential model for three connected fault systems. Incremental curves are
shown in green, and cumulative in blue. Ten realizations using the same parameters are shown (preferred UCERF3 a value (Felzer, 2013b), preferred Mmax = 7.6
of background earthquakes, and rupture jumping distance of 5 km (Field et al., 2014)). Inset histograms show the distribution of slip rate misfit from the mean
UCERF3 rates, which generally are ~1–2 mm/year below, but fall above the minimum values (Figure 9). All of these faults have magnitude-frequency distributions
that are significantly different from Gutenberg-Richter with ES factor values >1.0 (Table 1). UCERF3 incremental and cumulative nucleation magnitude-frequency
curves are shown for reference (dark gray lines).

Figure 14. Four calculated incremental magnitude frequency distribution solutions averaged frommultiple runs by UCERF3 (Field et al., 2014; black curve), as well as
integer programming (optimal results; blue curve), stress simulator (green curve), and greedy sequential methods (red curve). Observed earthquakes (Felzer, 2013a)
located within ±5 km of the San Andreas surface trace are shown by gray dots. A Gutenberg-Richter line extrapolated from the observed M = 5.5 rate is plotted
(dashed line).
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individual faults. Generally, the preferred California a value does not yield enough cumulativemoment to fully
satisfy the UCERF3 slip rates on all faults in our calculations, which causes our solvers to put more high-
magnitude earthquakes relative to lower on the fastest slipping faults in order to fit the slip rates. For
example, the calculated average annual moment expressed along the San Andreas Fault for the four
methods ranges between 2.1 and 2.9 times higher than that implied by a normalized Gutenberg-Richter
distribution with b value = 1.0. This is balanced by assigning lower magnitude events into the background
or on smaller, slower slipping faults. An example of this effect can be seen in the UCERF3 results shown in
Figure 1, where on the North Mojave section of the San Andreas Fault, M~6.6 earthquake nucleation is 25
times less common than M~8 shocks, almost the exact inverse of the relative global occurrence rates of
these magnitudes. These distributions at section scale are fairly typical of all the results. The rate differences
are muted, though still quite characteristic when the entire San Andreas Fault is examined, in which case
M~6.6 earthquake nucleation is expected to outnumber M~8.0 nucleation by factors between 3 and 12
depending on the method (Figure 14). We therefore conclude from three new independent analyses along
with the UCERF3 calculations that faults within the interconnected system in California have characteristic
earthquake nucleation with higher large-magnitude rates than would be expected from a Gutenberg-
Richter distribution provided that the long-term earthquake rate is stationary and similar to that observed

Figure 15. Testing the effects of spatial subsampling on magnitude frequency distributions. As an example, we work with a controlled simulation on the Nankai
subduction zone in Japan (Parsons et al., 2012). In this instance, the magnitude-frequency distribution of a single fault is required to be fit to a b = 1 Gutenberg-
Richter distribution. We subsample participation magnitude frequency on three areas of 25-, 625-, and 2,500-km2 size, and compare with a b = 1 Gutenberg-Richter
distribution. As expected the whole fault has a probability of 1.0 of being Gutenberg-Richter. This probability drops as sampling areas decrease, with the 625- and 25-
km2 samples being significantly different (p values <0.05).
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over the past 150 years. These results are consistent with the idea that a
self-similar group of faults with characteristic magnitude distributions will
yield an overall Gutenberg-Richter distribution (e.g., López-Ruiz
et al., 2004).

We draw conclusions about why California faults have characteristic
magnitude-frequency distributions by examining the relative departures
from Gutenberg-Richter behavior of the solutions from the same
method with different data input parameters. The consensus parameter
set has a fast slipping San Andreas Fault, and allows only M ≤ 7.6 earth-
quakes to happen away from mapped faults. These influences on solu-
tions from the greedy algorithm, for example, mean that most of the
highest-magnitude earthquakes must occur on the San Andreas and
linked faults because their high moment allows the fast slip rates to
be fit, and there are few other faults that can accommodate the
highest-magnitude events. We find solutions that are closer to
Gutenberg-Richter if these constraints are relaxed (Table 1) by allowing
background earthquakes up to M = 8.5, reducing the overall maximum
magnitude, and/or fitting the San Andreas Fault to minimum thresholds
of UCERF3 slip rates.

While almost all solutions are characteristic, we note some methodolo-
gical influences on the results. For nucleation magnitude frequency, the
stress-based method has the smallest difference from Gutenberg-
Richter with a mean Epps-Singleton W2 parameter of 282.7 (factor of
34.0 above critical value for p = 0.05), followed by the greedy algorithm

with a mean Epps-Singleton W2 parameter of 540.6 (factor of 61.3 above critical value for p = 0.05), and
then the UCERF3 result with an Epps-Singleton W2 parameter of 646.1 (factor of 68.1 above critical value
for p = 0.05; Table 1). Perhaps a more intuitive comparison can be made using the Kolmogorov–Smirnov
D statistic, which is expressed as the maximum percentage difference in rate between the empirical dis-
tribution function and the cumulative null model (Gutenberg-Richter). In that case the mean D values for
the stress-based and greedy algorithms are the same with D = 0.130, and the UCERF3 D value is 0.156
(Table 1). We calculate the magnitudes where the greatest differences between the calculated
magnitude-frequency distributions and a Gutenberg-Richter distribution occur (listed in Table 1); the
mean value for the stress-based method is M = 7.2, and it is M = 7.7 for the greedy algorithm and
UCERF3 results. For participation magnitude frequency, we note strong differences between the integer
programming results depending on whether optimal or feasible solutions are performed. For optimal solu-
tions, the mean Epps-Singleton W2 parameter is 12,602.1 (factor of 1,328.2 above critical value for
p = 0.05), and for feasible solutions the mean Epps-Singleton W2 parameter is 42.9 (factor of 4.5 above
critical value for p = 0.05). The mean Kolmogorov–Smirnov D statistics are 0.823 for optimal solutions,
and 0.086 for feasible (Table 1).

Test statistics thus show that the stress-based simulator results return nucleation magnitude-frequency dis-
tributions that are closer to Gutenberg-Richter than the other methods, and the integer programming feasi-
ble solutions also return participation magnitude-frequency distributions that are closer to Gutenberg-
Richter than other methods. In the first case we suggest that the difference results from the stress-based
method using stress interaction calculations to propagate and filter ruptures directly, whereas the other
methods apply the rupture filtering rules defined by Field et al. (2014) (described in section 2.1). The differ-
ences between integer programming feasible and optimal results are caused by how strictly the solutions
were fit to input slip rate discontinuities from strong weighting of geologic offset measures that were extra-
polated across fault sections. We thus find that interpretive decisions about the maximum possible magni-
tude on and off faults, slip rate transitions, relative weighting between geodetic and geologic slip rate
models, and rupture filtering all have influence on the shape of calculated magnitude distributions.
However, none of these influences are strong enough to change the distribution shapes from characteristic
to Gutenberg-Richter.

Figure 16. Four incremental magnitude frequency distributions are shown
for the San Francisco peninsula section of the San Andreas Fault from four
different solution methods. Three historical M ≥ 6.9 earthquakes that
involved the peninsula section are plotted for magnitude range; the heights
of the bars do not imply rate values.
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The participation magnitude-frequency distribution at points is most applicable to hazard calculations and is
expected to be characteristic with a balance toward higher magnitudes because more large events that
nucleate far away on different faults can spread onto a specific fault or fault section than can smaller ones.
This is an example of spatial subsampling, something known to affect exponential distribution shapes (e.g.,
Priesemann et al., 2009; Levina & Priesemann, 2017). We demonstrate this effect by constructing a synthetic
earthquake catalog for a single fault surface that is constrained to have Gutenberg-Richter nucleation mag-
nitude frequency. In this example we use calculated earthquake rates on a simplified version of the Nankai
subduction zone (Parsons et al., 2012), and sample areas of decreasing size for participation magnitude-
frequency distributions. We find that as sample areas are reduced, their participation magnitude-frequency
distributions become systematically more characteristic (Figure 15). This tendency is caused by the fact that
higher-magnitude earthquakes affect larger areas of a fault, and multiple such events can overlap a sample
point. It is therefore necessary to quantify the characteristic shapes of the nucleation and participation
magnitude-frequency distributions at section scale or below depending on the forecast application (e.g.,
Field et al., 2017).

We lastly notemethodological influences on participationmagnitude-frequency distributions at section scale
that could have hazard calculation implications. Different trade-offs are made in the magnitude rates at dif-
ferent levels depending on the calculation method, with the UCERF3 and integer programming solutions
showing relatively low rates below M = 7.1, and the greedy algorithm having low rates between M = 7.4
and 7.7 (Figure 16). These differences arise in part because the UCERF3 inversion applies magnitude-
frequency constraints based on regional seismicity rates and the on-fault UCERF2 (Field et al., 2009) distribu-
tions, whereas the alternative methods used here draw from a statewide pool of earthquakes.
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