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[1] We revisit the issue of the so-called Båth’s law concerning the difference D1 between
the magnitude of the main shock and the second largest shock in the same sequence. A
mathematical formulation of the problem is developed with the only assumption being that
all the events belong to the same self-similar set of earthquakes following the Gutenberg–
Richter magnitude distribution. This model shows a substantial dependence of D1 on the
magnitude thresholds chosen for the main shocks and the aftershocks and in this way
partly explains the large D1 values reported in the past. Analysis of the New Zealand and
Preliminary Determination of Epicenters (PDE) catalogs of shallow earthquakes
demonstrates a rough agreement between the average D1 values predicted by the
theoretical model and those observed. Limiting our attention to the average D1 values,
Båth’s law does not seem to strongly contradict the Gutenberg–Richter law. Nevertheless,
a detailed analysis of the D1 distribution shows that the Gutenberg–Richter hypothesis
with a constant b-value does not fully explain the experimental observations. The
theoretical distribution has a larger proportion of low D1 values and a smaller proportion
of high D1 values than the experimental observations. Thus, Båth’s law and the
Gutenberg–Richter law cannot be completely reconciled, although based on this analysis
the mismatch is not as great as has sometimes been supposed. INDEX TERMS: 7223
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1. Introduction

[2] The relation between the magnitude of the main
shock M0 in the sequence and its largest aftershock M1

is still an open problem. Several attempts have been made
to determine statistical relations between these magnitudes.
In various circumstances the difference D1 = M0 � M1 was
found approximately equal to the constant value 1.2
(assuming that both magnitudes are reliable). This property
appears independent of the absolute magnitudes of the
shocks concerned and other aspects of the particular
sequence under study. This relation, usually called Båth’s
law in the seismological literature [Richter, 1958; Båth,
1965], implies that the seismic energy of the main shock is
on average about 50 times as large as the energy of the
largest aftershocks [Båth, 1965]. However, Båth noted
possible exceptions to his law, as in the case of a group
of several equally large main shocks and aftershocks. The
results obtained by Utsu [1957, 1961] on Japanese after-
shock sequences, though the D1 parameter was distributed

over a rather large range of values, seem to confirm the
above mentioned trend as an average. Utsu [1969] inter-
preted these results as a proof that main shocks belong to a
different category from all the other events in the after-
shock sequence. Similar results have also been reported in
other studies on the statistical distribution of D1 [Papa-
zachos, 1974; Purcaru, 1974; Tsapanos, 1990]. They agree
on average with Båth’s law, taking into account differences
in the methods used for selection of main shock–after-
shock pairs. Vere-Jones [1969] discussed a possible differ-
ent interpretation of Båth’s law based on the hypothesis
that the magnitudes of the shocks in an aftershock
sequence are independently and exponentially distributed
according to the usual ‘‘Gutenberg–Richter’’ frequency–
magnitude law. He assumed that the two shocks, as
mentioned above, are just the largest and second largest
members of a random self-similar sample (in disagreement
with Utsu [1969]). According to the mathematical theory,
the difference between the largest and next-largest mem-
bers of a sample randomly chosen (with the same lower
limits) from an exponential distribution is independent of
the sample size and is exponentially distributed with the
same parameter as the distribution of the individual sample
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members [Feller, 1966, p. 18]. The theoretical model,
illustrated by Vere-Jones in more detail in 1975, does
not confirm Båth’s law in two important points: it predicts
both an exponential distribution of D1 with a mean of the
order of 0.5, rather than a distribution closely concentrated
about the value 1.2, and a positive correlation, rather than
zero or negative, between D1 and M0 magnitude. These
discrepancies have been ascribed by Vere-Jones to the
different magnitude thresholds chosen for the definition
of the samples from which the strongest and the second
largest magnitudes are taken. It does not seem, to our
knowledge, that any paper following on the subject has
either substantially supported the interpretation given by
Vere-Jones, or given an alternative solution to the problem.
For instance, Tsapanos [1990], implicitly assuming the
validity of Båth’s law, points out regional variations in the
D1 value. More recently, Guo and Ogata [1997], in their
statistical study of aftershock properties, and Evison and
Rhoades [2001], treating the predictability of the main
shock parameters, quite clearly share the classic Utsu’s
[1969] view, i.e., the strongest shock in a sequence is not a
member of the self-similar set of aftershocks.
[3] In this paper, developing the formulation of the

conditional distribution for D1 initially introduced by
Vere-Jones [1975, p. 816] we show how the observed
distributions depend both on the particular cutoff value
chosen for the lower limit of the two magnitudes, M0 and
M1, and on the number of events N in each sample. We
find that, in the particular case when the difference between
the two cutoff magnitude values is equal to 2 units of
magnitude and N is approximately equal to 10, the theo-
retical density function of the magnitude difference is
strongly peaked near 1.2 (as predicted by Båth’s law). In
the limit case of N ! 1 the distribution D1 is represented
by the negative exponential Gutenberg–Richter’s law,
regardless of the difference in the magnitude thresholds.
It will also be shown that the experimental distribution of
D1 is well fitted by the exponential distribution, independ-
ently of N, if the cutoff magnitude values are the same for
M0 and M1.

2. Mathematical Background

[4] In this paper we adopt the hypothesis that the magni-
tudes of a set of seismic events, observed in a given region
and a given time interval, follow the Gutenberg–Richter
law, i.e.,

log10 N Mð Þð Þ ¼ a� bM ð1Þ

where N(M ) is the number of events with magnitude larger
than or equal to M. Equation (1) is equivalent to the
statement that the above mentioned magnitudes represent a
sample of independent and identically distributed random
variables, with density function

f Mð Þ ¼ be�b M�Mcð Þ M � Mc ð2Þ

where Mc is the completeness threshold of the observed
magnitudes and b = b ln (10). The cutoff magnitudeMc for a
sequence is the lowest magnitude above which the data set
is considered complete. It may be taken as the lower bound

of the interval where the cumulative log frequency curve of
the magnitudes follows the linear form predicted by the
Gutenberg–Richter relation.
[5] It is known that [Feller, 1966; Casella and Berger,

1990], given N independent and identically distributed
random variables with density function (2), the correspond-
ing order statistics M0 � . . . � MN�1 are not independent
and Mi has a density function

f NMi
ðMÞ ¼ N !

i!ðN � i� 1Þ! be
�bðM�McÞð1� e�bðM�MCÞÞN�i�1

� ðe�bðM�McÞÞi i ¼ 0; :::;N � 1: ð3Þ

Furthermore, it follows that, if N � 2, the random variable
D1 = M0 � M1 has an exponential distribution with
parameter b, independently of N. Therefore, having denoted
with E[D1] the average of D1, we have [see, for details,
Vere-Jones, 1969, equation (2)]:

E D1½ 
 ¼ 1

b
: ð4Þ

Now let M0* be a constant larger than or equal to Mc and
suppose that we have the further information that

M0 � M0*: ð5Þ

The density function of D1conditioned by (5) is:

f N
D1jM0�M0*f g dð Þ
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The relative conditioned average is:

EN D1j M0 � M 0*f g½ 
 ¼ 1

b
þ Ne�b M 0*�Mcð Þ

1� 1� e�b M 0*�Mcð Þ
� �N

� M0*�Mc �
XN�1

k¼1

1� e�bðM0*�McÞk

bk

" #

ð7Þ

From equation (7) is evident that it depends not only on b,
but also on the sample size N and on the difference �M
between the thresholds M0* and Mc. In Figure 1 we show
examples of density functions of the magnitude difference,
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between the main shock and its largest aftershock, for
various �M, considering the usual b value equal to 1. The
density functions are distinguished on the basis of the
sample size. We can observe that, as shown by Figure 1a, if
M0* =Mc there is no conditioning: the density function of D1

is coincident with the density function of an exponential
random variable for any value of N and, therefore, we have
EN [D1|{M0 � M0*}] =

1
b. Analogously it follows that, for N

! + 1, the distribution of D1 converges to an exponential
random variable (see Figures 1b and 1c for N equal to 100
and 1000, respectively) and therefore

E D1j M Nð Þ � M0*
n oh i!N!þ1 1

b
ð8Þ

In Figure 2 the trend of EN [D1|{M0 � M0*}] versus N,
compared with the mathematical average of 1000 random
variables synthetically obtained through the density func-
tion (6), is displayed for �M = 2. A more detailed
description of the theoretical model and other examples is
given by Lombardi [2002].

3. Data and Results

[6] This study aims to investigate whether the behavior of
real seismicity supports the conclusions of the earlier studies
[e.g., Utsu, 1961, 1969] regarding the lack of agreement
between the Gutenberg–Richter and Båth laws, as far as the
main shock magnitudes are concerned. With the aim of
testing the statistical model on real data, we used two
different data sets. The first is the shallow earthquake (h
� 33 km) catalog compiled by the New Zealand Seismo-
logical Observatory, Wellington, for the time span 1 January
1962 to 30 September 1999. We consider all earthquakes
contained in a polygonal area bounded by the 165�E and
181�E meridians, and 36�S and 48�S parallels, within which
the national network has provided reliable locations for
nearly all the events of magnitude (Ml) 4.0 and larger, as

Figure 1. (a) Theoretical density functions of D1 for the
threshold differences �M = M0* � Mc = 0. The function
trend is independent of the sample size. (b) The same as in
(a), but for�M = 1. Samples for three different sample sizes
are shown (N = 2, 10, and 100). (c) The same as in (a), but
for �M = 2. Samples for four different sample sizes are
shown (N = 2, 10, 100, and 1000).

Figure 2. The conditional average of D1 versus the sample
size compared with the arithmetic average of 1000
simulated values for �M = 2.
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shown in Figure 3. The number of events falling in this
particular time window and geographical area considered
for the analysis is 7,182. This data set is characterized by a
b-value of 1.111 ± 0.012, obtained through the maximum
likelihood method proposed by Utsu [1965, 1967]. The
estimate of the standard deviation has been obtained using
the equation by Shi and Bolt [1982]. It must be noted,
however, that a c2 test of the magnitude distribution does
not fully support the hypothesis of a perfect exponential
density function in the lower magnitude range. We decided
to adopt 4.0 for the minimum magnitude of the catalog used
in this study as a compromise between the size of the data
set and its completeness.
[7] For our purposes we need to identify in the catalog

all the subsets of events including a main shock and its
aftershocks. Since no standard procedure exists for iden-
tification of main shocks and aftershocks, we apply an
algorithm requiring a minimum number of subjective
definitions. Here aftershocks are defined as events with
magnitude M1 exceeding a threshold M1* that are preceded
in a given time–space window by another earthquake of

equal or larger magnitude (in this way we consider within
the main shock–aftershocks series some sequences that
are elsewhere called ‘‘multiplets’’ or ‘‘swarms’’). In this
context the magnitude threshold for aftershocks is consid-
ered the same as the completeness magnitude of the whole
catalog (M1* = Mc = 4.0). Main shocks are nonaftershocks
with magnitude M0 exceeding a threshold M0* followed by
at least one aftershock in the same time–space window
mentioned above. All the remaining earthquakes are
defined as single events. The values of the time and space
parameters needed in this definition are drawn from the
algorithm of Reasenberg [1985], that takes into account
the magnitudes of the preceding main shocks. In partic-
ular, for the calculation of the time limits within which we
declare an event to belong to a cluster, we use a variant of
the original Reasenberg’s formula introduced by Kagan
[1996].
[8] The analysis has been carried out considering differ-

ent values of M0* (4.0, 5.0, and 6.0, respectively). Table 1
gives the results of our analysis in terms of the number of
sequences found in the catalogs and the relative average

Figure 3. Epicentral map of the shallow seismicity (M � 4.0) in the New Zealand region (January 1962
to September 1999). The internal polygon shows the area analyzed in this study. The size of the symbols
is scaled in magnitude. The origin of the rectangular coordinates is the point 173�E, 42�S.
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magnitude difference D1. It should be noted that most of the
clusters, for the New Zealand catalog, have a low number of
events. In fact for M0* =M1*, 60% of the clusters have only
two events and 80% have a number of events smaller than
or equal to 5. The respective values for M0* � M1* = 1 are
40% and 60%.
[9] A visual comparison between the theoretical model

and the real seismicity is provided by Figure 4, showing, for
the three values of the main shock threshold M0*, the
histogram of the number of cases observed in each class
of D1. In order to compare the histogram obtained from the
observations with the theoretical density function of D1,
f

D1jM0�M0*f g (d), we cannot simply use equation (6) because
this equation is written for a single value of N. So we make
use of the formula

f
D1jM0�M0*f g dð Þ ¼

Xþ1

N¼2

f N
D1jM0�M0*f g dð Þ � pN ð9Þ

where pN represents the frequency distribution of clusters
with N events. In this case, as a theoretical assessment of
pN is not available, it is taken as the observed relative
frequency of clusters with N events (if no clusters are
observed with N events, pN is assumed to be 0 and in this
case f N

D1jM0�M0*f g does not contribute to the sum). The
continuous lines of Figure 4 have been plotted after having
applied a proper normalization factor, so that the integral
of the density function is equivalent to that of the histo-
grams. The shape of the theoretical curves compared with
the relative experimental histograms allows one to judge in
a qualitative way how well the model agrees with the
observations. In particular, for the case �M = 2 (Figure 4c)
we must take into account the fact that the number of the
main shocks with magnitude equal to or larger than 6.0 is
only 20 and that leads to a large dispersion in the observed
values.
[10] To obtain the theoretical values of the average

magnitude difference D1, for the three cases, we compute
the weighted average of (7):

E D1½ 
 ¼
Xþ1

N¼2

EN D1j M0 � M0*f g½ 
 � pN ð10Þ

and so obtain the three values 0.391, 0.796, 1.053 (as shown
in Table 1). Both the observed overall values of D1 and the
corresponding theoretical values show the same tendency to
increase with �M. Moreover, we may note that the

observed D1 values, except for �M = 0, are in agreement
with the theory within the mean square deviation.
[11] The second data set analyzed in this study is the

catalog of Preliminary Determination of Epicenters (PDE)
reported by the National Earthquake Information Service
(NEIC) from 1 January 1973 to 29 January 2001. The
magnitude under analysis is that reported by NEIC in the
eighty columns format (the maximum value among Ms, Mb

and Mw). The analysis has been limited to events with depth
shallower than 50 km and magnitude equal to or larger than
5.0, which seems a suitable completeness threshold for this
catalog. The total number of events selected in this way is
29,343. The maximum likelihood value of b for this data
set, obtained with the same criteria used for the New
Zealand data, is 1.024 ± 0.006.
[12] For the analysis of the PDE catalog we have consid-

ered again three different values of M0*, but one magnitude
unit larger than for the New Zealand case (5.0, 6.0, and 7.0,
respectively). The relative results are shown in Table 1. The
comparison between the observed overall values of D1 and
the theoretical ones obtained by applying equation (10)
indicates a difference of about 20% for �M = 0 and a
difference of about 10% for �M = 1, the experimental
values being larger than the theoretical ones. Unlike what
we noted for the New Zealand data, in this case, the range of
values defined by the mean square deviation for every �M,
does not include the expected value of D1. Furthermore, a
visual comparison between the number of cases observed in
each class of D1 and the number predicted by the theoretical
model, shown in Figure 5 for the three values of the main
shock threshold M0*, while still confirming a qualitative
agreement, shows some systematic differences. In particu-
lar, for �M = 0 and �M = 1, a deficit of observed cases for
D1 < 0.6 and an excess for D1 > 1.0 is quite evident (Figures
5a and 5b). The larger number of earthquakes reported in
the PDE catalog allows one to define in a more robust way
than with the New Zealand data, the good agreement
between the observed and the theoretical trend of the D1

distribution for �M = 2.

4. Discussion

[13] As pointed out by various authors in the past [Utsu,
1957, 1961; Papazachos, 1974; Purcaru, 1974; Tsapanos,
1990] and confirmed by the present data analysis, the D1 =
1.2 value predicted by Båth’s law must be regarded as the
average of a wide range of cases. Some of the same authors
studied the D1 distribution in detail and made various

Table 1. Statistical Results of the Analysis for D1 in the New Zealand and in the PDE Catalogs of Shallow Earthquakes

New Zealand (7182 events) PDE (29,343 events)

�M = 0 �M = 1 �M = 2 �M = 0 �M = 1 �M = 2

Ncl 370 124 20 2562 1085 255
Nec 3980 3221 2359 13,177 9430 5938

D1
0.4278 0.7984 0.9850 0.5378 0.9214 1.2074

E[D1jM0 � M0
*] 0.3910 0.7964 1.0527 0.4241 0.8380 1.2837

s 0.4041 0.4198 0.4234 0.4948 0.4979 0.5868
sffiffiffiffiffi
Ncl

p 0.0210 0.0377 0.0947 0.0098 0.0151 0.0367

Ncl: Number of clusters with N events. Nec: Number of nonsingle events. D1: Average magnitude difference
PNcl

i¼1
D1 ið Þ

Ncl

� �
. s: Estimated standard deviationffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNcl

i¼1
D1 ið Þ��D1ð Þ2

Ncl

r !
. sffiffiffiffiffi

Ncl

p : Estimated mean square error.
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Figure 4. (a) Histogram of the distribution of D1 observed
in New Zealand for the threshold difference �M = M0* �
M1* = 0 compared with the theoretical normalized density
function. (b) The same as in (a), but for �M = 1. (c) The
same as in (a), but for �M = 2.

Figure 5. (a) Histogram of the distribution of D1 observed
in the PDE catalog for the threshold difference �M = M0* �
M1* = 0 compared with the theoretical normalized density
function. (b) The same as in (a), but for �M = 1. (c) The
same as in (a), but for �M = 2.
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interpretations. For instance, Purcaru [1974] concluded that
the hypothesis of D1 normally distributed, as well as some
other different hypotheses including the negative exponen-
tial distribution, should be rejected for Greece. Tsapanos
[1990] observed two distinct peaks (at 1.2 and 1.8 magni-
tude units) in the D1 distribution for large circum-Pacific
earthquakes and interpreted this circumstance as proof of a
different behavior between the convergent plate boundaries
and the back arc areas. Though a high significance level of
this distinction was claimed by the author, it is difficult to
judge because the paper does not report the D1 distributions
observed separately in the two distinct groups of active
regions.
[14] In light of the theoretical framework developed in

our study, we may surmise that the variety of cases reported
in the literature for the D1 distribution can be ascribed, not
only to particular circumstances (such as the b-value or the
size of the earthquake cluster), but also to the way in which
the data are treated by different authors. Specifically, D1

depends on the arbitrary choice of the magnitude thresholds
M0* and M1* (typically a difference of �M = 2 has been
adopted by the aforementioned authors for these thresh-
olds). The D1 value can be also biased by the specific
definition of main shocks adopted in the analysis. For
instance, the arbitrary distinction between main shocks,
swarms and multiplets [Evison, 1981; Evison and Rhoades,
1993] depending on the difference between the magnitude
of the largest shock and the third largest shock in the
sequence, is expected to have significant influence on the
observed distribution of D1, excluding the smallest values
from the average.
[15] In this work we obtain the D1 distribution with a

minimum number of arbitrary assumptions on the definition
of main shocks and aftershocks. One of these assumptions
is that the magnitude distribution for the two catalogs under
study is not subject to the numerous systematic and
statistical errors, which frequently affect earthquake detec-
tion, earthquake location, and magnitude determination.
Main shocks are identified automatically by a computer
program based on a quantitative definition, rather than
being selected by a subjective inspection of the catalog,
as we suspect to be the case in various cases reported in
literature. None of the three distributions shown by the
histograms of Figures 4 and 5 supports a distinction of the
events in separate groups based on the D1 distribution. The
distribution obtained for �M = 2 (M0* = 7 and M1* = 5) with
the world catalog should be close to that reported by
Tsapanos [1990] but it does not exhibit two distinct maxima
at 1.2 and 1.8 magnitude units.
[16] The qualitative agreement between the theoretical

model (expressed by the curves of Figures 4 and 5) and the

observed data (given by the histograms reported in the
same figures) can be better evaluated in a quantitative way
by a statistical test. To estimate the significance level of
such agreement we used the Monte Carlo method for
creating 1000 synthetic frequency distributions (based on
our theoretical model of self-similarity in magnitude) for
each �M case, and compare their likelihood with the
likelihood of the respective real data. In doing so, we
hypothesize that each value of the synthetic distributions
is statistically distributed as a Poisson variable having the
mean value equal to the theoretical one. The results of the
Monte Carlo analysis lead to the probability that a D1

distribution randomly obtained under the null hypothesis of
the Gutenberg–Richter self-similar magnitude distribution
has a likelihood smaller than that of the real distribution.
This probability, also called the significance level, is given
in Table 2 for the three different values of �M and the two
catalogs considered in this study. The null Gutenberg–
Richter hypothesis should be rejected for �M=0 with the
seismicity of New Zealand, and for �M = 0 and � M = 1
with the seismicity of the world.
[17] We considered the hypothesis that the very low

significance level obtained for �M = 0 with both catalogs
is related to the imperfect agreement between the real
magnitude distribution of our catalogs and the ideal log
linear frequency–magnitude distribution used in the
model. In Figure 6 the trend of log10N(M ) versus M is
shown for both catalogs analyzed. The NZ catalog is
characterized by a clear linearity over the whole magnitude
range. On the other hand, the plot for the PDE catalog
shows a good linearity up to the value 7.8, beyond which
the magnitude exhibits a clear saturation This circumstance
could affect the D1 distribution, but we consider it as a
minor problem (for �M = 0 in particular) because it
happens only for less than 100 events on the total data
set of nearly 30,000 earthquakes. As a test of the hypoth-
esis, we examined the D1 distribution obtained by rear-
ranging the events of the real catalog in random order and
grouping them in clusters containing the same number of

Table 2. Significance Level of the Theoretical D1 Distributions

Based on the Hypothesis of the Linear Gutenberg–Richter

Frequency–Magnitude Relationship

�M New Zealand PDE

0 <0.001 <0.001
1 0.219 <0.001
2 0.299 0.866

The probabilities are computed for the two catalogs and for three values
of the difference �M between the thresholds M0* and M1*.

Figure 6. Cumulated frequency-magnitude relation for the
New Zealand catalog (shown with dots) compared with the
PDE data set (indicated with stars).
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events. In this test we used a fixed number of 5 events in
each cluster. If the disagreement with the theoretical model
depended totally on the magnitude distribution, as the
magnitudes used in this test are the same as those present
in the real catalog, we would expect to obtain the same
significance level as was obtained for the real catalog. The
result of the test is that the significance level of the
Gutenberg–Richter model is increased greatly by random-
izing the events in the clusters. This means that the
opposite hypothesis is true, i.e., the magnitude distribution
of the earthquakes in natural clusters is significantly
different from that assumed in the null hypothesis. To
check this idea, we computed the b-value only for the
events that, in both catalogs, belong to clusters, including
main shocks and their own aftershocks (see Table 1). This
gives, for �M = 0, b = 0.996 and b = 0.873 respectively
for the New Zealand and the PDE catalog. These values
are significantly lower than those obtained from the
complete catalogs. By substituting them in equation (7),
we obtain E[D1] = 0.4360 for New Zealand and E[D1] =
0.4975 for the PDE, in fairly good agreement with the
corresponding observed values of D1 reported in Table 1.
[18] It has been shown that the primary events (main

shocks and earthquakes with neither aftershocks nor fore-
shocks) display a teleseismic b-value lower than those
reported for the secondary events (aftershocks and fore-
shocks) and that it could arise simply from the act of
choosing main shocks as the largest earthquake in a fore-
shock–main shock–aftershock sequence [Knopoff et al.,
1982; Frohlich and Davis, 1993]. From this point of view,
these features, that do not depend on the particular earth-
quake catalog used, whether it is a real or synthetic one,
should not be ascribed any physical significance. In this
respect, the difference noticed in Figures 4a and 5a and 5b
(i.e., the number of large aftershocks is smaller than the
prediction based on the Gutenberg–Richter relation) could
perhaps even be explained as a consequence of asymmetries
in data processing procedures, affecting the b-value and
consequently the D1 distribution.

5. Conclusions

[19] Following the early works of Vere-Jones [1969,
1975] we have based our study on a rigorous mathematical
formulation of the D1 distribution with few essential
assumptions (all the events follow the Gutenberg–Richter
magnitude distribution). These assumptions have proven to
be a simple and reliable basis for models of mutual
interaction of earthquakes [Console and Murru, 2001].
The theoretical distributions obtained in this way are quite
similar, with an appropriate selection of the free parameters
characterizing the model, with observations carried out and
published on this subject for nearly five decades. Through a
test carried out on two real and large data sets (the New
Zealand and PDE catalogs of shallow earthquakes) we have
shown that the hypothesis that the magnitudes of all the
earthquakes belong to the same self-similar set of data, can
substantially explain the observed D1 values without the
introduction of any independent rule such as Båth’s law.
Nevertheless, the objective analysis presented here has also
demonstrated a significant difference between the observed
and the theoretical D1 distributions, in that the number of

observed D1 values is smaller than the expected one for D1

< 0.6 and vice versa (see Figures 4a and 5a). For the PDE
catalog, using the same magnitude thresholds for main
shocks and aftershocks (M0* = M1* = 5), the observed D1

value is about 20% larger than the theoretical one. Thus,
although ignoring the bias introduced by the different mag-
nitude thresholds chosen for main shocks and aftershocks
may have been a misleading factor in some past studies, as
pointed out by Vere-Jones [1969, 1975], the mismatch
between Båth’s law and the Gutenberg–Richter law [Utsu,
1969; Purcaru, 1974; Evison and Rhoades, 2001] appears to
be real. The Gutenberg–Richter law does not entirely explain
the observed distribution of D1 values, unless the b-value
computed for the set of earthquakes belonging to the clusters
is used in the model. Whether this circumstance is to be
interpreted as a change in the physical environment before
and after large earthquakes, or rather connected to a bias that
has not been completely removed in the statistical process, is
a matter that deserves further attention.

[20] Acknowledgments. The authors are grateful to Yan Kagan for
his constructive comments and helpful suggestions.
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Utsu, T., A method for determining the value of b in a formula log n = a �
bM showing the magnitude– frequency relation for earthquakes, Geo-
phys. Bull. Hokkaido Univ., 13, 99–103, in Japanese with English sum-
mary, 1965.

Utsu, T., Some problems of the frequency distribution of earthquakes in
respect to magnitude, in Japanese with English summary, Geophys. Bull.
Hokkaido Univ., 17, 85–112, 18, 53–69, 1967.

Utsu, T., Aftershock and earthquakes statistics (I), J. Fac. Sci. Hokkaido
Univ., 3, 129–195, 1969.

Vere-Jones, D., A note on the statistical interpretation of Båth’s Law, Bull.
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