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Abstract
We present  a  workflow to  create,  scale  and georeference  and  integrate  digital  elevation

models (DEMs) created using open source structure from motion (SfM) multi view stereo

(MVS) software into existing DEMs (derived from LIDAR data in the presented cases). The

workflow also maps the root mean square error (RMSE) between the base DEM and the SfM

surface  model.  It  allows  performing  these  tasks  from the  ground  using  consumer-grade

digital cameras, open source and custom built software. We employ this workflow on three

examples of different scales and morphology: 1) A scoria cone on Mt Etna, 2) A lava channel

on Mauna Ulu  and 3) A flank collapse scar on Mt Etna. This represents a new approach for

rapid, low cost, construction- and updating of existing DEMs at high-resolution and on scales

of up to several thousand square meters. We assess the self-consistency of the method by

comparison of DEMs of the same feature, created from independent datasets acquired on the

same day and from the same vantage points, and evaluate the effect of grid-cell-size on the

reconstruction error. This method uses existing DEMs as a geo-referencing tool and can,

therefore, be used in limited access and potentially hazardous areas, as it no longer relies

exclusively on control targets on the ground.
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1. Introduction
1.1. Surface modeling in earth science

Digital surface reconstruction plays an important role in earth sciences as an essential

tool to digitize and quantify geologic processes. Among the most widespread techniques for

surface reconstruction are: 1) light detection and ranging (LIDAR)  (Cashman et al., 2013;

Favalli et al., 2010; Krishnan et al., 2011; Liu, 2008; Liu et al., 2007); 2) classic stereo-

camera  photogrammetry  and  structure  from  motion  (SfM),  multi  view  stereo  (MVS)

photogrammetry methods (Ansan et al., 2008; Favalli et al., 2012; Hirano et al., 2003; James

and Robson, 2012; Stöcker et al., 2015), and 3) radar interferometry (Farr et al., 2007); see

also: http://www2.jpl.nasa.gov/srtm. 

LIDAR technology has been extensively used to produce DEMs of Earth and of other

planets  (Tarolli,  2014).  LIDAR-based  DEMs  are  commonly  derived  from  airborne

acquisition platforms (e.g. airplanes or helicopters) because they offer an optimal vantage

point, a flexible geometry, and make it possible to rapidly cover large areas  (Hofton et al.,

2006; Mazzarini et al., 2007; Mouginis-Mark and Garbeil, 2005; Neri et al., 2008). However,

LIDAR technology is also frequently used as a ground based method, where it enables high

resolution  surface  modeling  (James et  al.,  2009a;  James  and  Quinton,  2014).  Airborne

LIDAR surveys permit generation of DEMs for large areas and recovery of detailed and

comprehensive  elevation  maps  of  the  covered  area.  Typical  grid  (pixel)  sizes  using  this

methodology are around 1 m  (Favalli et al., 2009; Krishnan et al., 2011).  Cashman   et al.  

(2013)   presented  a  comprehensive  review  of  how  recent  advances  in  laser  3D  surface

scanning techniques have revolutionized our ability to map terrains  (Harris,  2013) and to
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monitor  the  evolution  of  active  geologic  surface  features  at  high  spatial  and  temporal

resolutions  (e.g.,  James  et  al.,  2009).  Cashman   et  al.   (2013)   describe  and  evaluate  the

application of both airborne (ALS) and terrestrial laser scanning (TLS) techniques for the

interpretation of lava flow morphology as well as giving an overview over the capabilities of

these techniques to output flow ages through use of relative surface roughness and surface

spectral features. 

The second, common, methodology for the production of 3D surface models is the

classic  photogrammetric  approach  using  stereo  imagery.  This  method  requires  relatively

complex image acquisition, calibrating and processing techniques, and fixed geometries thus

restricting  the  use  of  classical  photogrammetry  to  well-trained  experts;  see  for  example

(Duane,  1971;  Faig,  1975).  However,  recent  advances  in  computation  technologies  have

allowed for the reconstruction of 3D surfaces from digital photographs taken with consumer-

grade (low cost, off-the-shelf) digital cameras using the “Structure-from-Motion” (SfM) and

multi  view  stereo  photogrammetric  approach  (Furukawa  and  Ponce,  2010;  James  and

Robson, 2014; James and Robson, 2012; Tuffen et al.,  2013; Westoby et al.,  2012; Wu,

2011).  Structure-from-Motion  software  drastically  simplifies  the  application  of

photogrammetric  techniques  for the non-expert  user  (Cecchi et  al.,  2003;  Cignoni et  al.,

2008a; Favalli et al., 2012; Fonstad et al., 2013; James and Robson, 2012; Westoby et al.,

2012; Wu, 2011).

The  third  method,  radar  interferometry,  uses  phase  differences  in  radar  waves

reflected from the imaged surface and returned to a sensor and is commonly used on large

scales and based on satellite or aircraft platforms.
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All  the  above  methods  are  commonly  used  independently  of  each  other  and

integration of data obtained from the varying methods is uncommon to date.  

1.2. Use and application of LIDAR and SfM data in Volcanology.

Nowadays, large scale DEMs are largely obtained using airborne LIDAR, whereas

SfM DEMs are commonly constrained to local applications (Farquharson et al., 2015; James

and Varley, 2012). Both methods provide ways for estimation of erupted volumes through

comparison of sequential DEMs, and may be used to track temporal and spatial evolution of

active  lava  flows,  such  as  flow front  advance  and  time-varying  volumetric  flow rate  in

channels.  Such  sequential  DEM  creation  has  already  been  extensively  applied  in

volcanology,  where  high-precision  morphometric  and volumetric  measurement  of  surface

features  are  crucial  for  understanding the  dynamics  of  for  example  lava  flow and dome

emission  (Farquharson et  al.,  2015;  James  and  Robson,  2014;  James  and  Varley,  2012;

Mazzarini et al., 2005; Tuffen et al., 2013)(Favalli et al., 2010) and cinder cone geometries

(Fornaciai et al., 2010). 

Other  applications  of  SfM  in  earth  science  spans  from  monitoring  of  riverbeds

(Barker et al., 1997), through estimation of erosion rates  (Barker et al., 1997; Daba et al.,

2003; Dolan et al., 1978; Thomas et al., 1986) to reconstructing the emplacement of highly

dynamic geologic features such as active lava flows (Bretar et al., 2013; Farquharson et al.,

2015; James et al., 2009b; James and Quinton, 2014; James et al., 2006). Low cost airborne

applications  of  SfM  photogrammetry  are  also  beginning  to  play  a  role  in  geosciences

(Hugenholtz et  al.,  2013;  Niethammer et  al.,  2010).  Recently,  Johnson   et  al.   (2014)   has

presented a case study comparing ALS, TLS and SfM approaches to map a fault line, a study
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which highlighted the advantages of SfM as a simple and rapid tool to recover high quality

geomorphological data. 

The accuracy of DEMs derived from SfM reconstruction has been assessed by several

authors (Fonstad et al., 2013; Hugenholtz et al., 2013; James and Robson, 2012). However,

accuracy estimation is almost exclusively based on high-spatial resolution laser scans of the

same areas or the deployment of reference points within the scene (Hugenholtz et al., 2013).

All of the above described methods rely on the deployment of ground control targets or GPS-

fixed control points measured in situ for scaling, georeferencing and accuracu assessment

purposes (James and Robson, 2012; James et al., 2006; Westoby et al., 2012). 

Both LIDAR and SfM technologies are commonly employed separately and rarely

integrated for unified data treatment. This is largely due to the fact that the two methods are

commonly employed from very different points of view (i.e. airborne for LIDAR and ground

based for SfM) and therefore have inherently different spatial coverage.

1.3. Strengths and weaknesses of LIDAR and SfM surface modeling 

Both LIDAR and SfM operate in line of sight and are, therefore, strongly affected by

the  deployment  method  and  resulting  vantage  points.  Both  ground  based  and  arial

deployment modes have inherent advantages and disadvantages, independent of the surface

reconstruction technique that is used. Although data acquired using airborne platforms can

produce  DEMs  of  high  spatial  resolution  over  large  areas,  reproduction  of  vertical  and

overhanging  surface  features  are  often  problematic,  resulting  from  its  vertical  viewing

geometry.  To reconstruct vertical  and/or overhanging features requires the deployment of
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surface  based  acquisition  modes,  such  as  terrestrial  laser  scanning  or  photogrammetry.

Ground based data acquisition, however, has drastic limitations regarding the areal coverage

since shadowing effects of objects that are not directly in line with the acquisition medium or

obscured at the time of acquisition (e.g. through objects, clouds, steam etc.) are frequent.

Integration  of  airborne  and surface  based data  allows  to  overcome these  difficulties  and

produces  high  resolution  surface  models  over  larger  areas,  as  demonstrated  for  the  SfM

method by (Stöcker et al., 2015). 

Another disadvantage for widespread use of both airborne LIDAR, as well as TLS is

that they require expert users, significant financial effort for acquisition and deployment of

the device (especially ALS). In addition, although a rapid (e.g. 10s of minutes) repeat of data

acquisition  is  possible  and allows tracking the evolution of highly dynamic features  at  a

satisfactory temporal resolution (Favalli et al., 2010), this approach is extremely expensive,

mostly due to flight time costs, making rapid deployment and high frequency data collection

difficult and expensive. 

1.4.  Integration  of  LIDAR  and  SfM  data  for  rapid,  low  cost  updating  and

improvement of existing DEMs

The spatial  and temporal  development  of  active  volcanic  features,  such as  cinder  cones,

collapses, growing lava flow fields and accumulating air-fall deposits, is of great interest to

scientists and civil protection authorities as it yields important information about the onset,

evolution  and  termination  of  potentially  hazardous  events.  High-spatial  (cm)  resolution

Digital Elevation Models (DEMs) generated on a regular basis (i.e. ideally on the scale of

minutes to hours) are crucial for assessing the volume changes in such active volcanic areas.
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Moreover,  having  an  updated  topography  is  essential  for  accurate,  up-to-date,  lava-  and

pyroclastic-flow simulation (Harris et al., 2015; Tarquini and Favalli, 2010). In many places

large  scale  DEMs  are  available  from previous  campaigns  but  rapidly  become  outdated,

especially in very dynamic geologic settings such as active volcanic areas. 

The  hazardous,  harsh,  unstable  and  unpredictable  nature  of  volcanic  areas  and

eruptions calls for fast, safe and flexible remote sensing techniques. We here present a new

methodology that allows for integration of existing and new surface model data. We update

available airborne LIDAR data through construction and georeferencing of DEMs generated

through SfM MVS and map the RMSE between thw two DEMs. We apply this methodology

to volcanic features of different scales for which rapid and accurate volume change estimates

are sought during and after an eruptive event to allow hazard assessment. The three targets

are:  1) a scoria cone with a relatively smooth surface morphology on Mt. Etna (Italy); 2) a

lava channel on the southern flanks of Mauna Ulu, Kilauea (Hawaii); and 3) the southern

section of Valle del Bove, a large flank collapse feature also on Mt. Etna.  The presented

methodology creates high-spatial resolution DEMs that also encompass features commonly

inaccessible to airborne LIDAR (e.g. overhanging and vertical walls). We integrate the two

datasets to derive a complete DEM coverage with no shadow zones. We assess the quality of

the derived DEM through comparison of the SfM DEM with LIDAR-derived DEMs of the

same area. Using the combination of both SfM and LIDAR techniques, this methodology is

able  to  achieve  significantly  increased  spatial  resolution  and  rapid  updating  of  existing

DEMs. Although previous studies have made steps towards reducing the need for ground

control points (GCPs) deployed and measured in the field (Farquharson et al., 2015; James

and Varley,  2012;  James  and Robson,  2012;  Tuffen et  al.,  2013),  the  presented  method
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advances  this  approach  by  using  existing  DEMs  for  georeferencing  purposes,  therefore

eliminating the need for field measurements. This vastly expands the capabilities of the SfM

photogrammetry  method so that  it  can be used in  hazardous and inaccessible  areas.  The

generated 3D topographic datasets are employable throughout the whole of the earth science

with little financial expenditure.

2. Methodology

The approach for creating and georeferencing 3D surface models that we present here

comprises five steps (see Figure 1). These are described in detail in the following sections

and comprise: 

1) A field campaign during which the input images are acquired;

2) Processing of the image data and creation of a 3D point cloud using Visual-SfM open

source  software  (Furukawa et  al.,  2010;  Furukawa  and  Ponce,  2010;  Wu,  2011,

2013);

3) Manual post-processing of the point cloud retrieved from Visual-SfM and initial user

guided geospatial  placing of the model using Meshlab and Scanalyze open source

software developed by Cignoni   et al.   (2008a)   and Pulli   et al.   (2002)  , respectively;

4) Accurate georeferencing through error minimization between the point cloud output

and the LIDAR-derived DEM using the MINUIT minimization algorithm developed

by (James and Roos, 1977); and

5) Computation of a geo-referenced DEM.
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2.1. Image acquisition

Image acquisition for SfM photogrammetry does not require rigid geometries or calibration,

and  can  be  performed  with  any  consumer-grade  digital  camera.  For  a  successful

reconstruction, images should be acquired from a maximum of number of different points of

view that are widely distributed around the area of interest. The images used in this study

were acquired at variable focal lengths using four different digital cameras: a Canon EOS

450D equipped with a canon EF-S 18-55mm f/1 3.5 5.6 IS zoom lens and a Ricoh Caplio

GX100 compact camera (no changeable lense) for Monti Silvestri superiore, a Canon EOS

450D camera equipped with a Canon EF-S 18-135mm f/3.5-5.6 IS lense and a Canon G 12

compact camera for Valle del Bove on Mt. Etna, and a Pentax Optio S40 compact camera (no

changeable lense) and an Canon EOS 500D camera (REBEL T1i) with a EF-S 18-55mm f/1

3.5 5.6 II zoom lense for Hawaii.  The cameras were operated in automatic mode and no

image  optimization  was  performed.  Distances  from the  imaged  objects  ranges  from few

meters (Mauna Ulu lava channel) to over 2 kilometres (far end of Valle del Bove).The image

acquisition was performed during field campaigns dominantly aimed at other purposes and

required little time on the ground (c.a. 1.5 h for Crateri Silvestri and Mauna Ulu; 2.5 h for

Valle del Bove). Acquisition of these data did, therefore,  not add significant temporal or

financial effort to these field campaigns, underlining the advantages this methodology offers

in terms of flexibility,  data acquisition speed and financial  needs.   For example,  the two

operators in the Hawaiian case were able to acquire a total of 834 images from viewpoints

spaced along either bank of a 215 m long stretch of lava channel in around 30 minutes. 
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2.2. SfM point cloud reconstruction

We  use  the  Visual-SfM  (VSfM)  multicore  bundle  adjustment  interface,  an  open

source Structure from Motion Software developed by  (Wu, 2013) in combination with the

Clustering Views for Multi-view Stereo (CMVS/PMVS) code (Furukawa and Ponce, 2010).

The CMVS code can operate within the VSfM shell making all processing fast and simple.

The  images  are  first  loaded  into  the  VSfM  software,  and  automated  image  feature

identification is performed followed by image-to-image registration using a Scale Invariant

Feature  Transform,  SIFT  (Lowe,  2004).  The  image  feature  detection  and  matching

algorithms exploit the computing capabilities of modern Graphics Processing Units (GPUs)

which allows rapid data processing. The duration of this process is dependent on the GPU’s

calculation  capacity  and the  number  of  input  images.  Calculation  time  commonly  scales

exponentially with total image number and lies in the range of minutes to hours on consumer

grade  PC  systems  and  seconds  to  minutes  on  multicore  computers.  Multicore  Bundle

Adjustment,  (MBA)  and  three-dimensional  sparse  point  cloud  reconstruction,  as  well  as

CMVS/PMVS dense  point  cloud  reconstruction,  of  the  imaged  objects  is  then  executed

within the VSfM shell. No specific lense distortion correction was applied, since all images

were  acquired  using  standard  lenses  without  significant  distortion  effects.  Neither  were

specific  camera  models  or  other  parameters  fixed  in  any  way  during  the  reconstruction

process in order to assess the method’s precision as a standard user without complicating the
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processing workflow. The resulting dense point cloud, which is not scaled to the actual size

of the object of interest, is exported by VSfM as a set of point cloud files.

2.3. Manual-cleaning and geo-placing

We impose a series of post-processing steps to the point cloud files derived from the

VSfM  reconstruction  before  final  DEM  creation.  The  following  section  describes  the

individual sub-steps and their respective functions.

2.3.1. Point Cloud Cleaning

The dense reconstruction returns point clouds with a certain number of inaccurate

data points due to matching of non-correlated features (this is an inherent source of error in

the  reconstructions).  The  point  cloud  files  also  often  contain  data  points  that  were

reconstructed outside of the area of interest (i.e. points that lie in the background or vicinity

of the object of interest). To clean the files up, we use Meshlab (Cignoni et al., 2008b), a 3D

mesh processing software developed at the Consiglio Nazionale delle Ricerche of Pisa, to

manually restrict the point cloud to the area of interest and to remove obvious erroneous data

points.

The automated reconstruction through VSfM and CMVS may also return false data-

points at interfaces between the imaged object and the background. In the case of larger scale

geologic features the common sources of such errors in the image are for example the border

between the object and the sky in the background, large water surfaces, clouds or steam. This

issue appears to be independent of the reconstruction platform  (James and Robson, 2012;

Westoby et al., 2012). The RGB colour information for each point is available in the output
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files from VSfM and may be used to address this issue. In this workflow we automatically

remove such points based on their colour information through user-based specification of the

range of colours to be removed in RGB space. This “cleaned” point cloud serves as the basis

for the following steps.  

2.3.2. Preparing the data for geo-referencing

The cleaned point cloud is then approximately geo-referenced in a first step by the

user through definition of three points identifiable in both the base DEM and the point cloud.

The user selects these points 1) on the base DEM using a GIS software of choice in our case

an open source  solution,  (Quantum,  2013),  and 2)  on  the  point  cloud using Meshlab  or

Scanalyze, both of which are open source 3D viewing and editing modules (Cignoni et al.,

2008b; Pulli et al., 2002). The code developed here uses this information to scale the model

and replace the relative values with the correlating absolute coordinate values for each data

point.

2.3.3. Geo-referencing through RMSE minimization

The  pre-cleaned  and  roughly  geo-placed  point  cloud  created  through  the  SfM

workflow is fed to our custom made algorithm, in combination with the LIDAR DEM to

serve as the base for the final, high precision, georeferencing. To do this we use an ad hoc

georeferencing routine based on the MINUIT minimization library developed by James and  

Roos (1975)  . In this step the algorithm reduces the root mean square error (RMSE) between

the two surface models through rotating, scaling, and translation in the X, Y and Z directions.
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The DEM used as the base in this geo-referencing step can, but does not have to be, identical

to the DEM used for error mapping. In most cases it is preferable to mask the base DEM so

as to include only those areas that are known to have had little-to-no change in topography

between the time of acquisition of the new DEM and the base DEM. For example, when

using this  methodology to reconstruct  the area of a newly emplaced lava flow, the zone

where lava flows were emplaced should be masked so as to perform the geo-referencing only

using areas outside of the zone of change. Failure to do so will result in placement of the new

DEM below the actual surface (see Figure 6).

In  some  cases,  after  this  final  georeferencing  step  has  been  completed,  poorly

reconstructed data points become obvious and may be targeted for removal. Here the user

specifies  a  distance  margin  to  be excluded from the  model.  For  each point  the  distance

between the point position on the base DEM and the position of the point in absolute space

are assessed. If the result lies outside of the distance range specified by the user, then the

point is removed. RMSE minimization is then repeated.

2.4. DEM construction

The  terrain  models  created  using  our  SfM  methodology  consist  of  point  clouds  that

commonly have greater point densities than LIDAR datasets. This is a result of the scale of

data acquisition which in the cases presented here are obtained from a vantage point much

closer to the object, and with a much greater spatial detail, than is possible with airborne laser

scanning.  We are,  therefore,  able  to  choose  cell  sizes  that  are  significantly  smaller  than

average cell sizes used for processing of airborne LIDAR data. This higher density of the

point cloud also makes the use of interpolation methods, commonly used in areas with sparse
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data coverage,  unnecessary since in all  cases presented here there were no grid cells  for

which no data point was available. The final DEM is then created from the point cloud after

defining a grid cell size in X-Y space and averaging the Z values for all points inside each

grid cell. This methodology follows standard geospatial approaches for the generation of a

DEM from point cloud data, e.g. (Aguilar et al., 2005; Krishnan et al., 2011).

3. Case Studies

To test the methodology, we use image datasets from two volcanoes (Mt. Etna and

Kilauea) and for three volcanic landforms of very different scales, morphologies and surface

types. These are (Figure 2):

1) A scoria cone of relatively smooth surface morphology (Mt. Etna);

2) A lava channel on the southern flank of Mauna Ulu vent (Kilauea, Hawaii);

3) The southern section of Valle del Bove (Mt. Etna).

Figure 2 shows sample images with representative morphologies of the respective field sites.

A detailed account of the area covered by the model, the number of images used, the total

number of points for both LIDAR and SfM models as well as the respective point density and

reconstruction  error  assessed  through  MINUIT  minimization  and  percentage  error  (ratio

between RMSE and average XY scale) are given in Table 1.

3.1. Etna (Monti Silvestri superiore)

This dataset comprises 885 images of the crater of a composite spatter and cinder

cone built during the 1892 flank eruption of Mt. Etna. Images were acquired from the crater
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rim, looking inwards into the crater from 54 points around the rim in June 2012. The cone

long axis is  230 m, and the average width is  90 -  100 meters.  The imaged surfaces are

generally smooth and are covered with lapilli sized tephra with occasional bomb sized clasts

and patches of shrubby vegetation less than 0.5 m in height and diameter. At the southern end

of the central east-west elongated rim, areas of sub-vertical coherent rock faces are present,

while the northern end has a small area of lava flow invasion that occurred during the 2001

flank eruption (Behncke and Neri, 2003). The LIDAR-derived DEM used for the base image

was acquired in 2004 and is described in detail in Favalli   et al.   (2009)  . The LIDAR data was

acquired using an Optech Airborne Laser Terrain Mapper (ALTM 3033); using a Class IV

Laser at 1064 nanometres; the 1 sigma vertical accuracy is 0.15-0.35 m.  From the LIDAR

data, we extracted the Monti Silvestri crater area, which corresponds to the area of interest to

be reconstructed with VSfM and which covers an area of 24,630 m2. This area is covered by

16,343 LIDAR points resulting in a point density of 0.7 pts/m2 (see Table 1).

3.1.1. VSfM reconstruction

The average point density of the VSfM point cloud is 534 pts/m2, thus much greater than that

of the LIDAR data (0.7 pts/m2). After georeferencing, the RMSE difference between the SfM

point cloud and the LIDAR DEM was 0.178 m. The SfM model, as well as maps of point

density and surface roughness  (i.e. standard deviation of all points in each respective cell

relative to the averaged cell value), are shown in figure 4a-c. We also plot profiles across the

DEMs derived from both methodologies.  The plot  of figure 4e shows a good agreement

between the two datasets when viewed in a global sense. However, detailed analysis of the

data  highlight  the  ability  of  ground  based  SfM  to  create  models  of  improved  spatial

resolution than the airborne LIDAR data (see figure 4d, plot 1 and Figure 8 for SfM accuracy
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analysis),  as  well  as the ability  to  resolve sub-vertical  faces  (see figure 4e,  plot  2).  The

difference between the two models is assessed as RMSE for the whole area as well as by

calculating the local standard deviation of for each datapoint usind the following formula:

Standard deviation = √ (Lidar−SfM )
2   (1)

Results  are  plotted  along with profiles  through both models  for  the  Monto Silvestri  and

Hawaii examples in Figures 4 and 5, respectively. Qualitatively the differences can be seen

by examining the two DEMs, presented as shaded relief.  The increased resolution of the

image-derived SfM reconstruction becomes apparent in the reconstructions of the small lobe

of 2001 lava that invaded the northern floor of the  Monti Silvestri crater (Fig. 3d,e).  The

footpaths seen in figure 3 f,g were created in the time between the two data acquisitions

(LIDAR and SfM) and underline the potential use of this technique for updating of existing

DEM data.

3.2. Hawaii (Mauna Ulu lava channel)

This dataset comprises a total of 834 images of a lava channel formed between the 30

May and 2 June 1974, being one of the final events of Kilauea’s 1969-1974 Mauna Ulu

eruption (Harris et al., 2009). The images were acquired from the channel levees looking into

the channel in September 2012. The long axis of this channel section is 215 m with a width

ranging between 5 to 10 m. The imaged surfaces are generally rough and jagged with many,

small scale, overhanging features and intense shadowing (i.e. zones with little to no image

information), representing a significant challenge for the SfM reconstruction. The LIDAR-

derived  DEM  used  for  georeferencing  was  acquired  in  2009  and  is  available  from
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http://www.opentopography.org/,  together  with a  survey report.  The report  states that  the

LIDAR  data  was  acquired  using  an  Optech  GEMINI  Airborne  Laser  Terrain  Mapper

(ALTM); using a Class IV Laser at 1047 nanometres; the 1 sigma vertical accuracy is given

with 0.05-0.30 m.  From this DEM, we extracted the channel area corresponding to the area

of interest reconstructed with VSfM. The extracted 2,872 m2 area was covered by 25,178

LIDAR points resulting in a LIDAR point density of 8.8 pts/m2. 

3.2.1. VSfM reconstruction

The average point density for the DEM derived from SfM reconstruction is 1,408 pts/

m2 and the RMSE between the SfM and LIDAR DEMs after georeferencing is 0.229 m. The

SfM-DEM was overlain on that derived from the LIDAR data. The result is given as shaded-

relief  in  figure  5a.  There  is  a  difference  in  point  density  between the  northern  (average

>1,600 pts/m2) and southern (average 400-800 pts/m2) section of the model (Figure 5b). This

is  a  result  of  the  fact  that  significantly  more  image data  were acquired  for  the  northern

section (657 images) than for the southern section (177 images). However, the consistency of

the vertical difference between the LIDAR and SfM models (Dz) down the entire section

show that this has little to no effect on the quality of the reconstruction (Fig. 5d). The plot of

profiles along the central axis of the channel shows a good correlation between these two

datasets (Fig. 5f). We compare the two datasets by plotting a profile down the centre axis of

the channel (Figure 5e). The good correlation between the two datasets is confirmed by the

fact that the elevation profiles derived from the two datasets over plot each other and the

points of disagreement are highlighted by spikes in the local standard deviation. The same

area has previously been studied morphologically by Harris   et al.   (2009)  , during which four

full field days (by at least two persons) were necessary for the construction of a DEM from
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kinematic GPS data for the channel levees and laser ranger measurements for the channel.

The method presented here required merely a walk along the flow channel and several hours

of PC processing to perform this task. This highlights the potential of SfM for rapid updating

DEMs of small volcanic features.

The upper section is rougher than the lower (Figure 5e). This is consistent with the

field analysis of Harris et al. (2009), which revealed that the upper section was a drained

pond formed by a blockage in the channel, explaining the high point between 120 and 140 m,

as well as the shallower slope to the channel floor above this level (Figure 5d). 

3.3. Valle del Bove

This dataset comprises a total of 2,817 images of the inner part of the Valle del Bove,

a 6.5 km × 4.5 km flank collapse feature that dominates the east flank of Etna. Images were

acquired from the rim of the valley in May 2014, during the ascent up, the southern rim

resulting in very low angle perspectives. The long (E-W) axis of the model is 4,500 m, and

has an average (N-S) width of 2,000 m. Thus we cover the upper, south-eastern quadrant of

the valley. The imaged surfaces vary between smooth slopes covered with lapilli and bomb

sized  tephra;  vertical  faces  of  upstanding  dykes  exposed by erosion  in  the  valley  walls,

relatively smooth surfaced pahoehoe and rough ‘A’ā lava flow surfaces on the valley floor.

The LIDAR derived DEM used as the reference base was acquired in 2010 using an Optech

GEMINI  Airborne  Laser  Terrain  Mapper  (ALTM);  using  a  Class  IV   Laser  at  1064

nanometres; the 1 sigma vertical accuracy is 0.05 - 0.30 m (INGV-database). From this we

extracted the south-eastern section of Valle del Bove corresponding to the area of interest
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covered  by  the  imagery  (Figure  6).  This  covers  an  area  of  7,590,980  m2 and  contains

4,017,488 LIDAR points.

3.3.2. VSfM reconstruction

The  scale  of  the  modelled  feature  and  the  number  of  images  available  for  the

reconstruction lead to a point density of 1.4 pts/m2. This is close to the point density of the

airborne LIDAR (0.5 pts/m2). The ground based SfM data also suffers coverage problems

due to the low-angle vantage point, resulting in extensive shadow zones that are not captured

by a sufficient  number  of  images.  There  were  also only a  few (c.a.  6  different  viewing

angles; all located on the S-SW-rim of the valley) good observation points from which the

whole area could be imaged, resulting in difficulties in including parts of the SfM data into

the unified model. However, the resulting point-cloud was sufficiently well-constrained in

shape to allow georeferencing to the LIDAR-derived DEM base. Where a reconstruction of

data-points was possible, the two datasets show excellent agreement (Fig. 6). 

Although poorly suited to the reconstruction of coherent models for large areas where

access to a large number of vantage points is difficult,  ground based SfM in combination

with the presented workflow allows assessment of changes in spatial features in areas where

access to the area itself is difficult. We take as an example an area in the northern part of the

reconstructed zone which was inundated by lava flows between acquisition of the LIDAR

data (2010) and the field campaign during which the images used for the SfM DEM were

acquired (2014). The datasets agree in zones where no lava flow inundation has occurred

(Figure 6a). However, in areas where lava was emplaced between the two dates the RMSE

between the two models is high (between 3.5 and 10 m; see Figure 6b and enlargements in

20

406

408

410

412

414

416

418

420

422

424

426

20



the white boxes). The presence of a new positive topographic structure results in systematic

errors when applying the presented georeferencing methodology. We therefore masked this

area and re-georeferenced the data excluding the areas affected by lava flow emplacement;

identified from field reports published by INGV Catania (Behncke et al., 2013). This allowed

us to account for the modifications in surface topography and to correct the data such that the

RMSE could be reduced to 1.160 m. The absolute position and geometry of the lava flow

unit(s) can be constrained with much better accuracy. Plots of profiles along and across the

lava flow axis show that through masking and re-georeferencing we could produce surface

models that are in good agreement with the LIDAR data outside the flow-invaded zones.

This means that we can estimate lava flow thickness along and across the flow axis without

the need to access the flow (Figure 6b). In this case, flow thickness ranges from 4 to 10 m

and the vertical difference between the levee crest and channel infill is  0.5 to 1.5 m; with an

error of ±1.1 m. (Figure 6b, profiles D and E). Misplacing of the SfM derived DEM due to

changes in topography can easily be corrected if parts of the reference DEM did not change

during deposition of the feature of interest (such as the periphery of the lava flow in the

above  example).  If  the  topography  is,  however,  blanketed  homogenously,  the  post

emplacement surface would be placed onto the pre deposition surface and no changes in the

surface could be detected. In such cases it would be necessary to reference the SfM DEM to

topographical features such as peaks or zones of steep slopes, where blanketing is not present

or  minimal.  To  further  refine  the  data  it  would  also  be  possible  to  include  on-site

measurements of the deposit thickness in a few locations to then correct the placing of the

surface and allow for extraction of accurate deposit thickness data.
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4. Quality Assessment and Discussion

We here perform a range of analyses to assess the accuracy and reproducibility of the

models created here, as well as the effect of DEM grid size, point-cloud density and surface

roughness on the quality of fit between the SfM and LIDAR models.

4.1. Reconstructions from independent image sets on the same landform

When plotted for the  Monti  Silvestri  case,  the linear arrangement  of LIDAR data

points, which trend NE-SE in this case (Figure 7a), becomes apparent. This is an artefact of

the scanning acquisition method of airborne LIDAR, with the trend being that of the flight

path  and  the  separation  being  the  regular  sample  spacing.  When  the  vertical  difference

between the LIDAR and SfM DEMs is assessed it becomes clear that the LIDAR data has a

large systematic error that stems from correlation and anti-correlation of the LIDAR strips.

This error, here, is around 8-9 m and can be seen as NW-SE trending bands which following

the LIDAR scan strips (Figure 7b). 

Another systematic error apparent in the airborne LIDAR data is apparent in figure 7b.  The

error along the flight trajectory oscillates on a length scale of 20 m. This may be a result of

oscillation  of  the scanning plane  of  the laser,  systematic  vertical  oscillation  of  the plane

during the flight, or a combination of the two. An automated correction procedure, applied to

the original 2004 LIDAR data, allows the reduction of the strip-to-strip root-mean-square

vertical  error  from 0.42 to  0.15  m  (Favalli et  al.,  2009;  Krishnan et  al.,  2011),  but  the

systematic error recovered in figure 7b remains evident. In Favalli et al., (2009) a systematic

error  in  the  scanning  plane  was  accounted  for,  but  not  the  potential  oscillation.  Only
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comparison with a higher-spatial resolution DEM (such as the SfM DEM presented here)

highlights the presence of such systematic errors. It therefore becomes apparent, that airborne

LIDAR  data  may  not  be  adequate  to  check  the  accuracy  of  SfM  DEMs  and,  that  the

resolution of airborne LIDAR data can be drastically improved using the presented method.

The LIDAR data also have extensive gaps in the central parts of the craters. These gaps are

filled during DEM creation by interpolation and result in an overestimation of the altitude of

the points in this area.

To test the accuracy and reproducibility of the VSfM methodology and the recovered error

assessments, we split the dataset into two image sub sets of the same object acquired the

same day and from the same vantage points but we then processed them separately using the

methodology described above.  Reconstructions  of  Monti  Silvestri  were created  from two

datasets  (M1  and  M2)  comprising  440  images  each.  Both  models  have  an  initial

overabundance of image data. This allows ruling out of gross errors resulting from lack of

coverage in parts of the object. The two, independently constructed, models (M1 and M2)

contained 8,531,155 and 6,674,893 data points, and the average point density is 346 pts/m2

and 271 pts/m2, respectively. After georeferencing through MINUIT, the RMSE between the

SfM and LIDAR DEMs is 0.177 m (M1) and 0.184 m (M2). Based on the above results of

the analysis of the cell size effect on RMSE we have chosen a grid cell size of 0.5 m for the

following comparisons.

By comparing the two, independent, surface models (Figure 7c) it is possible to assess the

internal error of the SfM DEM creation methodology.  Comparing the derived gridded DEMs

after  referencing  them to  the  LIDAR (i.e.  revealing  the  reproducibility  of  the  presented
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method) returns a minimum RMSE of 0.059 m. Comparing the SfM derived gridded DEMs

after  referencing  them  to  each  other  (i.e.  revealing  the  reproducibility  of  the  SfM

reconstruction itself) we recover a vertical error of the presented method of min 0.037 and

max 0.060 m, depending on the employed grid size (black dots in Figure 8). 

4.2. The effect of grid cell size on reconstruction error

During DEM creation,  Z values of all  points contained within a given X-Y grid cell  are

averaged over the cell area. We re sampled both the LIDAR and the two SfM point cloud

datasets at grid sizes of 0.1 to 3.1 m, using an incremental step of 0.1 m to investigate how

grid cell  size affects  the RMSE during georeferencing of the SfM models to the LIDAR

DEMs. The results of a range of comparisons between LIDAR and SfM data are plotted in

figure 8. We find that:

1)When  investigating  the  effect  of  changing  grid  size  of  the  SfM  DEM,  while

maintaining the LIDAR DEM grid size constant at 0.5 m ; the common resolution for LIDAR

derived DEMs of ETNA (Mazzarini et al., 2007), we observe  an initial small, but steady,

decrease  in  RMSE, for  grid  steps  between 0.1 and 1.8 m,  RMSE then remains  constant

around 0.229m at larger grid values(red and blue squares in Figure 8). 

2) The RMSE between the two DEMs created by SfM and LIDAR, re-sampled at the

same grid sizes (red and blue triangles) returns an initially steady error at 0.17 m until grid

sizes of 1.5 m. At larger grid sizes the error increases up to values of 0.190 m at a grid size of

2.8 m.
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3) When comparing each point cloud with its DEM (created by averaging the point

cloud elevation  values  over  the  respective  grid  area;  red and blue  diamonds)  we see  an

expected, linear, increase in RMSE with increasing grid size. This effect increases with both

increasing slope and surface roughness, since with increasing grid cell size a greater number

of points is averaged over a larger area and thus, the respective distances from the averaged

plane increases.

4) When comparing M1 and M2 with each other (empty black circles) the data show

a significant initial decrease in RMSE with increasing grid size. It reaches a minimum of

0.060 m at the 0.6 m grid size, and then increases with increasing grid size. MINUIT error

minimization through rotation,  stretching and translation allows us to decrease the RMSE

between the two independently created surface models to below 0.05 m (filled black circles). 

The drastic difference in RMSE when comparing the two models with the LIDAR

DEM, as opposed to when comparing them with each other, shows that the LIDAR data, at

the acquisition scale commonly used for airborne LIDAR-DEM creation,  cannot serve to

assess the quality of reconstruction of the SfM-method presented here because its intrinsic

error is larger than the resolution achieved with SfM.

4.3. SfM model evaluation and the effect of the viewing geometry

Here  we  evaluate  the  SfM  reconstruction  and  the  georeferencing  procedure  by

plotting  point  density  versus  ground  slope  angle  (Fig.9a).  We  also  analyze  the  vertical

difference between SfM and LIDAR models (Dz) as a function of point density, slope angle

and surface roughness (Fig.9b,c,d, respectively). The results show an increasing point density
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with increasing slope (Fig. 9a). This effect is a result of the viewing point from which the

images were acquired in relation to the topography, with more abundant image information

being acquired for slopes perpendicular to the viewing point. Thus point density is best for

steeper  slopes  during  ground  based  photogrammetry,  and  for  horizontal  slopes  during

airborne  data  acquisition.  Dz  between  SfM  and  LIDAR  DEM  shows  a  decrease  with

increasing  point  density  (Fig.  9b).  This  distribution  reflects  1)  the  SfM  reconstruction

mechanism, where areas with an overabundance of information (high point densities) allow

for higher precision of the 3D-reconstruction and 2) the georeferencing mechanism through

MINUIT RMSE minimization,  where  high  point  density  areas  carry  more  weight  in  the

minimization procedure.The RMSE reaches a plateau after an initial increase with increasing

slope angle, and appears to increase again on steep slopes (Fig. 9c). This effect is a result of

the geometry of the features reconstructed here, where few steep surfaces were considered.

Further, these steep surfaces are prone to increased erosion resulting in a data discrepancy

between the surface model of the LIDAR data acquired in 2004 (Mazzarini et al., 2007) and

the SfM data acquired in 2014. There is no systematic relationship between the RMSE and

the model’s surface roughness (Fig. 9 d), suggesting, that the surface roughness does not

influence the quality of the SfM model and its georeferenciacion.  

5. Conclusions

From the results reported above and the tests developed in the discussion we can draw the

following conclusions:
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1. SfM modeling combined, with the presented georeferencing methodology, allows for

fast and cost-effective creation of high-spatial resolution (down to 0.1 m) DEMs for

volcanic features with scales of 10s to 100s of meters.

2. The method presented here reduces the need for the deployment of georeferenced

targets by using existing DEMs for georeferencing. The method, therefore, expands

the  capabilities  of  SfM  photogrammetry  so  that  it  can  be  used  more  readily  in

hazardous and inaccessible  areas. This is highlighted by the example of Valle del

Bove,  where  lava  flow  invasion  could  be  mapped  from a  distance  of  up  to  2.5

kilometers.

3. SfM Photogrammetry, used in combination with the work flow presented here is an

extremely flexible tool for timely DEM updates, able to update DEMs on an daily

basis to allow tracking of cm-scale surface changes. It thus can be applied in dynamic

environments to, for example,  assess volumetric changes of volcanic features over

time,  whether  that  be  cone  growth,  air  fall  build  up  or  lava  flow  emplacement.

Further,  DEM-to-DEM  subtraction  allows  mass  flux  rates  to  be  obtained  at  a

precision hitherto impossible.

4. Ground  based  deployment  of  the  method  presented  in  this  manuscript  does  not

produce a coherent  DEM for large (km-scale) areas.  However,  while  the absolute

RMSE  increases  with  increasing  area  of  coverage,  the  percentage  error  remains

constant and low (below 0.118 for the Mt Etna examples and 0.427 for Mauna Ulu).

Thus the presented integration of existing and SfM derived DEMs can nonetheless be
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of great value for rapid assessment of, for example, the thickness, area and volume of

newly emplaced lava flows, pyroclastic flows or air-fall deposits.

Acknowledgements

We would like to thank Daniele Andronico and Mauro Coltelli from INGV Catania for their

support during a field campaign on Mt Etna during which part of the dataset for the Valle del

Bove  reconstruction  was  acquired.  We  acknowledge  IT  support  from  Giorgio  Carbotta

(UniTo). This research was partially funded by an EX60% project under the “ricerca locale

dell’Univeristà di Torino (2012); titled: “Studio integrato di terrreno, laboratorio ed analisi

remote sensing per l’implementazione di modelli reologici  per la messa in posto di flussi

lavici  basso-viscosi  in  aree  vulcaniche  attive”.  Stephan  Kolzenburg  acknowledges  an

Compagnia San Paulo doctoral scholarship for financial support.  Alessandro Fornaciai has

carried  out  this  work  in  the  frame  of  Dottorato  di  Geofisica,  Dipartimento  di  Fisica  e

Astronomia, Alma Mater Studiorum Università di Bologna.  This paper benefitted from the

constructive comments of Mike James, Felix von Aulock and an anonymous reviewer, as

well as the editor Antonio Plaza.

9. References

Aguilar, F.J., Agüera, F., Aguilar, M.A., Carvajal, F., 2005. Effects of terrain morphology,
sampling  density,  and  interpolation  methods  on  grid  DEM  accuracy.
Photogrammetric Engineering & Remote Sensing 71, 805-816.

Ansan,  V.,  Mangold,  N.,  Masson,  P.,  Gailhardis,  E.,  Neukum, G.,  2008.  Topography of
valley networks on Mars from Mars Express High Resolution Stereo Camera digital
elevation models. Journal of Geophysical Research: Planets (1991–2012) 113.

28

574

576

578

580

582

584

586

588

590

592

594

596

28



Barker, R., Dixon, L., Hooke, J., 1997. Use of terrestrial photogrammetry for monitoring and
measuring bank erosion. Earth Surface Processes and Landforms 22, 1217-1227.

Behncke,  B.,  De Beni,  E.,  Proietti,  C.,  2013.  Misure  GPS del  nuovo cono di  scorie  del
Cratere di SE, Etna

Aggiornamento del 03 maggio 2013. INGV Catania, INGV Catania.

Behncke, B., Neri, M., 2003. The July–August 2001 eruption of Mt. Etna (Sicily). Bulletin of
Volcanology 65, 461-476.

Bretar, F., Arab-Sedze, M., Champion, J., Pierrot-Deseilligny, M., Heggy, E., Jacquemoud,
S.,  2013.  An  advanced  photogrammetric  method  to  measure  surface  roughness:
Application to volcanic terrains in the Piton de la Fournaise, Reunion Island. Remote
Sensing of Environment 135, 1-11.

Cashman, K., Soule, S., Mackey, B., Deligne, N., Deardorff, N., Dietterich, H., 2013. How
lava flows: New insights from applications of lidar technologies to lava flow studies.
Geosphere 9, 1664-1680.

Cecchi,  E.,  van  Wyk de  Vries,  B.,  Lavest,  J.-M.,  Harris,  A.,  Davies,  M.,  2003.  n-view
reconstruction:  a  new  method  for  morphological  modelling  and  deformation
measurement in volcanology. Journal of Volcanology and Geothermal Research 123,
181-201.

Cignoni,  P.,  Corsini,  M.,  Dellepiane,  M.,  Ranzuglia,  G.,  Vergauven,  M.,  Van  Gool,  L.,
2008a. Meshlab and Arc3D: Photo-reconstruction and processing 3D meshes, Open
Digital Cultural Heritage Systems Conference, p. 61.

Cignoni, P., Corsini, M., Ranzuglia, G., 2008b. Meshlab: an open-source 3d mesh processing
system. Ercim news 73, 45-46.

Daba, S., Rieger, W., Strauss, P., 2003. Assessment of gully erosion in eastern Ethiopia using
photogrammetric techniques. Catena 50, 273-291.

Dolan, R., Hayden, B., Heywood, J., 1978. A new photogrammetric method for determining
shoreline erosion. Coastal Engineering 2, 21-39.

Duane, C.B., 1971. Close-range camera calibration. Photogrammetric engineering 37, 855-
866.

Faig,  W.,  1975.  Calibration  of  close-range  photogrammetric  systems:  Mathematical
formulation. Photogrammetric engineering and remote sensing 41.

Farquharson,  J.,  James,  M.,  Tuffen,  H.,  2015.  Examining  rhyolite  lava  flow  dynamics
through photo-based 3D reconstructions of the 2011–2012 lava flowfield at Cordón-
Caulle, Chile. Journal of Volcanology and Geothermal Research 304, 336-348.

Farr, T.G., Rosen, P.A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller,
M., Rodriguez, E., Roth, L., 2007. The shuttle radar topography mission. Reviews of
geophysics 45.

Favalli,  M.,  Fornaciai,  A.,  Isola,  I.,  Tarquini,  S.,  Nannipieri,  L.,  2012.  Multiview  3D
reconstruction in geosciences. Computers & Geosciences 44, 168-176.

29

598

600

602

604

606

608

610

612

614

616

618

620

622

624

626

628

630

632

634



Favalli, M., Fornaciai, A., Mazzarini, F., Harris, A., Neri, M., Behncke, B., Pareschi, M.T.,
Tarquini,  S.,  Boschi,  E.,  2010.  Evolution  of  an  active  lava  flow  field  using  a
multitemporal  LIDAR  acquisition.  Journal  of  Geophysical  Research:  Solid  Earth
(1978–2012) 115.

Favalli,  M.,  Fornaciai,  A.,  Pareschi,  M.T.,  2009.  LIDAR strip  adjustment:  application  to
volcanic areas. Geomorphology 111, 123-135.

Fonstad,  M.A.,  Dietrich,  J.T.,  Courville,  B.C.,  Jensen,  J.L.,  Carbonneau,  P.E.,  2013.
Topographic  structure  from  motion:  a  new  development  in  photogrammetric
measurement. Earth Surface Processes and Landforms 38, 421-430.

Fornaciai, A., Behncke, B., Favalli, M., Neri, M., Tarquini, S., Boschi, E., 2010. Detecting
short-term evolution of Etnean scoria cones: a LIDAR-based approach. Bulletin of
Volcanology 72, 1209-1222.

Furukawa, Y., Curless, B., Seitz, S.M., Szeliski, R., 2010. Towards internet-scale multi-view
stereo, 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
IEEE, pp. 1434-1441.

Furukawa,  Y.,  Ponce,  J.,  2010.  Accurate,  dense,  and  robust  multiview  stereopsis.  IEEE
Transactions on Pattern Analysis and Machine Intelligence 32, 1362-1376.

Harris,  A.,  2013.  Thermal  Remote  Sensing  of  Active  Volcanoes:  A  User's  Manual.
Cambridge University Press.

Harris, A.J., Favalli, M., Mazzarini, F., Hamilton, C.W., 2009. Construction dynamics of a
lava channel. Bulletin of Volcanology 71, 459-474.

Harris,  A.J.,  Rhéty,  M.,  Gurioli,  L.,  Villeneuve,  N.,  Paris,  R.,  2015.  Simulating  the
thermorheological  evolution  of  channel-contained  lava:  FLOWGO  and  its
implementation in EXCEL. Geological  Society,  London, Special  Publications 426,
SP426. 429.

Hirano,  A.,  Welch,  R.,  Lang,  H.,  2003. Mapping from ASTER stereo image data:  DEM
validation and accuracy assessment. ISPRS Journal of Photogrammetry and Remote
Sensing 57, 356-370.

Hofton, M.A., Malavassi, E., Blair, J.B., 2006. Quantifying recent pyroclastic and lava flows
at Arenal Volcano, Costa Rica, using medium-footprint lidar. Geophysical Research
Letters 33, n/a-n/a.

Hugenholtz, C.H., Whitehead, K., Brown, O.W., Barchyn, T.E., Moorman, B.J., LeClair, A.,
Riddell, K., Hamilton, T., 2013. Geomorphological mapping with a small unmanned
aircraft  system  (sUAS):  Feature  detection  and  accuracy  assessment  of  a
photogrammetrically-derived digital terrain model. Geomorphology 194, 16-24.

James, F., Roos, M., 1975. Minuit-a system for function minimization and analysis of the
parameter errors and correlations. Computer Physics Communications 10, 343-367.

James, F., Roos, M., 1977. MINUIT, CERN program library entry D506.

30

636

638

640

642

644

646

648

650

652

654

656

658

660

662

664

666

668

670

672

30



James, M., Robson, S., 2014. Sequential digital elevation models of active lava flows from
ground-based  stereo  time-lapse  imagery.  ISPRS  Journal  of  Photogrammetry  and
Remote Sensing 97, 160-170.

James, M., Varley, N., 2012. Identification of structural controls in an active lava dome with
high resolution DEMs: Volcán de Colima, Mexico. Geophysical Research Letters 39.

James, M.R., Pinkerton, H., Applegarth, L.J., 2009a. Detecting the development of active
lava flow fields with a very-long-range terrestrial laser scanner and thermal imagery.
J. Geophys. Res. 36, L22305.

James, M.R., Pinkerton, H., Applegarth, L.J., 2009b. Detecting the development of active
lava  flow  fields  with  a  very‐long‐range  terrestrial  laser  scanner  and  thermal
imagery. Geophysical Research Letters 36.

James,  M.R.,  Quinton,  J.N.,  2014.  Ultra-rapid  topographic  surveying  for  complex
environments: the hand-held mobile laser scanner (HMLS). Earth Surface Processes
and Landforms 39, 138-142.

James,  M.R.,  Robson,  S.,  2012.  Straightforward  reconstruction  of  3D  surfaces  and
topography with a camera: Accuracy and geoscience application. J. Geophys. Res.:
Earth Surface 117, F03017.

James,  M.R.,  Robson,  S.,  Pinkerton,  H.,  Ball,  M.,  2006.  Oblique  photogrammetry  with
visible and thermal images of active lava flows. Bulletin of Volcanology 69, 105-108.

Johnson, K., Nissen, E., Saripalli, S., Arrowsmith, J.R., McGarey, P., Scharer, K., Williams,
P.,  Blisniuk,  K.,  2014.  Rapid  mapping  of  ultrafine  fault  zone  topography  with
structure from motion. Geosphere 10, 969-986.

Krishnan, S., Crosby, C., Nandigam, V., Phan, M., Cowart, C., Baru, C., Arrowsmith, R.,
2011.  OpenTopography:  a  services  oriented  architecture  for  community  access  to
LIDAR topography, Proceedings of the 2nd International Conference on Computing
for Geospatial Research & Applications. ACM, p. 7.

Liu,  X.,  2008.  Airborne  LiDAR for  DEM  generation:  some  critical  issues.  Progress  in
Physical Geography 32, 31-49.

Liu,  X.,  Zhang,  Z.,  Peterson,  J.,  Chandra,  S.,  2007.  LiDAR-derived high quality  ground
control information and DEM for image orthorectification. GeoInformatica 11, 37-53.

Lowe, D.G., 2004. Distinctive image features from scale-invariant keypoints.  International
journal of computer vision 60, 91-110.

Mazzarini,  F.,  Pareschi,  M.T.,  Favalli,  M.,  Isola,  I.,  Tarquini,  S.,  Boschi,  E.,  2005.
Morphology of basaltic lava channels during the Mt. Etna September 2004 eruption
from airborne laser altimeter data. Geophysical Research Letters 32.

Mazzarini, F., Pareschi, M.T., Favalli, M., Isola, I., Tarquini, S., Boschi, E., 2007. Lava flow
identification  and aging by means of  lidar  intensity:  Mount Etna case.  Journal  of
Geophysical Research: Solid Earth (1978–2012) 112.

31

674

676

678

680

682

684

686

688

690

692

694

696

698

700

702

704

706

708

710



Mouginis-Mark,  P.J.,  Garbeil,  H.,  2005.  Quality  of  TOPSAR  topographic  data  for
volcanology studies at Kilauea Volcano, Hawaii: An assessment using airborne lidar
data. Remote Sensing of Environment 96, 149-164.

Neri, M., Mazzarini, F., Tarquini, S., Bisson, M., Isola, I., Behncke, B., Pareschi, M.T., 2008.
The changing face of Mount Etna's summit area documented with Lidar technology.
Geophysical Research Letters 35, n/a-n/a.

Niethammer,  U., Rothmund, S.,  James,  M., Travelletti,  J.,  Joswig,  M.,  2010. UAV-based
remote  sensing  of  landslides.  International  Archives  of  Photogrammetry,  Remote
Sensing and Spatial Information Sciences 38, 496-501.

Pulli, K., Curless, B., Ginzton, M., Rusinkiewicz, S., Pereira, L., Wood, D., 2002. Scanalyze
v1. 0.3: A computer program for aligning and merging range data. Stanford Computer
Graphics Laboratory Stanford.

Quantum,  G.,  2013.  Development  Team,  2012.  Quantum  GIS  Geographic  Information
System.  Open  Source  Geospatial  Foundation  Project.  Free  Software  Foundation,
India.

Stöcker, C., Eltner, A., Karrasch, P., 2015. Measuring gullies by synergetic application of
UAV  and  close  range  photogrammetry  — A  case  study  from Andalusia,  Spain.
Catena 132, 1-11.

Tarolli,  P.,  2014.  High-resolution  topography  for  understanding  Earth  surface  processes:
Opportunities and challenges. Geomorphology 216, 295-312.

Tarquini, S., Favalli, M., 2010. Changes of the susceptibility to lava flow invasion induced
by morphological modifications of an active volcano: the case of Mount Etna, Italy.
Natural hazards 54, 537-546.

Thomas, A., Welch, R., Jordan, T., 1986. Quantifying concentrated-flow erosion on cropland
with aerial photogrammetry. Journal of Soil and Water Conservation 41, 249-252.

Tuffen,  H., James,  M., Castro,  J.,  Schipper,  C., 2013. Exceptional  mobility  of a rhyolitic
obsidian flow: observations from Cordón Caulle, Chile, 2011–2013. Nature Comm
2709.

Westoby, M., Brasington, J., Glasser, N., Hambrey, M., Reynolds, J., 2012. ‘Structure-from-
Motion’photogrammetry:  A  low-cost,  effective  tool  for  geoscience  applications.
Geomorphology 179, 300-314.

Wu, C., 2011. VisualSFM: A visual structure from motion system.

Wu, C., 2013. Towards linear-time incremental structure from motion, 3DTV-Conference,
2013 International Conference on. IEEE, pp. 127-134.

32

712

714

716

718

720

722

724

726

728

730

732

734

736

738

740

742

744

746

32



Figure Captions

Figure 1: Schematic of data processing work flow. 

Flow diagram describing the individual data processing steps. Samples of the products of
steps 1 through 6 are shown in the four graphics on the right and labelled respectively. 
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Figure 2: Field site characterization: 

Sample  pictures  showing  characteristic  features  of  the  respective  field  sites:  a),  Monti
Silvestri  superiore;  tephra cones  on Mt Etna  featuring rather  smooth surfaces  and gentle
slopes. Model length and width c.a. 230 m and 135 m, respectively.  b) Lava channel on
Mauna Ulu,  Hawaii,  model  dimensions c.a.  200 m length and 10 m width,  featuring (in
relation to the model scale) jagged 'A'ā-flow surfaces. Channel width c.a. 10 m. c) Valle del
Bove,  model  diameter  c.a.  4.5 km, a  large  valley  resulting  from a flank collapse  on the
eastern slopes of Mt Etna featuring steep side walls comprising volcaniclastic and lava flow
strata and a relatively smooth (in relation to the overall scale of the model) valley floor that is
covered with several generations of dominantly A’a-type lava flows. The valley width is c.a.
5 km.
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Figure 3: Comparison of Monti Silvestri LIDAR and SfM DEMs rendered as hill shade.

a) Overview of the study area located on the slopes of Mt Etna in close vicinity to the Rifugio
di Sapienza. The landform “Monti Silvestri superiore” is the elongated composite crater in
the black box. b) Zoom in to the LIDAR data of “Cono Doppio”; note the NW-SE trending
linear artefacts resulting from errors in the airborne laser scanning. The black contour defines
the outer boundary of the study area for the comparison between LIDAR and SfM data c)
Hillshade map created from the DEM data generated using the SfM-workflow presented in
this  manuscript.  Note that the SfM data is  only displayed for the inside of the landform
outlined by the black contour.  d+e). Comparison of the DEMs generated from LIDAR and
SfM data, respectively. The excerpts show the 2002 lava flow inundating the north end of the
Monti Silvestri superiore landform. Note the significantly enhanced detail in resolution in the
DEM generated from SfM data. f+g) Detail of the internal, eastern flanks of Monti Silvestri
superiore;  Hill  shaded  visualization  of  the  DEM  data  created  using  LIDAR  and  SfM,
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respectively. The line trending NE-SW is a footpath of c.a. 1 m width that is barely visible in
the LIDAR data whereas in the SfM data it can be seen in great detail.
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Figure 4: Evaluation of the SfM DEM Monti Silverstri.

a) Hillshaded DEM generated through the workflow presented here. The study area (dark
grey) is overlain on the LIDAR DEM b) Surface roughness of the SfM DEM (i.e. standard
deviation of all points in each respective cell relative to the averaged cell value) c) Point
density of the SfM model in points per square meter. d) Profiles from North to South along
the red line in the map. LIDAR data is displayed in red, SfM data in black. The standard
deviation for each profile point calculated using formula (1) is plotted as the dashed line. The
two datasets  show good agreement  on the larger  scale.  Squares  1 and 2 are  enlarged as
subplots and show the superior resolution of the SfM DEM at smaller scale, also evidenced
by the spikes in local standard deviation. The SfM DEM is able to reproduce a more detailed
surface, where the LIDAR data smooth the surface. Subplot 2 highlights this aspect, as the
LIDAR data fails to reproduce the sub vertical section of the profile. d) Entire profile from
North to South along the red line in the map.
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Figure 5: Evaluation of the SfM DEM Mauna Ulu.

a) Hillshaded DEM generated through the workflow presented here. The study area (light 
grey) is overlain on the LIDAR DEM. b) Point density of the SfM model in points per square
meter. c) Surface roughness of the SfM DEM (i.e. standard deviation of all points in each 
respective cell relative to the averaged cell value) d) Vertical distance (Dz) between the SfM 
and the LIDAR DEM. e) map showing the location of the profile line f) Profile from North to
South along the red line in map (e) for both LIDAR and SfM data. Note the good agreement 
of the two datasets created using completely different methods. The local standard deviation 
increases in the lower part of the lava channel as a result of the rougher lava surface in this 
area.
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Figure 6: Evaluation of the SfM DEM Valle del Bove.

a) Vertical error between the SfM and the LIDAR data overlain on the hill-shaded LIDAR 
DEM. The profile line has a length of 3.65 km. Note the large “data shadows” in the SfM 
model, resulting from the low vantage point of image acquisition. The profile A-A’ shows 
the striking agreement between LIDAR and SfM data in spite of the large data shadows. This
lack of data becomes apparent in the zoom in of profile A-A’, where the LIDAR data shows 
higher spatial detail. However, the interpolated SfM data matches the LIDAR data to within 
3 m. b) Detail of the SfM data showing lava flows emplaced from February to March 2013 in
the area of interest in the northern section. The area used during the second georeferencing 
step (i.e. the non-masked area) is highlighted by the pale overlay. Profiles B-B’ and C-C’ 
show longitudinal and transversal sections of this flow, respectively. Plotted are the LIDAR 
data in red; the SfM data geo-referenced to the entire Valle del Bove DEM; and the SfM data
geo-referenced to a DEM for which the lava flow sections were masked. Profile sections 
from within the two white boxes are enlarged for detail. Note the improved vertical accuracy 
of the re-referenced dataset. 
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Figure 7: LIDAR and SfM error mapping

a) LIDAR point distribution in the study area. Linear point arrangement is a result of the 
scanning motion of the LIDAR sensor. Note the lack of data in the center of all three craters, 
resulting in an overestimation of the altitude through interpolation during DEM creation b) 
Vertical difference (Dz) between LIDAR DEM and SfM DEM. c) Vertical difference (Dz) 
between M1 and M2 (two DEMs created from independent image datasets using the 
methodology described in this manuscript). Both b and c are mapped at 0.5 m grid step. The 
red area in the northern end of the Monti Silvestri superiore feature is a result of a lack of 
data in one of the DEMs in this location.
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Figure 8: Evaluation of the effect of grid cell size on RMSE of the reconstruction. 

Empty and filled squares represent the M1 and M2 datasets compared to the LIDAR data (at
0.5 m grid step).  They show an overall  decreasing RMSE with increasing grid size. The
RMSE between the gridded DEMs derived from SfM and LIDAR drops by 0.04-0.08 m
when comparing the M1 and M2 datasets (empty and filled triangles, respectively) with the
LIDAR data gridded at  the same respective grid sizes. When comparing the two gridded
models, after having been generated independently through the workflow presented here, to
each other (empty black circles) we recover very low RMSE values that first decrease with
increasing grid size, reaching a minimum at 0.6 m cell size and then gradually increase again
towards larger grid sizes. The same effect is observed, in an even more pronounced manner,
when evaluating the self-similarity of the two independent datasets by making them undergo
a further MINUIT guided error minimization (filled circles). 
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Figure 9: SfM model statistics:

a) Plot showing the point density (in points per pixel at 0.5m pixel length) at the respective
slope angle for the model Monti Silvestri superiore. There is a quasi linear increase in point
density with increasing slope angle for angles below 40 degrees. At slopes steeper than 40
degrees there is a nonlinear increase in point density with increasing slope. b) Plot of the
vertical  difference between the SfM and LIDAR DEM as a function of point density (in
points per pixel at 0.5 m pixel length). There is an overall decrease in the vertical difference
with increasing point density. c) Plot of the vertical difference between the SfM and LIDAR
DEM as a function of the slope of the surface. Between 0 and 30 degrees, the data show a
linear  increase  in  RMSE with increasing  slope.  Between 30 and 70 degrees  the  vertical
difference  reaches  a  more  or  less  steady  value  around  0.229.  At  slopes  steeper  than  70
degrees the RMSE increases drastically and the total number of reconstructed points becomes
scarce. d) Plot of the vertical difference between the SfM and LIDAR DEM as a function of
the surface roughness of the SfM DEM (i.e. the standard deviation between the points in a
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grid cell and the averaged grid cell value). Few parts of the SfM model have a roughness
greater than 0.4m and there is no systematic relationship between the vertical difference and
the model’s surface roughness.  
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Cono doppio 24,626 230

covered area 
(m^2)

longest model 
axis (m)

TABLE I
OVERVIEW OF SURFACE MODEL CHARACTERISTICS
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