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Abstract: Many out-of-equilibrium systems respond to external driving with nonlinear and
self-similar dynamics. This near scale-invariant behavior of relaxation events has been modeled
through sand pile cellular automata. However, a common feature of these models is the assumption
of a local connectivity, while in many real systems, we have evidence for longer range connectivity
and a complex topology of the interacting structures. Here, we investigate the role that longer range
connectivity might play in near scale-invariant systems, by analyzing the results of a sand pile cellular
automaton model on a Newman–Watts network. The analysis clearly indicates the occurrence of
a crossover phenomenon in the statistics of the relaxation events as a function of the percentage of
longer range links and the breaking of the simple Finite Size Scaling (FSS). The more complex nature
of the dynamics in the presence of long-range connectivity is investigated in terms of multi-scaling
features and analyzed by the Rank-Ordered Multifractal Analysis (ROMA).
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1. Introduction

Many natural systems, slowly driven out-of-equilibrium, respond to external disturbances with
scale-invariant relaxation processes. Examples may be found for situations related to earthquakes,
solar flares, magnetospheric energy deposition during auroral storms, biological evolution, etc.
Such scale-invariant features are fingerprints of the emergence of dynamical complexity. In 1987,
Bak, Tang and Weisenfeld [1] coined the term Self-Organized Criticality (SOC) to address the
spontaneous emergence of a critical dynamics in natural out-of-equilibrium systems. According to
Sornette [2], in a broad sense, SOC occurs when a system slowly driven from the outside spontaneously
self-organizes into a globally-stationary state, which is characterized by self-similar distributions of
relaxation event sizes and by fractal geometrical features. Quoting Watkins et al. [3], the concept
of SOC applies to “Slowly driven, avalanching (intermittent) systems with non linear interactions,
that display non-trivial power law correlations (cutoff by the system size) as known from ordinary
critical phenomena, but with internal, self-organized, rather than external tuning of a control parameter
(to a non-trivial value)”. However, it is now understood that some tuning is generally needed for
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some so-called SOC systems and the low frequency flicker noise behavior, which Bak and colleagues
predicted does not really occur for the original model that they suggested. On the other hand SOC is
a concept that has many controversial interpretations and even nowadays is not a well-defined physical
process in the context of out-of-equilibrium dynamical systems (see [3] and the references therein).

In spite of the interest in SOC on the theoretical side, avalanche dynamics characterizes several
real dynamical systems driven out-of-equilibrium. The occurrence of an avalanche dynamics has
been invoked in several different physical contexts from earthquakes to solar flares and Earth’s
magnetospheric dynamics during geomagnetic storms and substorms (for a review, refer to [4–6]).
For instance, in the case of solar physics, there is wide evidence of scale invariance for the statistics of
solar flares over a wide energy range, from extreme ultra violet (EUV) to soft X-rays (SXR) and hard
X-rays (HXR) [6]. This observation has been read as the signature of a near criticality dynamics of the
solar corona [7]. Similar properties have been observed in the cases of high latitude energy releases
during geomagnetic substorms and the Earth’s magnetosphere response to solar wind changes [8–11].

The archetypical model for such avalanching phenomena is the well-known sand pile cellular
automaton (sand pile CA) [1]. One of the general features of sand pile CA is the common assumption
of next-neighbor interactions, thus neglecting the presence of any possible longer range connectivity.
On the contrary, in many open out-of-equilibrium real physical systems there is evidence of the
formation of coherent structures (as, for instance, flux tubes, in space plasmas), which involves
a complex topology and the occurrence of longer range connectivities. Examples can be found in
the framework of space plasmas [6–13]. For instance, in solar dynamics one of the most important
and studied examples of longer range-connected coherent structures is represented by solar coronal
loops, which are arch-like magnetic flux tubes anchored on the underlying photosphere. The magnetic
field lines starting from the same footpoint can end at different footpoints, so that longer range
connectivities in the solar atmosphere may be crucial in fully characterizing the coronal magnetic field
topology and dynamics for flares and coronal mass ejections (CMEs) (see, e.g., [14] and the references
therein). Thus, understanding the critical dynamics of some real physical systems requires the inclusion
of longer range connectivities that are not considered in the case of simple archetypical sand pile
CA models. Indeed, real complex systems display non-regular structures that are characterized by
scale-free connectivity and network topologies. Simulations of the original Bak–Tang–Weisenfeld
(BTW) sand pile model [1] on uncorrelated scale-free networks have shown that the structure of the
network does not disrupt the scale-free dynamics of the BTW model and that the universality class
is dependent on the details of the network structure (see e.g., Marković and Gros [15]). On the other
hand, sand pile CA on regular lattices with a certain amount of shortcuts and/or on small world
networks displays an avalanche behavior, which is analogous to the mean field prediction [16], so that
the effect of shortcuts is analogous to an increase of the system dimensionality and connectivity
[17]. In particular, Lahtinen et al. [17] investigated the role that longer range links in small world
(see Watts–Strogatz [18]) networks play on the distribution of avalanche size, leading to transition
from a non-critical to a critical regime. Moreover, Hoore and Moghimi-Araghi [19] have shown
that the effect of adding longer range links in a 2D Abelian BTW sand pile model manifests in the
appearance of a secondary power law regime for large avalanches, which is characterized by a steeper
scaling exponent depending on the system size. The system size dependence of this secondary scaling
exponent is the evidence for multi-scaling (multifractal) features of the avalanching dynamics.

Equilibrium critical phenomena show the existence of an infinite range of scales in which a system
is scale invariant. This is strictly valid in the sense of the thermodynamic limit, i.e., N → ∞ and
N/V ∼ const, which implies an infinite system. Conversely, both real and simulated systems near
a critical point are of finite size, so that some effects due to the finite size of the system should be
expected. In particular, it is reasonable to expect in systems of finite size the emergence of a rounding
and shifting of critical singularities, which depends on the linear dimension L and on the correlation
dimension [20]. This implies that for a finite system near criticality of linear dimension L, there exists
a correction to the scaling, so that experimental and/or simulated data from near-criticality systems of



Entropy 2017, 19, 383 3 of 19

different size L would collapse onto a single characteristic scaling function. This effect is known as
the Finite Size Scaling (FSS) effect, and the scaling function enters in the definition of the universality
class [20–22].

As it occurs in the case of equilibrium critical phenomena, also other near criticality systems are,
in principle, expected to obey an FSS ansatz for Probability Distribution Functions (PDFs) of observable
quantities [13,23]. Let us consider the probability distribution function P(x, L) of measurable quantity
x (avalanche size s, time duration T, etc.) and system dimension L, which for systems showing a near
criticality dynamics is expected to scale as,

P(x, L) ∼ x−τx , (1)

where τx is the scaling exponent, up to a cut-off scale xc ∼ LDx . Here, Dx is a scaling exponent
characterizing the dependence of the cut-off scale on the system size L. Then, FSS for near criticality
systems would predict that,

P(x, L) ∼ L−τx Dx Φx(x/LDx ) (2)

where Φx is the scaling function. For real critical systems, the scaling exponent Dx is expected to be
constant and independent of the size of the local invariant Y = x/LDx . In other words, we are in the
presence of simple scale invariance features (mono-fractal behavior). Stochastic sand pile models [24],
which imply a redistribution to neighbor sites, have been shown to follow the standard FSS ansatz.

Here, we investigate the effect of the inclusion of longer range connectivity in a simple 1D sand
pile model, the stochastic Manna model [24]. This corresponds to moving from lattice simulations
to simulations on small-world networks. As we will see, due to the presence of longer range
connectivity, we observe the occurrence of a crossover phenomenon in the statistics of the avalanche
size s distribution as a function of the fraction of longer range links, implying the appearance of a more
complex shape of the PDFs of avalanche size s, which does not follow the standard FSS. By applying
the Rank-Ordered Multifractal Analysis (ROMA) [25], we show how the presence of non-local links
is associated with the increase of multi-scaling features in the Finite Size Scaling (FSS) ansatz, which
manifests in an ROMA spectrum. The motivation of this work is two-fold:

• to observe the role that a limited number of longer range (non-local) links has on the shape of the
PDFs of avalanche sizes; this could be very relevant to discuss some features of the PDFs observed
in space plasmas [9] where a complex topology of magnetic field and plasma structures plays
a central role in the overall dynamics of the space plasma systems (see, e.g., [26,27]);

• to investigate the possible lack of a simple FSS and its link with the emergence of multi-scaling features.

However, we note that we do not aim to discuss our results in relationship with the occurrence or
not of SOC, but only on the observational side of the effects of the presence of longer range connectivity
on the statistics of avalanche features (size s and duration T).

The paper is organized as follows: Section 2 describes the stochastic 1D Manna model and
its implementation on the 1D random small world network; Section 3 shows the results of the
simulations for different degrees of long range connectivity and the moment and FSS analyses of the
observed avalanche statistics; finally, in Section 4, a discussion and the physical relevance of our results
are presented.

2. The 1D Stochastic Manna Model on Small-World Networks

In this work, we considered the stochastic version of the critical-height sand pile model introduced
by Manna [24] and widely studied in the literature. We consider this model because it displays
a clear self-organized critical behavior characterized by power law distributions of several quantities
(e.g., avalanche size and duration) also in 1D while the classical BTW 1D sand pile model is critical
only in the sense that a small perturbation can propagate through the entire system, as occurs for
instance in percolative systems [28].
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The criticality displayed in the 1D case by the Manna model is a consequence of the different
redistribution rules. Indeed, differently from the classical BTW sand pile, the Manna model implies a
redistribution of grains that is only on average isotropic with the grains randomly redistributed to the
next neighbors. Let us consider a 1D linear lattice consisting of N sites, where each site can assume the
values from zero to zc. At each time step, a sand grain is added randomly to one of the N sites, i.e.,

zi(t)⇒ zi(t + 1) = zi(t) + 1, (3)

where zi is the number of sand grains at site i and t is a discrete time variable. When one site reaches
the maximum (critical) value zc (typically zc = 2, 4, ..., 2k), the sand grains in the site are randomly
redistributed to the first neighbors. We underline that zc does not necessarily need to be equal to
two, as it is for the original Manna model [24]. For instance, if we consider a linear 1D lattice, the
redistribution scheme consists of three different choices, which are assumed to be equiprobable:

• redistribution of the amount zc/2 to both nearest neighbors, i.e.,{
zi(t + 1) = zi(t)− zc

zi±1(t + 1) = zi±1(t) +
zc
2

(4)

• redistribution of the amount zc to one of the two neighbors (i + 1 or i− 1), randomly chosen, i.e.,{
zi(t + 1) = zi(t)− zc

zi+(−)1(t + 1) = zi+(−)1(t) + zc
(5)

In our simulations, the Manna model has been implemented on a Newman–Watts-like small
world network [29] with range k = 1 and a probability p 6= 0 to introduce stochastic shortcuts. This
choice is motivated as follows. A network is defined as a pair G = (V, E) comprising a set of V
vertices (nodes) together with a set E of edges (links), which are two-element subsets of V, an edge
being related with two vertices. In our work, we consider undirected networks without multiple and
self-edges, namely simple networks (see Figure 1). In general, the small world network is generated
from a regular lattice cutting and rewiring pairs of links in a stochastic way [18]. Because the cutting
and rewiring procedure on the 1D lattice may generate isolated clusters and not ensure long-range
connectivity, the Newman–Watts version of the small world network is considered here. An example
of such a network with a probability p 6= 0 of extra links and periodic boundary conditions is shown
in Figure 2.

2

1
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5

3 4

Figure 1. A sample of a simple network.
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Figure 2. A sample of a Newman–Watts small world network. Each site is connected to the nearby
sites plus some additional longer range links.

Here, to study the effect of the presence of long-range connectivity, we construct small world
networks in which all sites are locally linked to nearby sites plus a certain number of extra links
to non-adjacent sites with the condition that each site does not have more than three links. This is
done by choosing randomly a certain number of pairs of non-adjacent sites and connecting them.
Thus, we are doing simulations on a Newman–Watts small world network with quenched randomness
(see, e.g., Lahtinen et al. [17]). The term quenched randomness refers to the fact that the addition of
extra links is done randomly before the simulation is performed. Moreover, the addition of extra links
has the effect of generating a random graph (RG), instead of a regular lattice. This procedure could
have the effect of altering the linear size of the chain.

The probability p of having a third link can be used as a measure of the relevance of non-local
connectivity. Indeed, if we consider the ratio θ between the number of sites with three links, N3, and
the total number of sites, Nt, θ = N3/Nt, this quantity converges to the probability p in the case of very
large networks or in the case of an ensemble of networks with the same p, i.e., 〈θ〉 = p. Thus, we will
make all of the discussion on the relevance of long range links using the probability p as a measure
of it.

The redistribution rules of the Manna model are then modified to take into account the sites with
three links as follows:

• for sites with two links
{(zc/2, zc/2); (zc, 0); (0, zc)} (6)

• for sites with three links{
(zc/2, zc/2, 0); (zc/2, 0, zc/2); (0, zc/2, zc/2)

(zc, 0, 0); (0, zc, 0); (0, 0, zc)

}
(7)

Each of these choices is assumed to be equiprobable, so that on average, we can assume that
redistribution among the different links is isotropic. Furthermore, we limit the redistribution rules
to Expressions (6) and (7) so as to guarantee that an integer number of grains is redistributed to the
connected sites for our choice zc = 4.

We assume open boundary conditions. This is done by fixing the values at the border of the 1D
lattice to be zero, i.e., z0 = zL = 0 ∀t. Sand grains transferred to these sites are lost, i.e., these sites
act as sinks in the structure of the small world network for the sand pile dynamics, making the small
world network equivalent to a 1D lattice with open boundary conditions and longer range links.

Simulations are performed for different choices of the total number of sites in the range
Nt ∈ [200, 10,000] with a critical threshold value of zc = 4. Simulations with different choices of
the critical threshold value zc (zc = 2, 4 and 6) have been done, and non-significative differences have
been observed.

We consider two dynamical variables to monitor the dynamics of the system:
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• the total number s of active sites (sites that have redistributed sand grains), which is taken as
a measure of the avalanche dimension;

• the number of time steps T over which an avalanche takes place, which represents the
avalanche lifetime.

To remove the possibility of having spurious effects from a particular configuration of the longer
range links, for each choice of the network dimension Nt and of the probability p, we perform
an ensemble (typically 100) of simulations with different configurations of the longer range links.
Furthermore, before collecting data, each of the 100 simulations has been run for enough time steps to
be ensure that we have achieved a stationary condition. Figure 3 shows an example of the evolution of
the mean number of grains 〈z〉 per site as a function of time during the initialization time interval for
different values of the network dimension L in the case of p = 0. Different initial conditions (zero state,
random pre-charged state, etc.) have also been explored to ensure that the results do not depend on
them. No differences have been observed in the statistics of the investigated quantities.
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Figure 3. Evolution of the mean number of grains 〈z〉 per site as a function of time during the
initialization time interval for different network dimension L in the case of p = 0. The inset is
an expansion of the main plot.

3. Results

In this section, we show the results of the simulations of the Manna 1D sand pile model implemented
on a small world network. In what follows, we present results from simulations on systems of different
sizes in the range Nt ∈ [200, 10,000] for zc = 4 and for different values of p. The collected statistics for
each simulation is of the order of one million events or more for each choice of p and L.

3.1. Avalanche Features Statistics

We start the presentation of the results from the statistics of the avalanche size s and duration T in
the case of no extra links for different systems sizes. Thus, each site is simply connected to the first
nearby sites without any longer range link (p = 0).

Figure 4 shows the PDFs for s and T in the case of no extra links. As expected, the distributions are
clearly simple power laws, extending over several orders of magnitude up to a characteristic cut-off,
sc and/or Tc. The observed cut-offs are manifestations of Finite Size Scaling (FSS) effects, i.e.,

P(x) = x−τxF(x, xc(L)) (8)
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where L is the system size, x stands for the observable quantity (here, s and T), xc is the cut-off scale
and τx is the corresponding power law exponent. FSS effects are, indeed, very well documented in the
case of the Manna model (see, e.g., Chessa et al. [30]). Furthermore, the power law exponents τx of the
distributions of the avalanche size s and duration T are very similar, being τs = [0.933± 0.002] and
τT = [0.89± 0.01], respectively.
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Figure 4. The distributions (probability density functions—PDFs) of the avalanche size s (panel a) and
duration T (panel b) for the case of no longer range links (p = 0).

The existence of power law distributions along with FSS effects in this 1D Manna model supports
the critical nature of the dynamics in the simple case of first neighbor interaction.

To study the effect of the presence of longer range links, we introduce in the simple 1D lattice
a certain probability p of longer range links as explained in Section 2. We perform several simulations
with different values of the longer range link probability p within the interval p ∈ [0, 0.5].

Figure 5 shows the evolution of the PDFs of the avalanche size s and duration T with p in the
case of networks with L = 10,000. The most interesting feature in Figure 5 is the emergence of
secondary distributions at large s and T for large values of p, p > 0.01. This effect suggests that the
probability p is an active parameter with respect to the emergence of critical dynamics, possibly related
to a crossover phenomenon for stationary states in dynamical systems. The effect of p manifests in
a bimodal character of the distribution functions.
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Figure 5. The evolution of the PDFs of the avalanche size s (panel a) and duration T (panel b) with p
for L = 10,000. PDFs are scaled by a constant factor for convenience (p = 0, 0.001 and 0.01 scaled by
a factor 103, 102 and 10, respectively).

The above point is supported by the dependence of the avalanche mean size 〈s〉 and duration
〈T〉 on p. Figure 6 shows the trend of 〈s〉 and 〈T〉 on the probability p for the case of a system size
Nt = 1000. A clear transition between two different asymptotic values for p = 0 and p = 1 is observed,
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which suggests how the percentage p of extra links acts as an active critical parameter. This behavior
can be due to the alteration of the linear size L of the 1D lattice by the introduction of longer range links.
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Figure 6. Trend of the avalanche mean size 〈s〉 and duration 〈T〉 on the p probability in the case of
Nt = 1000.

Furthermore, the mean avalanche size 〈s〉 and duration 〈T〉 scale according to a power law as
a function of the network dimension L, and the scaling index tends to decrease with increasing p,
as shown in Figure 7. In the next subsection, the scaling features will be investigated in great detail.
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Figure 7. Dependence of the mean avalanche size 〈s〉 (panel a) and duration 〈T〉 (panel b) as a function
of the network/system size L for different values of p. In particular, the left panel shows the scaling of
the mean avalanche size as a function of L for a set of five values of p, while the right panel displays
a comparison of the scaling feature with the network/system size L of the mean avalanche size 〈s〉 and
duration 〈T〉 for p = 0 and p = 0.5, respectively.

Thus, the introduction of longer range connectivity in 1D lattice mainly has three effects:

(i) to reduce the dimension s and the duration T of the avalanches due to the shortcuts introduced by
the longer range connectivity, which has the effect of reducing the effective size of the network;

(ii) to modify the shape of PDFs of avalanche size and duration along with the emergence of a bump
at the largest values of s and T. This may be evidence for the emergence of a characteristic scale
for s and T;

(iii) to modify the power law scaling of the average s and T as a function of L.

3.2. Finite Size Scaling: Moment Analysis and Scaling Features

Here, we present the analysis of the dependence of Finite Size Scaling (FSS) on the probability p
of extra links. This allows us to characterize better the evolution of the avalanche feature statistics with
the increasing number of longer range links.
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FSS is a peculiar feature of both real and simulated systems near a critical point that, instead of an
infinite range of scales in which the system is scale invariant, shows the emergence of a rounding and
shifting of critical singularities, which depends on their finite dimension. This property is very well
documented in real equilibrium critical systems [13,21,22] and also in SOC and complex systems near
criticality [13,23].

In the case of a critical system of finite size L if p(x; L) is the distribution function for the observable
x, then the FSS effect predicts that:

P(x; L) = L−τx Dx Πx

( x
LDx

)
(9)

where Dx is the scaling exponent characterizing the rescaling of the observable x on the size L, τx

is the scaling exponent of the distribution function, P(x; L) ∼ x−τx and Πx is the scaling function.
The exponent Dx represents the capacity dimension and determines the typical cut-off xmax ∼ LDx of
the probability distribution function of the quantity x. For real critical systems, the scaling exponent
Dx is expected to be constant and independent of the size of the local invariant Y = x/LDx . This means
that from Equation (9), it is possible to collapse the distributions relative to systems of different sizes
into a universal master curve by applying the following scale transformation:{

x −→ Y = x/LDx

P(x; L) −→ Π(Y) = Lτx Dx P(x; L)
(10)

Because the scaling for the construction of the master curve requires one scaling exponent Dx, we
are in the presence of simple scale invariance features, i.e., a mono-fractal behavior.

To investigate the FSS effect in relationship with the presence of longer range links, we consider
a set of simulations for different sizes L of the network (L = 200, 400, 600, 800, 1000, 2000, 4000 and
10,000) and different values of the p parameter (0 ≤ p ≤ 0.5).

Figure 8 shows the evolution of the PDFs of the avalanche size s as a function of the system size L
for two different values of the parameter p, i.e., p = 0 and 0.1. In both cases, we observe clear system
size effects. Indeed, the cut-off avalanche dimension sc increases with system size L.

To attempt the construction of the master curve by collapsing PDFs of different sizes L, we make
use of the moment analysis technique, as described in [30,31]. This method consists of studying the
scaling features of the q—order moment, 〈xq〉, of an observable x as a function of the system size L.
In particular, supposing that the PDF of the observable x can be assumed to be:

P(x; L) = x−τxFx (x, L) , (11)

where Fx (x, L) is the cut-off function. Then, the q—order moment, 〈xq〉, is expected to scale as follows,

〈xq〉L =
∫

xqP (x, L) ∼ Lσx(q), (12)

where:
σx(q) = Dx(q + 1− τx). (13)

The quantity σx(q) is named the momenta spectrum and facilitates the determination of the two
scaling exponent Dx and τx relative to the observable x. Indeed, the asymptotic behavior of σx(q) for
large momenta q is:

σx(q)
q�τx−1−−−−→ qDx. (14)

Furthermore, the other scaling exponent τx can be easily evaluated using, for instance, the value
of the momenta spectrum at q = 1, i.e.,

τx = 2− σx(1)
Dx

. (15)
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The above moment analysis has been applied to the case of the avalanche size distributions to get
the values of the scaling exponents Ds and τs.
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Figure 8. The evolution of the PDFs of the avalanche size s with different system sizes L for two
values of p: panel (a) for p = 0 and panel (b) for p = 0.1, respectively. The panel (a) reports the same
distributions for the avalanche size s shown in Figure 4.

Figure 9 shows the behavior of the momenta spectra for a set of values of the probability p.
To evaluate the capacity dimension Ds, we use the procedure described in [32], i.e., plotting

σs(q)/q versus 1/q and looking for the limiting value for 1/q −→ 0, indeed:

lim
1/q→0

σs(q)
q

= Ds. (16)

Furthermore, using the relationship of Equation (15), we get also the other scaling exponent
τs. Table 1 reports the values of the two scaling indices (Ds and τs) as a function of p as computed
by the moment analysis. For comparison, we also included the scaling index τ∗s as computed by
looking for the presence of an interval with constant slope in the PDFs of the avalanche size s. A clear
dependence on the parameter p is found for both the capacity dimension Ds and the scaling exponent
τs. Furthermore, the scaling index τ∗s shows a transition between the expected value in the case of
1D Manna model for p = 0 and the mean field value τ∗s = 3/2 for p ≥ 0.1 (see Figure 10). A similar
behavior has been observed by De Arcangelis and Herrmann [16] for simulations of the BTW model
on small world networks.

8

6

4

2

0

σ
s(

q
)

43210

q

 p =  0
 p =  0.001
 p =  0.01
 p =  0.1
 p =  0.5

Figure 9. The momenta spectra σs(q) relative to the avalanche size s for five different values of p.
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Figure 10. Avalanche size PDFs for p = 0 and 0.5. The two lines refer to the expected power law
behavior in the critical 1D Manna model τs ∼ 1 and according to the mean field theory, τs = 3/2.

Table 1. Ds, τs and τ∗s scaling indices versus the probability p of extra links.

p Ds τs τ∗
s

0 2.180 1.090 0.99± 0.06
0.001 2.129 1.143 1.05± 0.07
0.002 2.067 1.247 1.19± 0.06
0.004 1.821 1.237 1.28± 0.02
0.006 1.669 1.210 1.35± 0.03
0.008 1.697 1.277 1.36± 0.02
0.01 1.594 1.254 1.39± 0.02
0.02 1.453 1.263 1.46± 0.03
0.04 1.400 1.249 1.48± 0.03
0.06 1.365 1.234 1.48± 0.04
0.1 1.328 1.226 1.50± 0.03
0.2 1.337 1.236 1.52± 0.03
0.4 1.329 1.238 1.53± 0.03
0.5 1.309 1.231 1.52± 0.04

Figure 11 shows the dependence of the capacity dimension Ds of the avalanche size s on p. We see
that for p → 0, we get Ds ∼ 2 and τ ∼ 1. These values are in good agreement with the classical
results on BTW sand pile model. Conversely, for p → 1, values tend respectively to Ds ∼ 4/3 and
τ∗s ∼ 3/2, which are the mean field values. This is very similar to what has been already observed
in De Arcangelis and Herrmann [16], so that the point to check is if the continuous change of the
scaling exponents is due to an intrinsic continuous line of critical points or of a crossover phenomenon.
Following the procedure described in De Arcangelis and Herrmann [16] and Lahtinen et al. [17],
we check for a data collapse of the distributions for p ≥ 0.01 at the largest value of L = 10,000,
following the classical crossover scaling:

P(s; L) = s−τsF
(
spφ
)

(17)

Here, F is the scaling function and φ is the corresponding universal crossover exponent. Figure 12
shows the data collapsing using respectively τs = 1 and φ = 5/4 for avalanche PDFs relative to
L = 10,000 and with p ≥ 0.01. Collapsing seems to work for values of p ≥ 0.05 (i.e., for large values
of the probability p of extra links) in the range of the scaled variable spφ ∈ (10, 103). The interval
of the scaled variable, where collapse seems to work, corresponds to the interval of avalanche size s
where the PDFs behave according to mean field theory as P(s) ∼ s−3/2 (see Figure 10). A similar result
was found by Lahtinen et al. [17] for small world networks with quenched randomness. This result
suggests that we are in the presence of a crossover phenomenon to mean field behavior, as already
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observed by De Arcangelis and Herrmann [16] in 2D small world networks. We recall that here, we
are doing 1D simulations on Newman–Watts networks with quenched randomness.

 !"

 !#

$!"

$!#

%
&'
(
)

#!##$ #!#$ #!$ $

(

Figure 11. Dependence of the capacity dimension Ds relative to the avalanche size s as a function of
the probability p. The dashed curve is an eye-guide.
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Figure 12. Data collapse of the PDFs of the avalanche size s for values of p ≥ 0.01 for simulations
with L = 10,000. Here, we have assumed τs = 1. The best value for data collapsing is found in
correspondence with φ = 5/4.

Using the scaling exponents reported in Table 1, we attempt the data collapsing of the PDFs
relative to systems of different size L applying the transformation of Equation (10). Figure 13 shows
data collapsing for three different values of the probability p. A clear dependence of the capacity
dimension Ds and of the scaling exponent τs on the long-range connectivity parameter p is recovered.

Data collapsing works quite well in the case of p = 0 for values of the scaled variable s/LDs larger
than 10−4, confirming the existence of FSS effects as expected for simple critical phenomena. Although
the data collapsing for p = 0 seems to support that PDFs exhibit FSS, the computed threshold cutoffs
do not exactly allow the PDFs in the small s region to lie on one smooth straight line. This point would
suggest that for the small s region, FSS could fail, implying the emergence of multifractal/multi-scaling
features. We note how in the literature there is evidence for the lack of FSS in some classes of stochastic
sand pile CA models (see, e.g., [33–35]). We will return to this point in the following subsection, where
we apply the ROMA technique [25]. For increasing values of the probability p, i.e., for increasing
non-local connectivity, data collapsing appears not very good. In particular, for p ≥ pc ∼ 0.01 data
collapsing seems not to work properly, showing discrepancies for small and high values of the scaled
variable s/LDs . No substantial changes are observed using the value computed from fitting the PDFs,
i.e., τ∗s (see, e.g., Figure 14) instead of τs from moment analysis.
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Figure 13. Collapsing of the PDFs of the avalanche size s for three different values of p (panels (a), (b)
and (c) for p = 0, 0.01 and 0.5, respectively) using the scaling indices from moment analysis (Ds and τs).
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Figure 14. Collapsing of the PDFs of the avalanche size s for two different values of p, p = 0.01 and
0.5—panel (a) and (b) respectively, using the scaling indices Ds and τ∗s .

The failure of data collapsing for increasing values of the probability p of extra links is the
signature of a more complex nature of the avalanching processes, as a results of different competing
behaviors for small and large values of the avalanche size s. In particular, for p ≥ 0.01, the PDF
seems to show both the emergence of a characteristic scale for large s and power law features for
small s. This could be the evidence of the coexistence of both pseudo-first order and pseudo-second
order dynamic relaxation processes, so that the absence of a master curve has to be read in terms
of competing small size critical and large size non-critical dynamics. This implies that the nature
of the avalanching process is no-longer characterized by a mono-scaling nature, but instead due to
a multi-scaling nature.



Entropy 2017, 19, 383 14 of 19

Another possible origin of the observed loss of FSS could be that the generation of a RG for an
increasing number of longer range links alters the sense of a linear scale, as is the case of a regular
lattice, generating an effective inner scale in the avalanching process [36,37].

3.3. Rank-Ordered Multifractal Analysis and Finite Size Scaling

Recently, Chang and Wu [25] (see also [13] for a more detailed discussion) introduced a novel
technique, named Rank-Ordered Multifractal Analysis (ROMA), to attempt data collapsing and the
construction of master PDFs for the fluctuations of intermittent and multifractal signals. ROMA is
based on the construction of invariants in systems near critical points displaying multiscaling features
due to competing fixed points. The basic idea of this technique is that different amplitude fluctuations
are characterized by different scaling exponents, so that the singularity features can be investigated by
grouping fluctuations according to their re-scaled sizes. Thus, the single exponent of mono-scaling
fluctuations turns into a spectrum (ROMA spectrum) of rank-ordered fluctuations based on the local
invariants. The procedure is very simple.

If p(X, δ) is the PDF of a variable X (e.g., the fluctuation amplitude) depending on the parameter
δ, then one can construct a local invariant Y = X/δh, corresponding to a certain range of the variable
X rank-ordered according to the local invariant Y and where h is the local scaling exponent. In such
a way, for multi-scaling variable X, the exponent h is a function of Y, i.e., h = h(Y), which is the ROMA
spectrum. Thus, the computation of the ROMA spectrum requires solving the following functional
equation for a range limited structure function,

S′q(X; δ, [Yi, Yi+1]) =
∫ δhYi+i

δhYi

Xq p(X, δ)dX ' δqh. (18)

If a solution of h is found in the given range of Y ∈ [Yi, Yi+1], then the scaling features of the scaled
variable Y in the chosen range are characterized by a mono-fractal behavior with scaling exponent h(Y).

The ROMA spectrum h(Y) is the quantity able to characterize the different scaling features of
different amplitude fluctuations. The advantage of the ROMA method is that it is not based on
the average behavior (as occurs for standard moment analysis/partition-based methods). Thus,
the evaluation of the scaling exponent for a certain fluctuation amplitude is not affected by scaling
exponents of the most probable fluctuations.

Using the ROMA spectrum h(Y), it is possible to collapse the PDFs to get the invariant FSS
function Π(Y) according to the following transformation,{

X −→ Y = X/δh(Y)

P(X, δ) −→ Π(Y) = δh(Y)P(X, δ)
(19)

By means of ROMA, we can attempt PDFs’ collapsing. Thus, as a first step, we evaluate the
ROMA spectrum h(Y) by solving the functional Equation (18) for rank-ordered avalanche sizes.

In Figure 15, we show the ROMA spectrum h(Y) as obtained by PDFs relative to three cases,
p = 0, 0.01 and p = 0.5. There is not a wide interval of scaled variable Y where the h(Y) is constant.
Indeed, also for p = 0, we find a dependence of the scaling exponent on the scaled variable Y, although
the observed variability is small, being ∆h(Y) < 0.5 and 〈h(Y)〉 = [2.17± 0.15]. This variability
is probably due to threshold cutoffs that do not exactly allow the PDFs in the small s region to lie
on one smooth straight line. We emphasize that the average scaling exponent 〈h(Y)〉 for p = 0 is
in good agreement with the index Ds = 2.18. On the other hand, large variations of the scaling
exponent h(Y) of the scaled variable Y are found for the other two cases, being ∆h(Y) ' 1.2 and
∆h(Y) ' 0.75, for p = 0.01 and p = 0.5, respectively. This result suggests that for increasing values of
the probability p, multi-scaling features become very relevant. Furthermore, the ROMA spectrum h(Y)
can be interpreted in terms of a capacity dimension, which depends on the dimension of the scaled
avalanche size Y. There is no longer a single capacity dimension Ds, but a continuous spectrum of
this quantity.
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Figure 15. The ROMA spectra, h(Y), relative to three cases p = 0, 0.01 and 0.5.

Using the ROMA spectrum, h(Y), we can attempt the data collapsing of the PDFs. We get a very
good collapsing in all of the considered cases by applying the following transformation,{

Y = s/Lh(Y)

Π(Y) = Lh(Y)+η p(s, L)
(20)

where Lη is a normalization factor, with the exponent η ∼ τs − 1. Figure 16 shows the obtained PDFs’
collapsing for the three cases reported in Figure 15.
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Figure 16. Collapsing of the PDFs relative to the p = 0, 0.01 (a,b) and p = 0.5 (c) simulations using the
ROMA spectra h(Y) reported in Figure 15. The dashed line refers to a power law ∼ Y−1.

The obtained data collapsing is good in all three cases and confirms that for increasing p values,
the nature of the avalanching process is multi-scaling, indicating a more complex dynamics in
comparison with the traditional sand pile model on a regular lattice.
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As a result of the ROMA approach, we can say that increasing the probability p, the PDFs of
avalanche size s acquire local scaling features, so that the FSS ansatz results in a continuous spectrum
h(Y). The situation is analogous to what happens moving from a fractal to multifractal description,
which according to Mandelbrot [38] “involves the passage from a finite number of fractal dimensions
to an infinite number of dimensions”. In particular, the capacity dimension Ds acquires a dependence
on the scaled avalanche size s, i.e., Ds → Ds(Y) = h(Y).

4. Summary and Conclusions

In this work, we have presented a study of the effect of non-local connectivity, i.e., longer range
connectivity, in the avalanching process placed on a simple 1D network instead of 1D regular lattice.
In particular, we have presented a detailed study of the changes of the PDFs’ shape as a function of the
percentage of longer range links p and the effect that an increasing number of longer range links has
on the FSS ansatz.

The main results of this study are the observation of a crossover phenomenon in the statistics
of the relaxation events as a function of the percentage of longer range links and the breaking of the
simple Finite Size Scaling (FSS). Furthermore, according to De Arcangelis and Herrmann [16], we also
found evidence for a crossover phenomenon to mean field behavior (τ ∼ 3/2), although, different from
their results, a characteristic avalanche size s seems to emerge at larger values of p (p ≥ pc ∼ 0.01).
This manifests in a peak in the PDFs of avalanche size s for large s. This secondary behavior could be
due to the emergence of a non-critical dynamics, i.e., a pseudo-first order dynamics, so that the overall
dynamics at large values of p is the result of pseudo-first order and second order (critical) relaxation
phenomena/processes.

The investigation of FSS has clearly shown how a certain amount of longer range connectivity
increases the multi-scaling nature of FSS. This point has been investigated using the ROMA approach
introduced by Chang and Wu [25], which leads to the determination of a spectrum h(Y) of scaling
indices as the generalization of the FSS ansatz. The existence of a continuous spectrum of scaling
indices for large p is analogous to the transition from fractal to multifractal description of geometrical
objects/distributions [38]. The application of the ROMA method to PDFs’ collapsing also demonstrates
that the avalanching nature is also multi-scaling for p = 0 at small values of s. The observation
of multi-scaling features in the avalanching dynamics of 1D networks with or without a longer
range connectivity supports the hypothesis that the critical nature of this dynamical process is
more complex when compared to equilibrium critical phenomena. The emergence of multifractal
scaling in the avalanching process is something that it is not simple to explain, the dynamics being
shown in our simulation in the interface between simple sand pile CA models and network systems.
However, multifractal scaling features are also observed in sand pile CA models on regular lattice
structures [19,33] when sites can have multiple toppling during the same avalanche. Thus, the addition
of longer range links, which might cause a network change from a small world structure to a random
graph one, can generate the formation of closed loops shorter than the system size L, which would
imply multiple toppling of sites. This is supported by a preliminary analysis of the shortest path
density `(L; p) [39] as a function of the parameter p (data not shown), which shows a clear departure
on the linearity for increasing values of the parameter p. These RG loops could also be responsible
for the emergence of the peak in the PDFs for large avalanche size s. Indeed, for large avalanches
quoting Hoore and Moghimi-Araghi [19] “the probability of finding a site in the toppled sites that has
long-ranged bond approaches 1 and hence the statistics of the avalanche sizes changes”. This point can
be substantiated by the fact that the sand pile dynamics can be substantially modified by changing the
connectivity structure, which affects the adjacency matrix (describing the locally connected network)
and the related toppling operator. Clearly, a better understanding of the emergence of multiscaling
features would require a detailed analysis of the link with the formation and features of closed loops
in the transition from the SW network to the RG one for increasing number of longer range links.
We demand this analysis in a more dedicated future work.
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Furthermore, the degree of complexity of this avalanching process seems to increase with the
increasing number of longer range links, which manifests in the simultaneous coexistence of competing
pseudo-first (see, e.g., the occurrence of a characteristic scale for avalanche sizes) and pseudo-second
order (scale-invariant relaxation events) processes. The evidence for this complexity increase can be
found in a wider ROMA spectrum h(Y) at large p.

A similar situation where out-of-equilibrium dynamics contemporarily shows pseudo-first order
behavior and the pseudo-second order one has been observed in the magnetospheric dynamics in
response to solar wind changes during geomagnetic substorms [40,41]. Indeed, Sitnov et al. [41] have
shown how the magnetospheric dynamics in the course of geomagnetic substorms exhibits a number
of features that are typical of non-equilibrium phase transitions with both first order and second order
features. Furthermore, the PDFs of the energy released during magnetospheric substorms, as indirectly
measured by Auroral Electrojet (AE) geomagnetic indices, resemble the one observed in the limit of
large p [9].

We believe that our results can be helpful to explain the evidence of first order- and second
order-like behavior and the occurrence of multi-scaling features in non-equilibrium systems
characterized by an avalanching dynamics.
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Abbreviations

The following abbreviations are used in this manuscript:

1D 1-Dimensional
2D 2-Dimensional
BTW model Bak–Tang–Weisenfeld model
CA Cellular Automaton/a
CME Coronal Mass Ejection
EUV Extra Ultra Violet
FSS Finite Size Scaling
HXR Hard X-Ray
PDF Probability Distribution Function
RG Random graph
ROMA Rank-Ordered Multifractal Analysis
SOC Self-Organized Criticality
SXR Soft X-Ray
SW Small World
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