=

© 00 N O

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Mantle wedge exhumation beneath the Dora-Maira (U)HP dome
unravelled by local earthquake tomography (Western Alps)

Stefano Solaring Marco G. Malus3 Elena Eva Stéphane Guilldt Anne Paul, Stéphane
Schwart?, Liang Zhad, Coralie Auber, Thierry Dumont, Silvia Pondrelft, Simone Salimbefi
Qingchen Wanty Xiaobing Xif, Tianyu Zhengj Rixiang Zhd

! Istituto Nazionale di Geofisica e Vulcanologia, TNGenova, Italy

2Department of Earth and Environmental Sciencesyensity of Milano-Bicocca, Milano, Italy
3 Université Grenoble Alpes, CNRS, ISTerre, Grendhlance

“4Institute of Geology and Geophysics, Chinese Acwdgr8ciences, Beijing, China

5|stituto Nazionale di Geofisica e Vulcanologia, &grna, Italy

Authors for correspondence : S. Solarino and M.@lugda (stefano.solarino@ingv.it; marco.malusa@ umithi

Abstract

The behaviour of the mantle wedge of continentdddsiation zones during exhumation of
ultra-high pressure (UHP) rocks is still poorly enstood. Here, we shed light on this issue by a
detailed analysis of the velocity structure of thentle wedge beneath the Dora-Maira (U)HP dome
in the Western Alps, based on local earthquake tpaphy independently validated by receiver
function analysis. Our results point to a compositeicture of the mantle wedge above the
subducted European lithosphere. The Dora-Maira RJ)Home lays directly above partly
serpentinized peridotites (Vp ~7.5 km/s; Vp/Vs #1t1.72), documented from ~10 km depth down
to the top of the eclogitized lower crust of therégpean plate. To the east, these serpentinized
peridotites are juxtaposed against dry mantle pétes of the Adriatic upper plate along an active
fault rooted in the lithospheric mantle. We proptiss peridotite serpentinization was due to fluids
released from the subducting Alpine slab to theigkdr mantle wedge. Seismic velocities point to a
minor amount of eclogitic metasediments above theofean slab, which suggests that the
subduction wedge was largely exhumed during lateeke transtension along the Western Alps

subduction zone. Meanwhile, part of the Adriaticnthe wedge was also exhumed at shallow
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crustal levels, to be finally indented under theiAé metamorphic units in the early Oligocene. Our
results suggest that mantle-wedge exhumation mpsesent an important feature of the deep
structure of exhumed continental subduction zofild®e deep orogenic levels here imaged by
seismic tomography may be exposed today in oldatirgental subduction zones, where mantle

wedge serpentinites are commonly associated withirental (U)HP metamorphic rocks.

Keywords. continental subduction; ultra-high-pressure metaiem; mantle wedge exhumation;

peridotite serpentinization; local earthquake torapyy; Western Alps

Highlights:
- First geophysical evidence of mantle wedge exhumaturing continental subduction
- High-resolution image of the seismic velocity sture of the Alpine mantle wedge

- Mantle wedge exhumation is coeval to continentaPUtck exhumation

1. Introduction

Exhumed ultra-high pressure (UHP) units bear cohlmgeévidence of the interaction between
subducting plates and the overlying mantle wedgaq@ell and Compagnoni, 2003; Hacker et al.,
2006; Ferrando et al., 2009; Scambelluri et all(®®eschamps et al., 2013). However, the role
played by the mantle wedge during UHP rock exhumnais still poorly understood. Some
numerical models point to a negligible mantle imephent during exhumation (Yamato et al.,
2008; Butler et al., 2013), whereas other modeggsst that the mantle may be strongly involved
and may possibly follow the exumation path of budy®HP rocks towards Earth’s surface
(Schwartz et al., 2001; Petersen and Buck, 2015)rekise observational characterization of the
behaviour of the mantle wedge in (U)HP orogenidsbglich as the European Alps, where the slab
structure is still largely preserved (Zhao et 2016a), may thus provide important pinpoints for a

better understanding of the mechanisms leadingee@xhumation of UHP continental and mantle-
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wedge rocks more generally (Agard et al. 2009; IGudt al., 2009; Liou et al., 2009; Little et al.,
2011; Malusa et al., 2011; Warren, 2013).

Here, we shed light on this issue by a detailedyaizaof the seismic velocity structure of the
mantle wedge beneath the Dora-Maira (U)HP domé&@énWestern Alps, where coesite, attesting
deep continental subduction (e.g., Gilotti, 2028as first described three decades ago (Chopin,
1984). We exploit a comprehensive seismic datasb, including anomalously deep earthquakes
(Eva et al., 2015), to derive a local earthquakeagraphy model of the analyzed mantle region,
which is then compared with the results provideddneiver function analysis along the CIFALPS
transect (China-Italy-France Alps seismic survdyad et al., 2015). Our results suggest that part of
the mantle wedge that was metasomatized above lieeAsubduction zone, was subsequently
exhumed at shallow depth beneath continental (UyetlRs now exposed at the surface. These
findings suggest that mantle wedge exhumation eaa prominent feature of the deep structure of
many orogenic belts, which should be integratedfuture theoretical models of continental
subduction and UHP rock exhumation. Moreover, asults provide new interpretive keys to
understand the field relationships between man#ddge rocks and continental UHP rocks in older
orogenic belts, where deep crustal levels, hergnilhated by geophysical investigations, are

possibly exposed by protracted erosional unroofing.

2. Tectonic setting

The Western Alps are the result of oblique subductif the Alpine Tethys under the Adriatic
microplate since the Late Cretaceous, followed dytioental collision between the Adriatic and
European paleomargins during the Cenozoic (Cowadd Rietrich, 1989; Lardeaux et al., 2006;
Handy et al. 2010; Malusa et al., 2015). The oragem®dge exposed along the CIFALPS transect
(X-X"in Fig. 1), in the southern Western Alps, migi consists of rocks derived from the Piedmont
ocean-continent transition and from the adjoiningdpean paleomargin (Lemoine et al., 1986;

Dumont et al., 2012). The external zone, exposdtidovest of the Frontal Pennine Fault (FPF in
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Fig. 1), includes the Pelvoux and Argentera basésnamd their deformed Meso-Cenozoic
sedimentary cover sequences (Ford et al., 2006hwiecord a transition from thin-skinned to
thick-skinned compressional tectonics during theodéme (Schwartz et al.,, 2017). East of the
Frontal Pennine Fault, in the Alpine metamorphicges the Briangonnais nappe stack (Br in Fig.
1) mainly consists of Upper Paleozoic to Mesozoietasediments and underlying pre-Alpine
basement rocks that underwent subduction startorg the Paleocene, and were later exhumed in
the Eocene - early Oligocene (Malusa et al., 2@0B5; Ganne et al., 2007; Lanari et al., 2014).
The Briangonnais nappe stack forms the core of ptesent-day Alpine fan-shaped structure
(Michard et al., 2004) that was overprinted by asgenetwork of extensional faults during the
Neogene (Sue et al., 2007; Malusa et al., 2009. ddstern part of the fan is formed by oceanic
metasediments of the Schistes lustrés complexr{Jig. 1; Lemoine et al., 1986; Lagabrielle and
Cannat, 1990), including boudinaged decametreltw¥iatre-sized ophiolitic bodies that were
deformed and metamorphosed during Alpine subductrater blueschist to transitional blueschist—
eclogite facies conditions (Agard et al., 2002ca&rt and Schwartz, 2006; Schwartz et al., 2009). A
ductile normal fault (Ballevre et al., 1990) sepesathe Schistes lustrés complex from the Viso
metaophiolites (Vi in Fig. 1; Lombardo et al., 19Ahgiboust et al., 2012), representing major
imbricated remnants of the Tethyan oceanic lithesptlthat were deformed and metamorphosed
under eclogite facies conditions during the Eoc@iiechéne et al., 1997; Schwartz et al., 2000;
Rubatto and Hermann, 2003). Another ductile norfaalt (Blake and Jayko, 1990) separates the
Viso eclogites from the underlying stack of deegljpducted continental basement slices referred
to as the Dora-Maira (U)HP dome (DM in Fig. 1; Heet al., 1993; Michard et al., 1993). This
dome includes the coesite-bearing Brossasco-lsadogitic unit (black star in Fig. 1; Chopin et
al., 1991; Compagnoni and Rolfo, 2003), which iadseiched between quartz-bearing eclogite
facies rocks, above, and blueschist facies metassds, below (Avigad et al., 2003). Along the
boundary with the Po Plain, the CIFALPS transecsses the southern tip of the Lanzo massif (La

in Fig. 1; Boudier, 1978; Piccardo et al., 200 ealogitized mantle slice separated from the Dora-
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Maira dome by a vertical active fault system rodtethe upper mantle (Malusa et al., 2017), at the
southward prolongation of the Insubric Fault. Thenko massif consists of slightly serpentinized
spinel plagioclase peridotites surrounded by a Brbthick envelope of foliated serpentinites
(Mintener et al., 2004; Debret et al., 2013), awbrds a high-pressure metamorphic peak of early
Eocene age (Rubatto et al., 2008). Beneath theld&o, Bhe complex transition zone between the
Adriatic upper plate and the Apennines, also invgwotated fragments of the Alpine orogenic
wedge (Maffione et al., 2008; Eva et al. 2015mm@inly covered by thick Cenozoic to Quaternary

sedimentary successions.

3. Methods
3.1. Building the database

The local earthquake tomography presented in tbik g largely based on the dataset collected
during the CIFALPS experiment (Zhao et al., 2016l)ich was integrated by data recorded in the
same time interval by permanent seismic networlsaimg in Italy and France, and complemented
with select older events. The temporary networkhef CIFALPS experiment (blue marks in Figure
1B) includes 46 broadband seismic stations depl@yedg a linear WSW-ESE transect from the
European foreland to the western Po Plain, anddfliadal stations installed to the north and to the
south of the main profile. Stations operated frooly 2012 to September 2013, and were
specifically deployed for a direct comparison bedwereceiver function and local earthquake
tomography. Stations located along the main prafége conceived for receiver function analysis
(Zhao et al., 2015). Their spacing ranges from rbitk the Western Alps mountain range to ~10
km in the European foreland and in the western R POff profile stations were installed to
improve the crossing of seismic rays for local lequiake tomography.

The high number of recording stations along thenm@IFALPS profile may increase the
computational burden during local earthquake tomplgy (e.g. in ray tracing) without a direct

improvement in the final resolution. However, isares a number of advantages. For example, any
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potential loss of data due to station malfunctignseasily recovered by adjacent instruments, and
doubtful data can be discarded without jeopardiziregquality of the dataset. In order to improve
the ray coverage and ensure ray crossing from amyugh in the study volume, we added to the
dataset all published phase pickings recorded hygment seismic stations operating in France and
Italy during the CIFALPS experiment (red marks igufe 1B). We additionally considered few
events that occurred before the experiment tosfikecific spatial gaps. This was the case of the
intermediate depth earthquakes that were usefshiople anomalies at the bottom of the study
volume. Because these earthquakes are relativedy (Eva et al., 2015), only few events were
recorded during the CIFALPS experiment. In summa30 events on a total of 1088 events
utilized in this work were added as supplementaryies from datasets available at French and
Italian seismic networks; about 80% of the remanevents were merged with existing phase

pickings. The final P and S ray coverage is shawfigure 2A.

3.2. Seismic tomography setup and reconstruction test

We adopted the local earhquake tomography code ER8J(Thurber, 1983) for tomographic
analysis, in its version 14 that implements thetrager by Virieux (1991) to cope with models of
regional size. We subdivided the study volume iatgers containing nodes, and used an initial
velocity model derived from previous seismic expenmnts over a larger area (Scafidi et al., 2009).
Several tests were performed for a correct chdi¢keoinversion parameters, and classical damping
trade-off curves (Eberhart-Phillips, 1986) were poted to pick up the best values for P and S
velocities.

The resolution capability of the coupling betweemersion setup and data was evaluated by
checkerboard and reconstruction tests. These wests useful to choose an adequate geometry of
the starting model and evaluate the smearing dubeaontrast between high and low velocity
anomalies. The reconstruction test was specificatiyceived to test the potential impact of the

high-velocity Ivrea body, a long recognized tectofeature associated to a positive gravimetric
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anomaly (red dotted line in Fig. 1) and interpredsc slice of Adriatic mantle emplaced at shallow
depth (Closs and Labrouste, 1963; Nicolas et 8801 We used a “stairwell” geometry to simulate
a high-velocity east-dipping layer along the CIFA_Profile (Fig. 2B) and test the resolution
capability of the coupling between seismic dataset inversion setup. The same geometry after
interpolation by the algorithm used in SIMULPS Iwn in Figure 2C. A comparison with Figure
2B shows that the interpolation process introdw@ssioothing of the anomalies and a band of fake
colors around them. Figure 2D shows the reconstructf the imposed stairwell structure based on
our seismic dataset. The inversion of synthetia diaies not consider the resolution, and Figure 2D
only displays the reconstructed model as if it wampletely resolved except for areas that were not
sampled (in white). As shown in the reconstructiest, the shape of the anomaly is well
reproduced, but the velocity of the first and setsteps is lowered from ~8.0 km/s (blueish) to
about ~7.5 km/s (greenish), and weak vertical atzbntal periodic stripes of yellow color appear
at ~50 km depth. These artifacts, and the undestmaf the magnitude of the high velocity
anomalies in the uppermost 10 km of the crust, een considered during the subsequent phases
of tomography interpretation. The real data tompgi@amodel is about 700x700 km wide, and was
obtained after 6 iterations on a 12 layers modeB@36 nodes each. In the central part of the

model, spacing between nodes is equal to 15 km.

4. Results

Figure 3 shows the Vp and Vp/Vs cross-sectionsgatbe CIFALPS profile. The lighter areas
are those where the diagonal elements of the rgsolmatrix are <0.1. This threshold was chosen
as the divider between resolved and non-resolvedsabased on a comprehensive comparisons
between different resolution indicators (Paul et 2001). As expected, the maximum depth of the
resolved area is limited by the depth of occurresfceost of the deepest events (Eva et al., 2015;
Malusa et al., 2017). Beneath the Dora-Maira (Ultdhe, the tomography model is well resolved

down to 50-60 km depth, whereas the two extremeth@fCIFALPS cross section are poorly



176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

resolved. Letters “a” to “k” indicate the relevarglocity features highlighted by the tomography
model. The main tectonic structures previouslymme@ from receiver function analysis (Zhao et al.
2015) and surface geology (Lardeaux et al., 200&|ub& et al., 2015) are also indicated for
comparison (black lines in Fig. 3).

The most prominent feature of the tomography magleépresented by the high velocity body
(Vp ~7.5 km/s; Vp/Vs = 1.70-1.72), labelled with’,’avhich is located right below the Dora-Maira
(U)HP dome, at depths as shallow as ~10 km. Suubghavelocity body was already imaged with
similar velocities by previous works (Vp ~7.4-7./hfs; Paul et al., 2001; Béthoux et al., 2007), but
was only resolved down to depths of 15-20 km. Istil observed to the south of the CIFALPS
profile (Fig. 4D,E), but progressively vanishingvards the north (Fig. 4A,B). A series of N-S
cross sections, ranging from the Western Alps ¢oRt Plain (Fig. 5), shows that this high-velocity
anomaly is exclusively found beneath the Dora-MdllAHP dome (Fig. 5A), and disappears
farther east.

The mantle-wedge region labelled with “b” is locht® depth of 20-45 km, in correspondence
with a cluster of intermediate depth earthquakes waith a seismically active fault in the mantle
described in previous studies (Rivoli-Marene demptf Eva et al., 2015; Malusa et al., 2017). This
region shows higher Vp values (~8.0 km/s) compaoegkgion “a”, and anomalously high Vp/Vs
ratios (>1.74) that are supportive of low shear evaelocities. This cluster of intermediate depth
earthquakes in region “b” is not only observed gltre CIFALPS profile, but also in cross sections
located more to the north or to the south (Fig.The deepest mantle wedge region resolved by the
tomographic model is labelled with “c”. This regjolocated at depth of ~40-50 km atop the
European slab, shows lower Vp and Vp/Vs values @stp to region “b” (Vp ~7.0-7.5 km/s;
Vp/Vs < 1.70), but the Vp/Vs ratio is locally high®/p/Vs ~1.74).

The well-resolved regions of the model also incladme subducted European lower crust. This
shows a progressive increase in Vp from the refzbelled with “d” (Vp ~6.7 km/s) to the region

labelled with “e” (Vp ~7.7 km/s), under a rathemstant Vp/Vs ratio of 1.70-1.72. Such variations



202 are detected in all of the analyzed WSW-ENE tratssecFigure 4. No seismic event was recorded
203 in regions “d” and “e” since 1990 (installation pérmanent seismic networks) and during the
204 CIFALPS experiment (Eva et al., 2015; Malusa et24117).

205 On the eastern side of the transect, the regioelleabwith “f” is located below the Adriatic
206 Moho as determined by receiver function analysimlmoed with gravity modelling. It shows Vp
207 values ~8.0 km/s and Vp/Vs = 1.70-1.72. This regsoaffected by intermediate depth earthquakes
208 that are also observed to the north and to theéhsoiuthe CIFALPS transect (Fig. 4). The vertical
209 and horizontal periodic stripes of yellow color ebs&ed at 50 km depth in this region are artifacts,
210 as confirmed by the reconstruction test of Fig. ADove the Adriatic Moho, measured Vp values
211 are much lower, but very high Vp/Vs values (>1.&) lacally observed at ~30 km depth at the base
212 of the Adriatic crust. This region, labelled witl"; is also characterized by a cluster of seismic
213 events that are only observed in the vicinity @ thain CIFALPS transect.

214 In the uppermost part of the Alpine orogenic wedgegions “h” to “k”), Vp values are
215 invariably <6.5 km/s, but major variations in Vp/Vatios are locally observed. For example, the
216 region to the east of the Dora-Maira (U)HP domédled with “h”) shows Vp/Vs values >1.72,
217 whereas the region corresponding to the westenk ftd the Dora-Maira dome (labelled with “j”)
218 shows much lower Vp/Vs ratios, even <1.66. Vp/Visoea<1.68 are also observed in the region
219 labelled with “k”, located beneath the Frontal PeenFault. The double-vergence accretionary
220 wedge located to the east of the Frontal Pennind,Fend labelled with “i”, shows instead Vp/Vs

221 values > 1.75, and includes most of the shallowihgagakes recorded in the Western Alps area.

222 5. Comparison with receiver function analysis

223 Results of local earthquake tomography are compardéigure 6 with published CIFALPS
224  results of receiver function analysis (Zhao et 2015). Unlike local earthquake tomography, the
225 receiver function technique is based on the amabyfsieleseismic earthquakes, and enhances P-to-S

226 (Ps)-converted waves on velocity interfaces benaathrray. The polarity of the converted signal
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depends on the sign of the velocity change, andrfates with velocity increase can be
discriminated from interfaces with velocity decreag&ssumptions and arbitrary choices of the
receiver function approach applied to the CIFALP&hsect (e.g., magnitude threshold, epicentral
distance, seismograms filtering, velocity modelpich of the direction of back azimuths) are
described in full in Zhao et al. (2015).

The image of Figure 6B is based on radial recefuections from teleseismic events with
magnitude>5.5, epicentral distance of 30-90°, and ENE backyaths (see Zhao et al., 2015). This
image shows two major interfaces marked by pospearity Ps-conversions (red-to-yellow
regions), which attest the downward velocity inseeaorresponding to the European and Adriatic
Mohos (thick dashed lines). The eastward-dippingogean Moho is recognized from ~40 km
depth beneath the Frontal Pennine Fault to ~75 &pthdbeneath the Po Plain. The Adriatic Moho
is recognized from 20-30 km depth, to the eastl@Gal5 km depth, to the west. The red spots
located at 40-55 km depth beneath the Adriatic Mateomultiples, as confirmed by synthetic tests
(Zhao et al., 2015). A shallow positive-polarityneerted phase is also observed beneath the Dora-
Maira massif, between regions “a” and “h”, wher@aspot of negative-polarity Ps-conversions
marking a downward velocity decrease is locatedvab@gion “c”, at 20-40 km depth (blue
region).

On the eastern side of the CIFALPS transect, tlagpstelocity increase from Vp <6.5 km/s to
Vp >8 km/s evidenced by local earthquake tomografdihfully matches the location of the
downward velocity increase highlighted by receivenction analysis. Localized anomalies in
Vp/Vs ratios, e.g., in region “g”, match with majoreaks in the alignment of positive-polarity Ps-
conversions. Beneath the Dora-Maira (U)HP dome,dbwnward increase in Vp values from
region “h” (Vp <6.5 km/s) to region “a” (Vp ~7.5 KB) is consistent with the observed positive-
polarity Ps-conversions, whereas the downward ugla=crease from regions “a” and “b” (Vp
~7.5 km/s and >8 km/s) to region “c” (Vp ~7.0-7.8/k) is consistent with the spot of negative-

polarity Ps-conversions located at 20-40 km deptlrigure 6B. The shape of the high-velocity
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region labelled with “a” is also mirrored by thestlibution of seismic events recorded since 1990.
Region “a” is virtually aseismic (Malusa et al., 1), and earthquakes are chiefly located along its
external boundaries or in the surrounding regidng. (6B). On the western side of the CIFALPS
transect, the alignment of positive-polarity Psa@msions generated along the European Moho is
partly included within the resolved area of thealogarthquake tomography model, and fits with a
downward velocity increase from ~6.7 km/s (regiai)“to >8 km/s. The velocity structure
unravelled by the analysis of local earthquaka$us independently confirmed by the analysis of
teleseismic earthquakes (Zhao et al., 2015) anthéydistribution of seismic events (Eva et al.,

2015; Malusa et al., 2017).

6. Geologic inter pretation

The geologic cross section of Figure 6C shows taerfeatures of the orogenic wedge of the
Western Alps, and of the mantle wedge between tiredean and the Adriatic plates as inferred
from the velocity structure derived from local éauake tomography along the CIFALPS profile.
In the European plate, the Vp increase evidenced@tkm depth by local earthquake tomography,
from <6.5 km/s in region “d” to >8 km/s in regiore™ is consistent with a progressive
eclogitization of the lower crust and consequentsdg increase by metamorphic phase changes
(e.g., Hacker et al., 2003). This interpretatioroakxplains the progressive weakening of the
positive-polarity converted phases observed aldmg European Moho (from red to yellow
background colours in Fig. 6B) previously descriimdZhao et al. (2015). In more detalil, the
velocity of the European lower crust is symptomafian intermediate granulitic composition in its
western part (e.g. Weiss et al., 1999; Wang et2805), and of a progressive increase in garnet
content to the east during transition from graeutd eclogite (Christensen, 1989; Hacker et al.,
2003). Observed Vp values in this region are farltav for a pure mafic eclogite (Bezacier et al.
2010; Reynard, 2013), thus suggesting no compasitichange from west to east in the European

lower crust, but only an increase in metamorphexdgr This interpretation is consistent with the
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progressive increase in Vs values from west to éastribed along the same transect (Lyu et al.,
2017).

On the eastern side of the Western Alps, Vp vakig&m/s confirm the presence of Adriatic
mantle at shallow depth beneath the western Pa P18-15 km), just in correspondence with the
positive gravimetric anomaly classically referredas the Ivrea body (Closs and Labrouste, 1963;
Nicolas et al., 1990) and in line with results oéyous tomographic models (e.g., Solarino et al.
1997; Paul et al., 2001; Scafidi et al., 2006; 2(Dhl et al., 2009; Wagner et al., 2012). East of
the Ivrea body gravimetric anomaly, the Adriatic iMois located at 30-35 km depth, which is a
much more reliable estimate of the Moho depth béndéae Po Plain compared to previous
estimates based on receiver function alone (Zhab e2015). The locally high Vp/Vs ratios >1.8,
associated to Vp of 7.0-7.5 km/s (region “g”), may supportive of gabbro (Weiss et al., 1999)
underplated at the base of the Adriatic lower cridtteworthy, Permian gabbros are indeed
exposed north of the Po plain, where they are dieuinto lower crust rocks belonging to the
Adriatic (Southalpine) basement (Quick et al., 19%dhaltegger and Brack, 2007).

In the uppermost part of the Alpine wedge, thecstn@al variability of stacked rocks is largely
mirrored by their variability in Vp/Vs ratios. Theép/Vs values >1.75 observed in the double-
vergence accretionary wedge, chiefly including Be@nnais and Schistes lustrés units (Lardeaux et
al., 2006; Malusa et al., 2015), may reflect low w&ues, possibly associated to the widespread
network of mesoscale faults developed in thesesrgoice the Neogene (Tricart et al., 2004; Sue et
al., 2007; Malusa et al., 2009). To the east, Igw\é values even <1.66 observed on the western
flank of the Dora-Maira dome (region “”) may inatkreflect high Vs velocities, suggesting that
the poorly fractured granitic gneisses exposechatsurface (Brossasco granite; Paquette et al.,
1999; Lenze and Stockhert, 2007) may be also presetepth. Fracturing may be also invoked to
explain the low Vs values observed along the eadteundary of the Dora-Maira dome, where
(U)HP continental rocks are juxtaposed againsteitiegitized mantle rocks of the Lanzo massif

(Kienast and Pognante, 1988; Piccardo et al., 28@ng the Lis-Trana deformation zone (Perrone
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et al., 2010). To the west of the Frontal Penniaelt- Vp/Vs values <1.68 suggest instead that the
European upper crust in the External zones is pateformed, consistent with minor seismicity
recorded in that area (Fig. 6B).

But the most relevant information provided by tbmbgraphy model presented in this article is
related to the velocity structure beneath the DMdeasra (U)HP dome. Two end-member tectonic
reconstructions were recently proposed for thisoregn the light of available geophysical data
(Zhao et al., 2015; Malusa et al., 2017): one imvgla thick complex of (U)HP continental slivers,
in line with the predictions of numerical modelssyh-convergent exhumation (e.g., Butler et al.,
2013; Jamieson and Beaumont, 2013), and anothemwoking a larger volume of mantle rocks
exhumed at shallow depth during divergence betwieerupper plate and the accretionary wedge
(e.g., Malusa et al., 2011, 2015). Our tomograpidciel can be used to discriminate between these
end-member hypotheses.

The velocity structure of the mantle wedge regiafy Showing Vp velocity of ~7.5 km/s from
depths as shallow as ~10 km down to ~30 km, iselgrgqiconsistent with the presence of dry
mantle peridotite beneath the Dora-Maira (U)HP amttal rocks, and suggests a complex history
for these rocks in terms of P-T conditions anddftock interaction. Such Vp values point in fact to
widespread serpentinization of mantle rocks (~6@¥oading to Reynard, 2013), that may locally
exceed 90% both in the uppermost part of anomdlyafia in the Lanzo massif, although velocity
values in the uppermost crustal levels may be #jighnderestimated as unravelled by the
reconstruction tests of Fig. 2D. The degree of exgipization at 30-40 km depth is instead much
lower (<30%), and consistent with the occurrencantérmediate-depth earthquakes (Fig. 6B).
Vp/Vs ratios are in the range of 1.70-1.72 in regia”, but sharply increase to values >1.74 in
region “b”, where Vp values (~8.0 km/s) are corsistwith dry mantle peridotite. The high Vp/Vs
ratios in region “b” point to low shear wave vekes, which are in line with the presence of a
major active fault in the upper mantle as undediri®y the alignment of anomalously deep

earthquakes (Eva et al., 2015). According to previaork, the deepest part of the mantle wedge
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beneath the thick blue spot of negative polaritpvessions (region “c” in Fig. 6B) may either
include serpentinites, or slivers of (U)HP rocksurQesults indicate that the velocity values
observed in region “c” (Vp ~7.0-7.5 km/s; Vp/Vs %Q) are neither consistent with eclogitic
metasediments (Vp ~7.0 km/s; Vp/Vs ~1.75) nor wvaitlfic eclogite (Vp > 8.0 Vp/Vs ~1,73), but
are instead supportive of ultramafic rocks withegme of serpentinization ranging between 50%
and 75% (Reynard, 2013). Minor slivers of eclogitietasediments may be present beneath the
mantle wedge, in regions showing the highest Vpat®s at the top of the European slab. These
results demonstrate that recent geologic crossesscpostulating a thick wedge of Briangonnais
eclogites beneath the Dora-Maira (Schmid et all,/2@re likely incorrect, and that the palinspastic
reconstruction of the Alps-Apennines transition eaterived from such geologic cross-sections

should be reconsidered.

7. Implication for (U)HP rock exhumation

In the southern Western Alps, the positive gravimednomaly ascribed to the Ivrea body is
classically interpreted in terms of upper mantideintation (e.g., Lardeaux et al., 2006; Béthoux et
al., 2007), in line with previous tectonic interfagons proposed for the Central Alps and for the
northern Western Alps (Schmid and Kissling, 2008%cording to these interpretations, the
uppermost part of the Adriatic mantle would actaasindenter beneath the Alpine accretionary
wedge, and would transfer compression towards theogean foreland. The main geologic
implications of this model include: (i) major craktshortening in the upper plate, and (ii) fast
erosion focused above the indenter (Fig. 7A). THestures are indeed observed in the Central
Alps, where upper mantle indentation accommodatetdzk-folding of (U)HP domes (Keller et
al., 2005) and by backthrusting of Adriatic unifafchetta et al., 2015) triggered the fast erosiona
exhumation of the amphibolite-facies Lepontine do(Malusa et al., 2016). However, these
features are not common to the southern Westers. Atpeed, during and after Eocene (U)HP rock

exhumation, shortening recorded in the accretiomaagge of the southern Western Alps was minor
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(Malusa et al., 2009; Dumont et al., 2012) andieroeas much slower compared to the Lepontine
dome, as attested by low-temperature thermochrotesmév/ernon et al., 2008; Fox et al., 2015)
and by preserved Oligocene corals unconformabhglyin top of Eocene eclogites (Quaranta et al.
2009; Malusa et al., 2015). A tectonic scenaridwesieely invoking upper-plate mantle indentation
beneath the accretionary wedge would also imply gsbesmic velocities in the mantle of the upper
plate should be quite similar beneath the orogemdge and in the hinterland (Fig. 7A). Major
seismic velocity changes, e.g., by metamorphic e@lthsnges triggered by fluids released by the
downgoing slab, would remain probably undetectedhm local earthquake tomography model,
because they would take place at much greater gepgthamps et al., 2013; Abers et al., 2017).
Noteworthy, our study points to a complex velodtyucture in the upper plate mantle of the
southern Western Alps. The region beneath the Maima (U)HP dome is dominated by
serpentinized peridotites, documented from ~10 kyptld down to the top of the European slab. To
the east, these rocks are juxtaposed against dmnilenzeridotites of the Adriatic upper plate alang
steeply dipping fault in the lithospheric mantle. between, mantle rocks of the Lanzo massif
underwent subduction during the Alpine orogeny, aede later exhumed and accreted against the
Adriatic upper plate when the Dora-Maira (U)HP reakere still buried at mantle depths (Rubatto
and Hermann, 2001). This scenario may suggest (UWdldle and mantle-wedge exhumation mainly
triggered by upper plate divergent motion (Fig. .78grpentinized peridotites with Vp ~7.5 km/s
that are found beneath the Dora-Maira dome may fewa@ured the exhumation of (U)HP rocks
across the upper crust, where these rocks becoutale buoyant (e.g., Schwartz et al., 2001). No
exhumed mantle-wedge serpentinites are recognizéar &t outcrop in the southern Western Alps
(Scambelluri et al., 1995; Piccardo et al., 2004ttéti and Guillot, 2007; Deschamps et al., 2013).
However strong fluid-rock interactions are recoguian subducted serpentinites and associated
ophiolitic rocks (Scambelluri and Tonarini, 2012afay et al., 2013; Plumber et al., 2017),
suggesting that fluid release may have occurrednguoceanic and even during continental

subduction (e.g., Castelli et al., 2007; Ferrandoale, 2009) possibly triggering the partial
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serpentinization of the Adriatic mantle wedge. P&the Adriatic mantle wedge was then exhumed
at shallow crustal levels during late Eocene temsbn along the Western Alps subduction zone
(Malusa et al. 2015), and was finally indented lagin¢he Alpine wedge during the early Oligocene
tectonic shortening (Dumont et al., 2012; Jourdaal.e2012, 2013). Along the Adria-Europe plate
boundary, the divergent component of Eocene trasgip progressively decreased towards the
north to become negligible in the Central Alps, vehAdria was indented more deeply beneath the
accretionary wedge compared to the Western Alpdusaaet al., 2015). We speculate that, north of
the Dora-Maira dome, upper plate divergence wadbagbly insufficient to allow an effective
exhumation of the mantle wedge. However, testimg higpothesis would require a high resolution
tomographic image of the northern Western Alps,ciwhinay be precluded by the lack of deep
earthquakes.

The occurrence of mantle-wedge serpentinites exdumhehallow depth within a continental
subduction zone is not specific of the southerntdfasAlps. Mantle wedge serpentinites associated
with (U)HP rock are described, for example, in thdus Suture Zone in the Himalaya, in the
Carribbean (Guillot et al., 2001; Deschamps et241,2), in the Western Gneiss Region in Norway
(Scambelluri et al., 2010), and are inferred bypipgsical evidence under the Dabie-Sulu (Liu et
al., 2015). Our findings suggest that orogen-seateumation of the mantle wedge may represent a
prominent, but still underestimated feature ofdleep structure of many orogenic belts. As such, it
should be integrated in more advanced theoretioaeats of subduction and exhumation. Moreover,
widespread mantle-wedge exhumation may explaircdinemon occurrence of boudinaged mantle-
wedge rocks within continental UHP rocks in thetsoof old orogenic belts now unroofed by
erosion. In pre-Cenozoic orogenic belts such asDiabie-Sulu or the Western Gneiss Region,
where the evidence of minor erosion during UHP exdtion, if any, is no longer preserved, the
occurrence of mantle wedge rocks at shallow depdly represent the only evidence supporting
(UHP rock exhumation triggered by divergent motibetween upper plate and accretionary

wedge.
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8. Conclusions

The new local earthquake tomography model of th&ghs&wn Western Alps, independently
validated by receiver function analysis, unravet®mplex seismic velocity pattern consistent with
a composite structure of the mantle wedge abovestielucted European lithosphere. Seismic
velocities indicate that the Dora-Maira (U)HP dolags directly above serpentinized peridotites,
documented from ~10 km depth down to the top ofeblegitized lower crust of the European
plate. We propose that peridotite serpentinizati@s the result of fluids released to the Adriatic
mantle wedge during Alpine subduction. The minooant of eclogitic metasediments above the
European slab indicates that the subduction wedges Vargely exhumed during Eocene
transtension, when part of the mantle wedge was @khumed at shallow crustal levels to be
finally indented under the Alpine metamorphic unithe serpentinized peridotites imaged beneath
the Dora-Maira (U)HP dome are not exposed at Earthrface, and are juxtaposed against dry
mantle peridotites of the Adriatic upper plate g@m active fault rooted in the lithospheric mantle
Our results suggest that mantle wedge exhumationreesent an important feature of the deep
structure of exhumed continental subduction zoBegp orogenic levels as those imaged by local
earthquake tomography in the southern Western Alpg be exposed today in older continental
subduction zones, where mantle wedge serpent@itesommonly associated to continental (U)HP
metamorphic rocks.
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Figure 1. A) Tectonic sketch map showing the (U)HP domeshef\Western Alps (dark blue), the
gravimetric anomaly of the Ivrea body (0 mGal iseliin red), and the location of the CIFALPS
transect (X-X'). Acronyms: Br, Brianconnais; DM, BeMaira; FPF, Frontal Pennine Fault; GP,
Gran Paradiso; IF, Insubric Fault; IV, Ivrea-Verbaha, Lanzo; MR, Monte Rosa; Se, Sesia-
Lanzo; SL, Schistes lustrés; Vi, Viso; Vo, Voltk\VF, Villalvernia-Varzi Fault. The black star

marks the Brossasco-lsasca UHP locality. B) Seisstations utilized in this work (blue =

CIFALPS; red = other networks) and location of tgraphic cross sections (black lines).
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727 Figure 2. A) Three-dimensional P and S ray coverage baseth® seismic events considered in
728 this study (X-X' indicates the CIFALPS transecte $&g. 1). B) Imposed stairwell geometry along
729 the CIFALPS transect for testing the resolutionatality of the coupling between seismic dataset
730 and inversion setup. C) Same geometry after intatipo by the algorithm used in SIMULPS,
731 which introduces a smoothing and a thin band ofefalolors around the anomalies. D)
732 Reconstruction test showing that the shape of nifgosed stairwell structure is well reproduced
733 using our dataset, but the high velocities in thpermost 10 km are converted to lower values (as
734 less as 0.5 km/s); the weak vertical and horizop¢giodic stripes of yellow color at 50 km depth
735 within the blue area are artifacts; white areasnatesampled.
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Figure 3: Tomographic cross sections along the CIFALPS &end\) Absolute Vp velocity. The
velocity structure beneath the Dora-Maira (U)HP dosiwell resolved down to 50-60 km depth
(acronyms as in Fig. 1A); areas with resolutiorgdizal elements <0.1 are masked, white areas are
not sampled; letters a to k indicate regions oftiael discussed in the main text; black circles
indicate earthquakes as located with the 3D mdaatk lines and text in italics indicate the main
tectonic features previously inferred from receifigrction analysis (Zhao et al., 2015; Malusa et
al., 2017, see Fig. 6B). Note the prominent higlosiey body (labelled with “a”) located right
below the Dora-Maira (U)HP dome. The vertical awdizontal periodic stripes of yellow color at
50 km depth are artifacts, as attested by the staastion test of Fig. 2D. B) Vp/Vs ratios. White
dashed lines are isolines of equal Vp/Vs, greysaaga not sampled (other keys as in frame A).
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756 Figure4: Lateral variations in Vp velocity in the mantledge as shown in a series of WSW-ENE
757 cross-sections lying to the north (A, B) and to soeth (D, E) of the main CIFALPS transect (C).
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759 circles are projected hypocentres located withirkebdistance off the profiles. The thick dashed
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761 from receiver function analysis (cf. Fig. 6B). Otlkeys as in Fig. 3.
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768 Figure 5: Lateral variations in Vp velocity beneath the Dbtaira (U)HP dome, as shown in a
769 series of N-S cross-sections from the mountain e@aogthe Po Plain. Black circles are projected
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780 Figure 6: Synthesis of geophysical data (A, B) and inferrechtie wedge structure (C). Black lines
781 in A and B are tectonic features based on recdivastion analysis (colors in B indicate positive-
782 and negative-polarity Ps-converted phases, Zhab,&2015); contours are isolines of equal Vp/Vs;
783 purple circles in B are earthquakes recorded skf®0 (Malusa et al., 2017). The amount of
784  serpentinization in C, in the mantle wedge undegythe Dora-Maira (U)HP dome, is inferred from
785 seismic velocities (Reynard, 2013). Note the caestsy between structures unravelled by local (A)
786 and teleseismic (B) events. Acronyms as in Fidetlers a to k as in Fig. 3.
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Figure?7

A SYNCONVERGENT (U)HP ROCK EXHUMATION
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Figure 7: Alternative scenarios of mantle involvement inKl® orogenic beltsA) Synconvergent
exhumation of (U)HP rocks (e.g., Butler et al., 2Dk followed by indentation of the upper-plate
mantle (dark blue) beneath the accretionary weddk,consequent fast erosion of the (U)HP dome
and major tectonic shortening in the upper platg.(@8éthoux et al., 2007). Seismic velocities in
the upper-plate mantle are similar beneath theeragbelt and in the hinterlan8) Divergence
between upper plate and accretionary wedge trigtfe¥sexhumation of (U)HP rocks and the
emplacement of serpentinized mantle-wedge roclshatow depth. Erosion on top of the (U)HP
dome is minor at this stage, shortening is nedkgiBecause of widespread serpentinization of the
mantle wedge during subduction, seismic velocit@é be lower in the mantle-wedge rocks
beneath the (U)HP dome, and higher in the adjoidiggnantle rocks of the upper plate.



