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Abstract 
The Mediterranean Forecasting System (MFS) is a numerical ocean prediction system 
that produces analyses, reanalyses and short term forecasts for the entire Mediterranean 
Sea and its Atlantic Ocean adjacent areas. The system is now part of the Copernicus 
Marine Environment Monitoring Service (CMEMS) providing regular and systematic 
information about the physical state and dynamics of the Mediterranean Sea through 
the Med-MFC (Mediterranean Monitoring and Forecasting Center).

MFS has been implemented in the Mediterranean Sea with 1/16o horizontal resolution 
and 72 vertical levels and is composed by the hydrodynamic model NEMO (Nucleus 
for European Modelling of the Ocean) 2-way online coupled with the third generation 
wave model WaveWatchIII (Clementi et al., 2017a) and forced by ECMWF atmospheric 
fields at 1/8° horizontal resolution. The model solutions are corrected by the data 
assimilation system (3D variational scheme, Dobricic and Pinardi, 2008) with a daily 
assimilation cycle of along track satellite Sea Level Anomaly (SLA) and vertical profiles 
of Temperature and Salinity from ARGO and gliders. In this study we present a new 
estimate of the background error covariance matrix with vertical Empirical Orthogonal 
Functions (EOFs) that are defined at each grid point of the model domain in order to 
better account for the error covariance between temperature and salinity in the shelf and 
open ocean areas. Moreover the Observational error covariance matrix is z-dependent 
and varies in each month. This new dataset has been tested and validated for more 
than 2 years against a background error correlation matrix varying only seasonally and 
in thirteen sub-regions of the Mediterranean Sea (Dobricic et al. 2005).
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1. Introduction 
Since year 2000, the Mediterranean Forecasting System, MFS, (Pinardi et al., 2003, 
Pinardi and Coppini, 2010, Tonani et al., 2014) is providing numerical analysis and 
forecast of the main physical parameters in the Mediterranean Sea. In the framework 
of several national and international projects this system has been kept updated and, 
since April 2015, it provides the physical component of the Med-MFC (Mediterranean 
Monitoring and Forecasting Center) for the Copernicus Marine Environment Monitoring 
Service (CMEMS), producing every week the analysis of the previous two weeks and 
daily providing 10 days forecast at basin scale, that are freely available through the 
CMEMS Catalogue (http://marine.copernicus.eu/, Clementi et al., 2017b). Currently 
the CMEMS Med-MFC system operationally uses a 3DVAR scheme that assimilates in 
situ observation of temperature and salinity by ARGO, Gliders and XBT, and along track 
satellite SLA. In this work we present the upgrade in the background and observational 
error covariance matrix from the system CMEMS Med MFC V1 (operational up to 
April 2016), hereafter EAS0, which used EOFs estimated from a climatological model 
simulation in 13 geographical regions and constant observational errors in vertical, to 
CMEMS Med MFC V2 (operational since May 2016), hereafter EAS1, in which EOFs are 
defined at each grid point and the observational error is depth dependent. 

The paper is organized as follows: in section 2 the pre-conditioning in the Background 
Error Covariance Matrix is described, while in section 3 the impact of the different 
Background Error Covariance Matrixes will be shown and in section 4 the conclusions 
are presented.

2. Vertical part of the background error covariance matrix  
3DVAR finds the minimum of the cost function, J, written as: 

J =
1
2
δxTB−1δx + 1

2
H(δx) −d)[ ]TR−1 H(δx) −d)[ ]

δx = x − xb B = VVT d = y −H(xb )
	  

In Eq. 1 δx is the analysis increments, the difference between the background state, xb, 
and the truth, x.  H is the linear interpolation operator that brings the model information 
on the observation grid, d is the misfit, i.e. the difference between the background and 
observation, B is the Background Error Covariance Matrix and R is Observational Error 
Covariance Matrix. Pre-conditioning in B is modelled through a sequence of linear 
operators composing V (Dobricic and Pinardi, 2008):

V = VDVηVHVV

where VD applies a divergence-damping filter on the correction field, Vη calculates 
the sea surface height error covariance from three-dimensional fields of temperature 

Eq 1

Eq 2
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and salinity with a barotropic model, VH applies horizontal covariances on fields of 
temperature and salinity, VV contains multi-variate vertical Empirical Orthogonal 
Functions (EOF). The multivariate vertical EOFs consider sea level, temperature and 
salinity profile anomalies. The temperature and salinity EOFs include the information 
about the cross-variance between temperature and salinity and thus a water-mass type 
analysis.

In order to create a more accurate representation of the horizontal variability in the 
water mass representation in the background error covariance matrix, we decided to 
compute the vertical EOFs in each grid point of the model domain. EOFs are calculated 
with a Singular Value Decomposition algorithm applied to a state vector containing 
temperature, salinity at model levels and sea surface elevation anomalies, for each 
grid point of the Mediterranean Sea deeper than 75m. The basic model variables are 
extracted from twelve years of reanalysis (Adani et al., 2011) for the period 2000 to 
2011. The temperature and salinity anomalies entering the state vector are calculated 
as monthly mean deviations and a EOF-box of 10 x 10 grid point profiles is used 
for each central grid point of a EOF-box since not all model grid point represent 
independent dynamical states. The EOF-box will naturally involve different depths 
grid points and only grid points deeper than the target point are considered to build 
the state vector. This sampling allows us to account for the different bottom shape 
maintaining the EOF-box smoothing approach, and the resulting state-vector will be 
very different for shelf or deep-water area. 

The daily averaged model field anomalies in each grid point resulted in a minimum 
dataset of more than 600 multi-variate profiles. The state vector X can then be 
represented as follows:

  
X =
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where ση, σT and σS represent the standard deviation of corresponding fields, and δ 
indicates the difference between the daily averaged value and temporal mean for 
each month. Each vector composing Eq.3 is a time series of daily values. As in Dobricic 
et al., (2006) in order to create EOFs independent from the number and thickness of 
vertical levels, Dobricic et al., (2016) used to multiply the state vector X by a metric 
factor matrix g (North et al., 1982) where the diagonal elements are:

  
g = diag 1,Δz1
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where the Δz are the model layer thicknesses and H is the model depth of the target 
point. 

Eq 3

Eq 4
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The structure of the vertical covariance matrix for the Gulf of Lyon region in winter and 
March for the EAS0 and EAS1 system respectively, are shown in Fig. 1. Temperature and 
salinity are correlated with the surface elevation, and the maximum of autocorrelation 
is in the upper water column. Largest correlation between T and S fields are found at 
the same levels. 

2.1 Estimation of the observational error correlation matrix
It is well known that the background and observational error matrices are not completely 
independent and that the observational error is dominated by representativeness 
errors. Desrozier’s relation (Desrozier et al., 2005) indicates a semi-empirical algorithm 
to calculate an optimal balance between the background error, B, the observational 
error R and the expected variance of the misfits, E(do

b d
OT

b)

E db
odb

OT( ) =R+αHBHT

	  

Fig. 1. Vertical  Background Error Covariance Matrix for EAS0 (left) and EAS1(right). In the 
left panel the Vertical Background Error Covariance Matrix is given for a large region in the 
Gulf of Lyon (northern Mediterranean Sea, Dobricic et al., 2006) during wintertime. In the 
right panel the matrix corresponds to a central grid point in the Gulf of Lyon valid for the 
month of March with a depth of 50 levels. The matrix horizontal and vertical dimensions are 
given by the number of variables in the state vector of Eq. (3), i.e. the sea level anomaly, the 
first 50 levels of temperature anomalies and the first 50 levels of salinity anomaly profiles. 
The matrix is composed of 101 x 101 elements and the diagonal corresponds to the sea 
level variance, temperature and salinity variances at each level that is considered to be the 
background error. The colorbar is proportional to the background error variance.

Eq 5
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In Eq. 5, The α coefficient in Eq. 5 is an empirical coefficient and different choices 
can be tried tested on the basis of sensitivity experiments that gave as best guess 
the value of 0.5. In this way we are implicitly stating that model and observation 
errors contribute equally to the analysis error. Once the value of α is decided and the 
expected variance of misfit is calculated from the reanalysis data, we estimate R as a 
function of the depth and time (the months). We consider R to be uniform in horizontal 
because of the lack of sufficient data to detect grid point changes in R.

Fig.  2. Observational vertical error profiles for temperature (left panel, C ) 
and salinity (right panel, PS ) estimated using Eq. . Black dotted line was 
is the constant value set for EAS0, while the full continuous coloured lines 
represent profiles stand for the vertical error profiles varying according for 
each the month. The vertical axis represents the depth expressed in m.
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3. Sea level anomaly data assimilation  
sensitivity experiments

Along track sea level anomalies have been assimilated together with the in situ salinity 
and temperature data in the MFS systems EAS0 and EAS1 for a sensitivity test of one 
year period (from the 1st May 2014 to 30th April 2015) and results are shown in Fig. 3 
in terms of weekly Root Mean Square (RMS) of misfits over the entire Mediterranean 
Sea. The grid point B and the variable R structure (in EAS1 experiment) improve the 
RMS misfit of about 0.3cm, i.e. 10% of the average RMS misfit. On the other hand, the 
RMS misfit for temperature and salinity (evaluated but not shown here) highlights that 
EAS1 has an enhanced skill in representing the salinity below the mixed layer depth, 
while temperature performance in the two systems is similar. 

Fig.  3. The weekly RMS of SLA misfits (background-observation) for the assimilation experiment 
using regional EOF, EAS0 (red line), and the one using the new grid point EOFs (blue line) 
during the testing period: 1st May 2014 to 30th April 2015. All values are expressed in cm.
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4. Conclusions
A new background error covariance matrix has been evaluated to improve the 
assimilation scheme of the MFS numerical ocean prediction system in the Mediterranean 
Sea in the framework of the CMEMS Med-MFC. The upgraded system takes into 
consideration monthly mean values and water mass variability at each grid point of the 
model domain. In addition, a new observational error matrix has been computed that 
is vertically and monthly varying, accounting for different representativeness of the in 
situ dataset.  Based on one-year sensitivity experiments, the improved assimilation 
scheme has proved to increase the predicted SLA skill by reducing the RMS misfit of 
the order of 10% considering an average error of about 3cm.

We are currently investigating the application of the same methodology to a new 
version of the modelling system with increased resolution of 1/24 degree in horizontal 
and 141 vertical levels.  
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