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Abstract - Several models which could be useful to
estimate pollutant concentrations as a function of the
emission distribution and the attendant meteorological
conditions, have been investigated.

Up to now a lot of them have been based upon physical
principles.

In this work an alternative black box approach, in air
psllution modelling, have been proposed. The main
target of this approach is the prediction, on the basis of
meteorological  Prevision,  the air  pollution
concentration as a function of the expected number of
vehicles.

The integration of this model in an emission control
scheme, for the control of the motor vehicle flux, may
represent a very useful approach to the urban air
quality problem.

I. INTRODUCTION.

Air pollution in urban areas has become a very important
phenomenon [1], [2]. lts characteristics have not changed
significantly in the most recent decade, but the improvement
in atmospheric process acknowledge, control technology,
and legislative regulations for threshold emission have
emphasised its effect on human life [I]. Many studies
concerned with the relationship between observed
concentrations of air poliutants and human receptors have
been carried out. Substances, altering physical or chemical
properties of the air, added in sufficient concentration to
produce a measurable effect on man or vegetation are
considered as pollutants [3].
Today, especially in urban areas, a large amount of pollutant
compounds are released daily from human activities. In
~ particular, the emission of carbon oxide compounds and
many others -compounds resulting from activities of
:""currently dominant life forms, may be considered no less
than a catastrophic form of localised and diffused
- atmospheric pollution.
Many studies, in fact, have emphasised that localised critical
. concentrations of pollutants can seriously affect air quality
[1}. [2]. Sometimes, dispersive processes, by reducing the
concentrations of poiluting substances to levels below the
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immediate biological response, may provide a more or less
continuous low dosage to occupants of an extended area.
This phenomenon can cause slow accumulation of polluting
substances.

The effects of low dosage of pollutants and the possibilities
of synergism among two or more substances simultaneously
breathed at subacute concentrations for extended periods
of time have been investigated.

The emissions of commerce, industry, and transportation
are largely concentrated in urban areas and generate high
local concentrations of fuel combustion products [3].

In particular Carbon Monoxide (CO) is considered a
dangerous asphyxiant because it combines strongly with the
hemoglobin of the blood and reduces the blood’s ability to
carry oxygen to cell tissues. It's, a colorless, odorless, and
tasteless gas lighter than air [3], [4].

The automobile is by far the largest CO emission source.
Positive action, to control the pollution phenomenon, often
occurs only after serious disaster and it is seldom
anticipatory.

In order to develop alternate environmental strategies,
simulation models are required. Moreover, they have to be
validated with data collected by networks of stations
including remote as well as impact locations [4], [5].

Up to now 2 many of the adopted models have been based
upon physical principles [3], [6]. An important factor that
has discouraged the application of these methods has been
the poor knowledge about many of the basic meteorological
processes involving pollutants in the lower layer of the
troposphere.

In this work an alternative black box approach, in air
pollution modelling, has been proposed. In fact black box
identification methods appear more suitable for local model
purposes because they can autotune parameters [7)- In
particular the model for a strategic road in Catania, a
medium sized town in southern ltaly, has been identified.

Il. THE INTEGRATION OF THE MODEL IN THE
EMISSION CONTROL SCHEME.

The main target of this approach is the prediction, on the
basis of meteorological prevision, the air pollution
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concentration as a function of the expected number of
vehicles.

- The integration of this model in an emission control
scheme, for the control of the motor vehicle flux, may
represent a very useful approach to the urban air quality
problem.

In Fig. | an example of the considered emission control
scheme is reported.

The model M is by far the most significant element in the
above presented control scheme [7], [8].

The number of motor vehicles have been considered as the
system input variable while carbon monoxide concentration
measured in a monitoring station, very close to the street,
has been considered as the output variable.

A control unit C is present too. On the basis of the signal e
value, generated by the comparison between the innocuous
allowed CO level and the estimated level, the control unit C
may act on the allowed number of vehicles.

Il THE PROPOSED MODELS

In this section some models will be introduced. The
proposed models will be different in stricture, input variables
and parameters estimation techniques.

Hourly sampled data, collected from January ‘96 to October
‘96, have been used. Data have been recorded by one of the
twenty stations performing the monitoring network of
Catania. In particular the considered station is placed next
to a highly trafficed road.

An important factor that has discouraged the authors in
using a physical appicach for model estimation has been the
poor knowledge about many of the basic processes involving
pollutants in the lower layer of the troposphere.

For example it is very hard to take into account the
dependence of geostrophic wind, for which the pressure
gradient force and Coriolis force balance each other, on the
horizontal gradient temperature.

Moreover, the complex topography of cities, the roughness
of urban surfaces and conductive flux of heat into and out of
the denser surface materials of the city make a detailed
description of the physical phenomenon involved in pollutant
diffusion too difficult.

On the basis of these considerations a black box approach is

proposed [7].

CO dllowed Yenicles CO meas.
C umber M ley 3
Fig. 1. The emission control scheme.
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A. The linear model &

The first model is based on the proportional scaling method.
In this model the concentration of pollutant is assumed to
be linearly related to the emission.

The analytical model structure is the following:

CO=fW,N,N,) (1

where :

the carbon monoxide concentration, CO, represents the
model output,

N, is the number of cars,

N, is the number of motorcycles,

N, is the number of lorries.

Since linear models are considered, the Mean Least Square
(MLS) optimisation method has been used [7]. In section B.
and C. the same identification technique will Be used.

in Fig. 2 the comparison between the measured data and the
estimated ones is reported. 3

A very poor estimation capability of the linear model has
been achieved.
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Fig. 2. The comparison between the measured data and the estmated ones
with linear model.

B. The meteorological model

Better results have been obtained by using meteorological
models, including wind direction, wind velocity and
temperature as input.

It is well known that meteorological parameters such as
wind speed, turbulence intensity, atmospheric pressure and
temperature are governing factors [3], [6].

For example when pollution is released from a point source
into a turbulent atmosphere, the pollution is carried forward
by the wind and expands in all directions. The global spread
of the pollutant depend on its atmospheric residence time
[2].

The analytical model structure is the following:

CO(k)=f(N,,N,,N,,T,cos(a/2),V) @
where :
T is the temperature value recorded next to the station,



V is the wind speed,

while the term cos(a/2) can be justified by observing the
position of the monitoring station in the considered road,
reported in Fig. 3.

Fig. 3. The position of the monitoring station in the considered road

By using the above introduced term it is possible to quantify
the fraction of the released pollutant recorded by the

station ST.
In Fig. 4 the comparison between the measured data and the

estimated data is shown.
By using this model an improvement in model estimation
capability has been achieved.
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Fig. 4. The comparison between the measured data and the estimated data
with meteorological model

C. The dynamic model

In this section non linear dynamic models have been
investigated.

For evaluating the dynamic order to be introduced into the
model the autocorrelation function has been used [9].

The results, obtained by using the above discussed data set,
are reported in Fig. 5. A first order dynamic has been
chosen.

The analytical model structure is the following:

CO(k)=f(N,,N_,N,,T,DV.V,CO(k-1)) (3)

1058 f

where CO(K-I) represents the sampie estimated at the
previous step.

In Fig. 6 the comparison between the measured data and the
estimated data is reported.

By using this model good results have been achieved.
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Fg. 5. The autocorrelation function.
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Fig. 6. The comparison between the measured data and the estimated data
with dynamic model .

D. The neural model

Up to now LMS identification technique has been used.

Since neural model estimation seems a powerful modelling
tool - if non linear relationships are sort after - this kind of
approach will be proposed.
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Fig. 7. The comparison between the measured data and the estimated data
with neural model .
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in particular Muiti Layer Perceptrons (MLPs), programmed
to use the classical back-propagation learning algorithm have
been developed [10].

Also MLPs with n input neurons, corresponding to the input
signals reported in Eqn. (3), and one output neuron,
corresponding to the CO level reported in the same
equation, have been considered.

MLPs with one hidden layer, and various numbers of hidden
neurons, have been considered.

In Fig. 7. the comparison between the measured data and
the estimates data is reported.

By using this model good results have been achieved.

IV. THE ADEQUACY OF THE PROPOSED MODELS

It is well known that one way to check the adequacy of a
model is to check the properties of the residuals of the
fitted model [8]. If they are random, it is persuasive evidence
that the proposed model adequately fits the data and the
residuals will be nothing more than the random
measurement errors. The random errors typically are
assumed to be normally distributed.

Under these considerations, let us suppose that the residuals
appear normally distributed, the standard deviation & will be
used as the model error index [9]:

. \j______ )

where:

e =y.-y, are the residuals between the estimated trend, ¥,
and the real one, y, respectively.

@ is the mean value of the residuals.

The accuracy of the proposed models has been investigated
by using the above mentioned index. The increment of
with model complexity reduction has been observed.
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Fig. 8. the residuals density plot for the linear CO model
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Fig. 9. The residuals density plot for the neural CO model

In Figs. 8 and 9, as an example, the residuals density plots for
the linear and neural CO modeis are reported [8].

V. CONCLUSION

The possibility to model the dependence of CO level,
recorded in urban areas, on traffic emission has been taken
into account. Several linear and non linear models have been
proposed. In particular by using meteorological input and
Neural Networks identification methods good results have
been achieved.

The estimated model allows for the urban traffic flux
control.

The integration of the model in an emission control scheme
has been taken into account too.
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